
Tight Reductions among Strong Diffie-Hellman Assumptions

Victor K. Wei

Department of Information Engineering
The Chinese University of Hong Kong

Shatin, Hong Kong
kwwei@ie.cuhk.edu.hk

Abstract. We derive some tight equivalence reductions between several Strong Diffie-Hellman
(SDH) assumptions.

1 Results

Let ê : G1 × G2 → GT be a bilinear mapping. The k-Strong Diffie-Hellman Problem (k-SDH) is the
problem of computing a pair (g1/(γ+x)

1 , x) given g1 ∈ G1, and g2, gγ2 , gγ
2

2 , · · · , gγ
k

2 ∈ G2. The k-Strong
Diffie-Hellman Assumption is that no PPT algorithm has a non-negligible probability of solving a random
instance of the k-Strong Diffie Hellman Problem. For details, see [2, 3].

The k-SDH Assumption is closely related to the coalition-resistance of pairing-based signature schemes
and group signature schemes [4, 6, 2, 3, 5]. Typically, k colluders cannot jointly forge an additional signa-
ture not traceable to them when the k-SDH Assumption holds. The following variants are also related to
the coalition-resistance of pairing based signatures and group signatures:

– The k-SDH’ Problem is the problem of computing a pair (g1/(γ+x)
1 , x) given g1, gγ1 , gγ

2

1 , · · · , gγ
k

1 ∈ G1

and g2, g
γ
2 ∈ G2.

– The k-CAA Problem is, given g2, gγ2 ∈ G2, v ∈ G1, and and pairs (Ai, ei) with distinct and nonzero
ei’s satisfying Aγ+ei

i = v, 1 ≤ i ≤ k, compute a pair (Ak+1, ek+1) with ek+1 6= ei for any i, 1 ≤ i ≤ k,
and satisfying Aγ+ek+1

k+1 = v.

– The k-SDH’2 Problem is, given g2, g
γ
2 ∈ G2, gγ

i

1 and gγ
i

3 in G1 for 0 ≤ i ≤ k, compute a triple
((g1g

x̃
3 )1/(γ+ẽ), x̃, ẽ).

– The k-CAA2 Problem is, given g2, gγ2 ∈ G2, u, v ∈ G1, (Ai, ei, xi) satisfying Aγ+ei
i uxi = v for

1 ≤ i ≤ k and all ei’s are distinct and nonzero, compute another triple (Ak+1, ek+1, xk+1) satisfying
A
γ+ek+1
k+1 uxk+1 = v and ek+1 6= ni for any i, 1 ≤ i ≤ k.

The k-SDH’ (resp. k-CAA, k-SDH’2, k-CAA2) Assumption is that no PPT algorithm has a non-
negligible probability of solving a random instance of the k-SDH’ (resp. k-CAA, k-SDH’, k-CAA2) Prob-
lem. The k-CAA Assumption is from Zhang, et al.[6], where CAA stands for Collusion Attack Algorithm.
They showed the k-CAA Assumption holds if and only if their group signature scheme is k-coalition
resistant. [2, 3] showed the k-CAA Assumption implies the k-SDH Assumption. However, no implicaiton
in the opposite direction was given. The full traceability of the exculpable version of [3]’s group signature
in their Section 7 can be easily shown equivalent to the k-CAA2 Assumption. [5] showed the k-CCA2
Assumption implies the k-SDH Assumption. Abdalla, et al.[1] defined a different, and only remotely
related, assumption which they also called the strong Diffie-Hellman assumption.

Typically, there exists an efficiently computable homomorphism ψ such that ψ(g2) = g1. Then the
k-SDH Assumption implies the k-SDH’ Assumption. In Section 2, we prove the following Theorems:

Theorem 1. The k-SDH’ Assumption and the k-CAA Assumption are equivalent.

Theorem 2. Assume the discrete log value logv(u) is known. Then the k-SDH’ Assumption and the
k-CAA2 Assumption implies each other.

Theorem 3. The k-SDH’2 Assumption implies the k-CAA2 Assumption.
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In proving results concerning SDH-based signatures (resp. group signatures), u is often the out-
put of a hashing function. Then the value of logv(u) is known to the Simulator under the random
oracle model. More specifically, u = Hash(something), and the Simulator can select α and backpatch
Hash(something)↔ vα. In such cases, Theorem 2 can be used to establish equivalence between coalition-
resistant unforgeability of SDH-based signature (resp. group signature) schemes and the k-SDH’ Assump-
tion. On the other hand, Theorem 3 can be used to reduce the coalition-resistant unforgeability of some
SDH-based signatures (resp. group signatures) to the k-SDH’2 Assumption without the random oracle
model. It remains intereating to explore other equivalence reductions between these and other SDH-related
assumptions, and their applications to pairing-based signatures and group signatures.

