
Unconditionally Secure Constant Round Multi-Party

Computation for Equality, Comparison, Bits and Exponentiation

Eike Kiltz
∗

Abstract

In this paper we are interested in efficient and secure constant round multi-party protocols
which provide unconditional security against so called honest-but-curious adversaries. In
particular, we design a novel constant round protocol that converts from shares over Zq to
shares over the integers working for all shared inputs from Zq. Furthermore, we present a
constant round protocol to securely evaluate a shared input on a public polynomial whose
running time is linear in the degree of the polynomial. The proposed solution makes use of
Chebyshev Polynomials. We show that the latter two protocols can be used to design effi-
cient constant round protocols for the following natural problems: (i) Equality: Computing
shares of the bit indicating if a shared input value equals zero or not. This provides the
missing building blocks for many constant round linear algebra protocols from the work of
Cramer and Damg̊ard [CD01]. (ii) Comparison: Computing shares of a bit indicating which
of two shared inputs is greater. (iii) Bits: Computing shares of the binary representation of
a shared input value. (iv) Exponentiation: Computing shares of xa mod q given shares of x,
a and q. Prior to this paper, for all the above mentioned problems, there were in general no
efficient constant round protocols known providing unconditional security.

Keywords: Multi-party Computation, unconditional security

∗ Department of Computer Science and Engineering, University of California, San Diego, San Diego, USA.
Email: ekiltz@cs.ucsd.edu. URL: http://www.kiltz.net/.

Contents

1 Introduction 1

1.1 Related Work . 1
1.2 Our Contribution . 2

2 Preliminaries 3

2.1 Notation . 3
2.2 Model . 4
2.3 Known Primitives Used . 4

3 Main Results 5

4 Secure Polynomial Evaluation 6

5 Unrestricted Conversion between Different Shares 8

5.1 Proof of Lemma 5.5 . 12

6 Equality, Comparison and Bits 13

6.1 Comparison and Bits . 13
6.2 Equality . 14
6.3 Modulo Reduction . 15
6.4 Private Modulo Reduction . 15
6.5 Private Exponentiation . 16
6.6 Computing any function in constant rounds . 17

7 Acknowledgment 17

A Security Definitions 19

B Proof of Lemma 5.3 20

C Comparison of the Results 21

Contents

1 Introduction

In this work we consider the problem of secure multi-party computation. Here n players (each
holding a secret input) want to compute an agreed functionality in such a way that the correct
result is computed (correctness) and that the protocol does not reveal any information about
the secret inputs (privacy). The two properties should also hold in presence of an adversary who
is allowed to corrupt some of the players.

There are basically three important measures of complexity for multi-party protocols, namely
the bit complexity (the number of elementary bit operations every player has to perform), the
communication complexity (total number of bits sent) and the round complexity (where a round
is a phase where each player is allowed to send one message to each other player). In this paper
we focus on the round complexity of multi-party protocols. In particular, we build constant-
round protocols.

For conditionally secure multi-party protocols [Yao82] (in the complexity theoretic model),
Yao [Yao86] showed that in the two-party case any probabilistic polynomial-time functionality
can be efficiently and privately evaluated in a constant number of rounds. The protocol uses
secure computations based on a complexity theoretic assumption. These results were later
extended to the multi-party case [GMW91].

For unconditionally secure multi-party protocols [BGW88, CCD88] (in the information the-
oretic model), the situation is different. Up to now it is not known yet which functions can
be efficiently computed in a constant number of rounds. General results started with Bar-Ilan
and Beaver [BIB89] who showed that any algebraic formula can be computed efficiently and in
a constant number of rounds. Later results by Feige, Kilian and Naor [FKN94] and Ishai and
Kushilevitz [IK97, IK00] and Beaver [Bea00] extend this to functions in NL (nondeterministic
logspace) and some related counting classes.