We also note that the above equivalence reductions are tight, meaning that one solution algorithm’s
time complexity (resp. success probability) is within a reasonable additive term of the solution algorithm
of the other problem. Such tightness will be established by our proofs below.

2 Proofs

2.1 Proof Sketch of Theorem 1

(1) Solving k-CAA Problem implies solving k-SDH’ Problem. Assume PPT algorithm A solves k-CAA.
Given a k-SDH’ problem instance, randomly generate distinct nonzero ei, 1 ≤ i ≤ k. Let f(γ) =

∏k
i=1(γ+

ei). Denote f(γ) =
∑k
i=0 fiγ

i. Let v = g
f(γ)
1 . For 1 ≤ i ≤ k let f [j] = f(γ)/(γ + ej) =

∑k−1
i=0 f

[j]
i γi. Then

Aj = v1/(γ+ej) = g
f [j](γ)
1 = g

∑k−1
i=0 f

[j]
i γj

1 =
k−1∏
i=0

(gγ
j

1 )f
[j]
i

Note that for each j, 1 ≤ j ≤ k, we have Aγ+ej
j = v. Invoking A to solve this k-CAA Problem, we

obtain (Ak+1, ek+1) satisfying Aγ+ek+1
k+1 = v. Denote B = vf̂ (γ)−1

where f̂(γ) = f(γ)(γ + ek+1). Next, we
describe how to compute B. Denote f̂(γ) =

∑k+1
i=0 f̂ iγ

i and

f̂
[j]

(γ) = f̂(γ)(γ + ej)−1 =
∏

1≤i≤k+1,i 6=j

(γ + ei) =
k∑
i=1

f̂
[j]

i γ
i

for 1 ≤ j ≤ k + 1. Denote ẽ = ek+1, we have

Bγ
j+1+γj ẽ = B(γj+γj−1ẽ)γ = gj1, for 0 ≤ j ≤ k

Bf̂ (γ) = v

The above system of k+ 2 equations can be solved for the k+ 2 unknowns Bγ
`

, 0 ≤ ` ≤ k+ 1, including
B where (B, ẽ) solves the k-SDH’ Problem.

(2) Solving k-SDH’ Problem implies solving k-CAA Problem. Assume A is a PPT solver of the k-SDH’
Problem. Given Aγ+ei

i , 1 ≤ i ≤ k, let f(γ) =
∏k
I=1(γ + ei). Let g1 = v1/f(γ). Next, we describe how to

compute g1.
Denote f(γ) =

∑k
i=0 fiγ

i and f [j](γ) = f(γ)/(γ + ej) =
∑k−1
i=0 f

[j]
i γi, for 1 ≤ j ≤ k. We have

v = g
f(γ)
1 =

∏k
i=0(gγ

i

1 )fi and

Aj = g
f [j](γ)
1 =

k∏
i=0

(gγ
i

1 )f
[j]
i (1)

Rearranging, we have

k∏
i=0

(gγ
i

1 )Mi,j = Aj , for 0 ≤ j ≤ k, (2)
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where the (k + 1)× (k + 1) matrix M̄ is

M̄ = [Mi,j ]0≤i,j≤k =


f0 f1 · · · fk
0 f

[1]
1 · · · f [1]

k
...
0 f

[k]
1 · · · f [k]

k


Note f [j]

i = Sk−1−i(E \ {ej}) for all i and j, 1 ≤ i ≤ k − 1, 1 ≤ j ≤ k, where E = {e1, · · · , ek} and
Sa({x1, · · · , xn}) is the a-th order symmetric function

Sa({x1, · · · , xn}) =
∑

1≤i1<···<ia≤n

xi1 · · ·xia

Denote the k × k matrix M = [Mi,j ]1≤i,j≤k. We prove the following Lemma later:

Lemma 4 det(M) =
∏

1≤i<j≤k(ei − ej).

Therefore det(M̄) = (
∏k
`=1 e`)(

∏
1≤i,j≤k(ei − ej)) 6= 0, and Equation (2) can be solved to obtain gγ

i

1 , for

all i, 0 ≤ i ≤ k. Invoking the k-SDH’ solver A to obtain g
1/(γ+x)
1 and x.