1.1 Related Work

We say that a protocol securely computes a function f , if, given shares of a finite field element x as
input, it outputs shares of f(x) (without revealing anything else). Here f is a public function de-
fined over some field. The two papers that are probably most related to ours are [ACS02, CD01].
In the work of Cramer and Damg̊ard [CD01], efficient constant round multi-party protocols for
various problems coming from linear algebra were studied (computing the determinant, solving
linear equations, etc). Their protocols heavily rely on a sub-protocol (called Π1 therein) for
securely computing the equality function δ(x) which is defined as one if x equals to zero and as
zero otherwise. This problem actually is much older, it first appeared in [BIB89] as the related
normalization function, which tells whether two elements are equal or not. Cramer and Damård
give two different constant-round implementations to securely compute this function. The first
protocol (generalizing a protocol from [BIB89]) is only efficient if the characteristic of the un-
derlying finite field is small enough (i.e., polynomial in the bit-length of order of the field). The
second protocol uses shares of the binary representation of x as input to securely compute δ
(using general circuit techniques). However, given only shares of x over the finite field it was
an open problem to compute shares of the binary representation of x. Hence both approaches
do not lead to a general efficient protocol. Cramer and Damg̊ard leave it as an open problem
to give an efficient constant-round protocol for securely computing the equality function δ on
general finite fields (of possibly large characteristic).

For the finite field Zq (the integers modulo a prime q), Algesheimer, Camenisch and Shoup [ACS02]
present a protocol that securely computes all bits of the binary representation of an input value
and a protocol for secure modulo reduction. Both protocols are efficient but do not run in a
constant number of rounds. Applications for their results can be found in the area of threshold
cryptography, in particular secure generation of shared primes.

A small bug in the protocol converting polynomial to integer shares (i.e. in the Proof of
Lemma 5.5) in an earlier version of this paper [Kil05] has been fixed in this update.

In independent work and using different techniques, Damg̊ard et al [DFNT05] come up
with an efficient constant-round protocol that computes shares of the binary representation of
a shared input.

1.2 Our Contribution

In multi-party protocols it is often necessary to switch between field and integer representations
of the shares. Our main technical contribution is a novel conversion protocol from shares over
Zq to integer shares. Our protocol works for arbitrary shared inputs x ∈ Zq. This improves on
a result from [ACS02] were the shared input x had to be upper bounded by q/n2ρ to guarantee
correctness and privacy (here ρ is a security parameter).

For the special case where the finite field is Zq our unrestricted conversion protocol enables us
to design efficient constant-round protocols for all the problems mentioned in the last paragraph.
In particular, we give efficient constant round protocols for securely computing the following
tasks:

• The equality function δ. This solves the open problem from Cramer and Damg̊ard [CD01]
for the interesting case where the underlying finite field is Zq.

• The comparison function, indicating if an input value is greater than zero or not.1

• All bits of the binary representation.

• Modulo reduction (with respect to a public/shared modulus).

• Exponentiation (with respect to public/shared exponent and modulus).

Our key technique to obtain the constant round protocols is Lagrange Interpolation. Loosely
speaking, Lagrange interpolation enables us to efficiently compute arbitrary functions defined
on a small domain since such functions can be expressed as a low degree polynomials. To this
end we design a protocol that securely evaluates a public polynomial with running time linear
in its degree. Until now this was only possible in quadratic time. Our approach makes use
of Chebyshev polynomials and may be useful elsewhere. A comparison of our results with the
previously known results is given in Fig. 1 in Appendix C.

We emphasize that all our multi-party protocols run in a constant number of rounds. Fur-
thermore, they are secure and efficient in the sense that the running time and the communication
complexity are bounded by a polynomial in the bit-size k = ⌊log q⌋ of the order of the finite field
and in the number of players n. The need of low round complexity is motivated by the fact that
in most practical systems the time spent on sending and receiving messages is large compared
to local computation time. Therefore it is of great importance to reduce the round complexity
to a minimum possible.

1The equality and the comparison function can be seen as a possible multi-party generalization of the Socialist
Millionaires’ Problem [JY96] and Yao’s Millionaires’ Problem [Yao82, Yao86], respectively.

2

From a theoretical point of view our results extend the class of functions for which there
exist efficient unconditionally secure constant-round multi-party protocols. Since the functions
we consider are very basic we think that our results may help bringing forward the general un-
derstanding of constant-round unconditional multi-party protocols. In some cases the protocols
are quite complex. We find it interesting to see that obviously simple problems seem to be very
tricky to perform and that it requires a lot of work.

Possible applications of our results are manifold and naturally arise when both unconditional
security and a low number of communication rounds between the players are required. For
instance consider algorithms performing a conditional “if then else” directive. They may now be
implemented in a secure multi-party protocol using our protocols for comparison and equality.
Another natural application is threshold cryptography where a secret key is shared among the
players. To mention some examples, our protocol for secure exponentiation may be useful
in Diffie-Hellman or RSA like threshold schemes. In fact, with our techniques all protocols
mentioned in [ACS02] can now efficiently implemented in constant rounds.2 Consider a simple
yes/no voting scheme where in the end we want to know if the majority of the players voted for
yes or no without having to reveal the votes. Votes (consisting of shares of zero or one) can be
added using secure addition over a finite field. After adding the votes we securely compute the
bit indicating if the sum of the votes exceeds a certain threshold or not.

The paper proceeds as follows. In Section 2 we introduce some notation and sketch the
security model. A more formal definition of security is given in Appendix A. In Section 3 we
state our main results. The polynomial evaluation protocol is explained in Section 4 and the
unrestricted conversion protocol in Section 5. In Appendix 6 we explain in more detail how to
apply our main results to give efficient constant-round protocols for the tasks mentioned in the
last paragraph. Finally, after giving some missing proofs in Appendix B, a comparison with the
previously known results is done in Appendix C.

2 Preliminaries

2.1 Notation

By ⌊a⌋ we denote that largest integer b ≤ a, by ⌈a⌉ the largest integer b ≤ a + 1/2. Let q
be a prime. We define the set Zq as the set {0, . . . , q − 1}. We emphasize that Zq is mainly
viewed as a set rather than a ring. By a mod q we always mean the smallest non-negative
integer 0 ≤ a′ ≤ q − 1 such that a′ = a − rq for an integer r ∈ Z. Every number x ∈ Zq

can be written as x =
∑k

i=0 2ixi, with xi ∈ {0, 1} and k = ⌊log q⌋. The value xi is denoted
by biti(x), the ith bit. The value x0 is also sometimes called the least significant bit of x and
denoted by lsb(x). We denote additive shares over Zq of a value a ∈ Zq by (〈a〉qj)1≤j≤n where
a =

∑n
j=1〈a〉

q
j mod q (the share held by player j is 〈a〉qj). For a prime q > n , we denote by

([a]qj)1≤j≤n ∈ Zn
q polynomial shares (also called Shamir-Shares [Sha79]) over Zq, i.e. we have

a =
∑

j∈J λJ
j [a]qj mod q, where λJ

j are the Lagrange interpolation coefficients with respect to a

set J of honest players of cardinality at least τ + 1. For a ∈ Z we denote by (〈a〉Zj)1≤j≤n ∈ Zn

additive shares of a over the integers, i.e., a =
∑n

j=1〈a〉
Z

j . Note that the polynomial shares over
Zq are τ + 1-out-of-n shares, whereas the additive shares are n-out-of-n shares.

We make the following notation: the term aj ← PROTOCOLq(bj ;P) means that player j
running the (possibly probabilistic) protocol PROTOCOLq with local input bj and public input

2Here we want to straighten out that [ACS02] is focusing on efficiency (rather than low round complexity).

3

P gets (after possible interaction with the other players) local output aj as a result of the run of
the protocol. In all cases the local inputs and outputs consist of shares over Zq or the integers.