Let f̄(γ) =
∑k−1
i=0 f̄ iγ

i and c̄ be such that f(γ)/(γ + x) = f̄(γ) + c̄/(γ + x). Then compute

Ak+1 = g
f(γ)/(γ+x)
1 = g

f̄(γ)
1 (g1/(γ+x)

1 )c̄ = [
k−1∏
i=0

(gγ
i

1 )f̄i ](g1/(γ+x)
1 )c̄

and we solve k-CAA Problem with (Ak+1, x). ut

2.2 Proof Sketch of Lemma 4

Note M equals the following matrix:

M(k, e1, · · · , ek) =


Sk−1(E \ {e1}) Sk−2(E \ {e1}) · · · S0(E \ {e1})
Sk−1(E \ {e2}) Sk−2(E \ {e2}) · · · S0(E \ {e2})

...
Sk−1(E \ {ek}) Sk−2(E \ {ek}) · · · S0(E \ {ek})


By convention S0 = 1. We prove the the following statement:

det(M(k, e1, · · · , ek)) = (
k∏
i=2

(e1 − ei)) det(M(k − 1, e2, · · · , ek)) (3)

Then induction on k yields the Lemma.
Let matrix

U =



1 −1 −1 · · · −1
1

. . . 0

0
. . .

1


Multiplying two matrices we obtain M(k, e1, · · · , ek)U =

Sk−1(E \ {e1}) Sk−2(E \ {e1}) · · · S1(E \ {e1}) S0(E \ {e1})
(e1 − e2)Sk−2(E \ {e1, e2}) (e1 − e2)Sk−3(E \ {e1, e2}) · · · (e1 − e2)S0(E \ {e1, e2}) 0
(e1 − e3)Sk−2(E \ {e1, e3}) (e1 − e3)Sk−3(E \ {e1, e3}) · · · (e1 − e3)S0(E \ {e1, e3}) 0

...
(e1 − ek)Sk−2(E \ {e1, ek}) (e1 − ek)Sk−3(E \ {e1, ek}) · · · (e1 − ek)S0(E \ {e1, ek}) 0


Consider the lower left (k− 1)× (k− 1) matrix. Its i-th row is exactly the i-th row of M(k− 1, E \ {e1})
multiplied by e1 − ei, . This proves Equation (3) and thus the Lemma. ut
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2.3 Proof Sketch of Theorem 2

Assume logv(u) = α. The proof is similar to that of Theorem 1. We describe mainly the difference below.
Given a PPT algorithm A which solves k-CAA2, and a k-SDH’ Problem instance, randomly generate
distinct nonzero ei and xi, 1 ≤ i ≤ k. Let f(γ), f [i](γ) be as defined in the proof of Theorem 1. Then

Aj = v(1−xiα)/(γ+ei) = g
(1−xiα)f [i](γ)
1

Invoking A to obtain (Ak+1, ek+1, xk+1) satisfying Aγ+ek+1
k+1 uxk+1 = v. The rest is similar to the proof of

Theorem 1.
Given a PPT algorithm A which solves the k-SDH’ Problem and a k-CCA2 Problem instance, we

have Aγ+ei
i = v1−xiα. Let g1 = v1/f(γ), then Equation (1) becomes

Aj = g
(1−xiα)f [j](γ)
1 , 1 ≤ j ≤ k.

The non-singularity of the matrix M̄ ensures that a k-SDH’ Problem instance can be computed from the
Aj ’s. Invoke A to solve this problem instance, and then convert its answer to an answer for the k-CAA2
Problem is straightforward. ut

2.4 Proof Sketch of Theorem 3

Assume A solves the k-CAA2 Problem. Given a k-SDH’2 Problem instance, randomly choose nonzero
distinct ei and xi, 1 ≤ i ≤ k, and let f(γ), f [i](γ), and v be as defined in the Proof Sketch of Theorem 1.
Furthermore, let u = g

f(γ)
3 . Then let Ai = g

f(γ)/(γ+ei)
1 g

−xif(γ)/γ+ei)
3 , and we have Aγ+ei

i uxi = v for each
i, 1 ≤ i ≤ k. Invoking A to obtain (Ã, ẽ, x̃) satisfying Ã

γ+ẽ
ux̃ = v. Then (B, ẽ,−x̃) solves the k-SDH’2

Problem where B = [Ã(g1g
−x̃
3 )f̄(γ)]c̄

−1
, f(γ)/(γ + ẽ) = f̄(γ) + c̄/(γ + ẽ), d̄ is a constant. ut
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