2.2 Model

We consider n players that are connected by secure and authenticated channels. Our protocols
are secure against a static and honest-but-curious (a.k.a. semi-honest) behaving adversary
controlling up to τ = ⌊(n− 1)/2⌋ players. Honest but curious means that all players follow the
given protocol honestly but the dishonest fraction of the players is allowed to pool their data
together and try to derive additional information. Security is granted in a statistical sense and
does not rely on computational assumptions. Informally we say that a a multi-party protocol
privately computes shares of f(x) (here f is a public function and the secret x is shared among
the players), if the output of the protocol consists of random shares of f(x) (consistency) and if
no adversary (controling up to τ players) can learn more information than it could itself derive
from its local inputs and outputs during the execution of the protocol (privacy). In the honest-
but-curious model it can be shown that privacy is preserved under non-concurrent modular
composition of protocols [Can00]. The latter composition theorem will be the main source of
our privacy proofs. Since we tried to state our protocols in a rather informal way we postpone
the exact definition of security (which we only need in Appendix B to prove Lemma 5.3) to
Appendix A.

2.3 Known Primitives Used

We remind the reader of some known private multi-party protocols for efficient distributed
computation with shared secrets that we will use to compose our protocols. The running time
of our protocols will be given in terms of bit operations in k = ⌊log q⌋ and n. We refer to the
term efficient as polynomial time in n and k. We adopt the general convention [ACS02] that
multiplying two elements from Zq takes Θ(k2) bit operations. Let k = log q. We abbreviate
B(n, k) = O(nk2 + kn2 log n) and refer to it as the number of bit operations needed to perform
basic operations (such as multiplication and inversion) on shares over Zq.

Additive Shares over Zq. To share a secret x ∈ Zq, player j chooses random 〈x〉qi ∈ Zq for
i 6= j, sends 〈x〉qi to player i, and sets his own share 〈x〉qj = x −

∑

i6=j〈x〉
q
i mod q. This

takes O(nk) bit operations.

Polynomial Shares over Zq. To share a secret x ∈ Zq, player j chooses random al ∈ Zq for
l = 1, . . . , τ , where τ = ⌊(n− 1)/2⌋, and sets [x]qi = x +

∑τ
l=1 ali

l mod q, and sends [x]qi to
player i. This takes O(kn2 log n) bit operations.

Additive shares over Z with respect to the interval [−A,A]. To share a secret x ∈ [−A,A],
player j chooses random 〈x〉Zi ∈ [−A2ρ, A2ρ] for i 6= j, where ρ is a security parameter,
and sets 〈x〉Zj = x−

∑

i6=j〈a〉
Z

i , and sends 〈a〉Zi to player i. Note that for any set of n − 1
players, the distribution of shares of different secrets are statistically indistinguishable for
suitable large ρ. This takes O(n(ρ + log A)) bit operations. Note that the distribution of
the shares depends on the interval [−A,A].

Basic operations. Addition and multiplication by a constant modulo q of (polynomial or ad-
ditive) shares is done by letting all players privately add or multiply the constant to their
shares modulo q. These operations take O(k) and O(k2) bit operations, respectively. Mul-
tiplication modulo q of two polynomial shares can be done using a protocol from [BGW88]

4

or a more efficient variant from [GRR98] which requires O(B(n, k)) bit operations. We
denote this protocol by MULq([x]qj , [y]qj).

Joint random shares over Zq. To generate shares of a secret random element from Zq, each
player chooses a random number rj ∈ Zq and shares it according to the required type of
sharing scheme. Then each player adds up all the obtained shares modulo q to obtain
the share of a random value. We denote this protocol by JRPq for polynomial shares. It
requires O(kn2 log n) bit operations.

Joint random shares of zero over the integers. This protocol can be done by letting each
player create random shares of zero over the integers with respect to the interval [−A,A].
Then each player adds up all his shares to get shares of zero. We denote this protocol by
JRIZρ(A) and it requires O(k(ρ + log A)) bit operations.

Inversion. Computing the inverse of a polynomially shared element x ∈ Z∗
q is done by the

following protocol due to Bar-Ilan and Beaver [BIB89]. First the players run the protocol
[r]qj ← JRPq, then compute [y]qj ← MULq([r]qj , [x]qj), and reveal [y]qi for all players i to

reconstruct y. If y ≡ 0 mod q, start over. Otherwise, each player j locally computes y−1

and computes their share of x−1 as [x−1]qj = y−1[r]qj mod q. We denote this protocol by
INVq([x]qj) and it takes an expected number of O(B(n, k)) bit operations. Note that the
protocol leaks information for shares of x = 0.

Unbounded fan-in multiplication. Computing the product of (polynomially) many polyno-
mially shared elements x1, . . . , xm from Z∗

q in constant rounds is done as follows [BIB89].
We only consider the case where all elements are non-zero, the general case can be reduced
to this case with computational overhead of a factor m [BIB89, BOC92, CD01]. First the
players generate m shares of random and independent non-zero values ri and compute
shares of their inverses r−1

i . Next, each player j computes [y1]
q
j ← MULq([x1]

q
j , [r1]

q
j), for

i = 2, . . . ,m, [yi]
q
j ← MULq([r−1

i−1]
q
j , [xi]

q
j , [ri]

q
j) and publishes [yi]

q
j to reconstruct yi. Then

all players compute the product of all yi and multiply the result into the shares of r−1
m to

get shares of the product of the xi’s. We denote this protocol by MULq([x1]
q
j , . . . , [xm]qj).

It runs in a constant number of rounds and uses O(mB(n, k)) bit operations.

3 Main Results

The main technical achievement of our paper is the following:

Theorem 3.1 Let random polynomial shares of x ∈ Zq be given. Then there exists a protocol
that privately computes random additive shares of x over the integers.

Our protocol runs in a constant number of rounds and O((kn2 + k3)B(n, k)) bit operations. A
previous solution ([ACS02], see also Theorem 5.1) has the drawback that privacy can only be
guaranteed for shared inputs upper bounded by q/n2ρ, where ρ is a security parameter. Our
solution comes without restrictions to the shared secret. We pay that with an additional factor
kn2 + k3 in the running time compared to the solution from [ACS02]. The exact description of
the protocol, the analysis and a comparison with the existing solution is given in Section 5.

Theorem 3.2 Let random polynomial shares of x ∈ Zq (possibly zero) and a public polynomial
F ∈ Zq[X] of degree d be given. Then there exists a protocol that privately computes random
polynomial shares of F (x) mod q.

5

The protocol runs in a constant number of rounds. It takes O(dB(n, k)) bit operations. The
improvement over the previously known solution is a factor of d in the running time. The exact
description of the protocol and its analysis is given in Section 4.

Theorem 3.1 can be used to prove the following:

Theorem 3.3 Given random polynomial shares of x, y, p ∈ Zq (where p is of public bit-size
k0 < k), then there exist efficient constant round multi-protocols that privately compute random
polynomial shares of each of the following functions f(x, y, p):

• The equality function f(x) = δ(x) which is zero if x equals zero and one otherwise.

• The binary representation (bit0(x), . . . ,bitk(x)) of x such that
∑

2ixi = x

• The comparison function which outputs zero if x ≥ y and one otherwise

• The modulo function f(x, p) = x mod p.

• The exponentiation function f(x, y, p) = xy mod p.

For both the modulo function and the exponentiation function there exist more efficient protocols
if the modulus p and/or the exponent y is public.

The protocol for computing shares of comparison function is discussed in Section 5.1 (as part
of the proof of Theorem 3.1).The full proof of Theorem 3.3 (including the respective protocols)
is given in Section 6. See also Appendix C for the running-time of the protocols and for a
comparison with the existing solutions.

4 Secure Polynomial Evaluation

In this section we provide the protocol corresponding to Theorem 3.2 and prove its correctness
and privacy.

We want to evaluate a polynomial F in a shared value x. First we present a naive protocol
based on known techniques. It is basically a variant of unbounded fan-in multiplication (to
compute shares of xi = xi mod q in parallel) combined with dynamic programming to reuse
already computed values. As we will see, the protocol leaks information for shared inputs of
zero.

Protocol POLYq([x]qj ;F), where F (X) =
∑d

i=0 aiX
i is a polynomial of degree d.

Each player j performs the following steps:

1. Create random polynomial shares ([y0]
q
j)1≤j≤n of y0 = 1.

For each 1 ≤ i ≤ d do in parallel:

Run the protocol [yi]
q
j ← JRPq to generate polynomial shares of random non-zero

elements yi ∈ Zq and compute shares of its inverses [y−1
i]qj ← INVq([yi]

q
j).

2. For each 1 ≤ i ≤ d do in parallel:

Compute [zi]
q
j ← MULq([y−1

i−1]
q
j , [x]qj , [yi]

q
j) and reveal [zi]

q
j to reconstruct zi =

y−1
i−1xyi mod q.

3. Put h1 = 1. For 2 ≤ i ≤ d set hi = hi−1zi mod q and [xi]
q
j = hi[y

−1
i]qj mod q.

4. Output [y]qj = a0 + a1[x]qj +
∑d

i=2 ai[xi]
q
j mod q

6

We get the following theorem whose security follows by the security of the sub-protocols
used.

Lemma 4.1 Given random polynomial shares ([x]qj)1≤j≤n of a non-zero element x ∈ Z∗
q, and

a polynomial F ∈ Zq[X] of degree d, the protocol POLYq([x]qj ;F) privately computes random
polynomial shares of F (x) mod q.

The protocol runs in a constant number of rounds (note that in the loop of step three there is no
communication needed). It takes O(dB(n, k)) bit operations. Correctness follows (similar to the
unbounded fan-in multiplication) by the identity y−1

0 xy1 · y
−1
1 xy2 · . . . · yi−1xyi = xiyi and hence

Step 3 computes shares of xi = (
∏i

l=1 zl)y
−1
i = (y−1

0 xy1 · . . . · yi−1xyi)y
−1
i = xi mod q. Note

that (by publishing zi = y−1
i−1xyi mod q) the protocol leaks information when the polynomial is

evaluated in zero inputs x.

As already done in [BIB89], using a technique from [BOC92], the general case (where the
input may equals to zero) can be reduced to unbounded fan-in multiplication of invertible 3× 3
matrices as we will sketch now. Later we will give an alternative protocol for the same task
with improved running time. The main result from [BOC92] states that every algebraic formula
Φ of depth l can be expressed as the product of O(4l) invertible 3 × 3 matrices over Zq (in
the sense that the value Φ(x) can be read from the right top corner of the matrix product).
Since any polynomial F (X) of degree d can be expressed as an algebraic formula of depth log d,
F (X) can be expressed as the product of O(d2) such invertible 3 × 3 matrices. The appearing
matrices are either one of five (known) constant matrices or are the identity matrix with x in
the right upper corner. Using an efficient constant round protocol for multiplying invertible
constant size matrices (by performing component-wise multiplication; see, e.g., [BIB89, Bea00]),
we imply that there there exists a protocol that privately computes random polynomial shares
of F (x) mod q, where x may equal to zero. The protocol runs in a constant number of rounds
and it takes O(d2B(n, k)) bit operations.

We now come to our improvement. We design an alternative protocol with running time
linear in d (instead of quadratic). We use Chebyshev polynomials of the first kind which satisfy
the linear recurrence

Td(x) = 2xTd−1(x)− Td−2(x), d ≥ 2

with starting values T0(x) = 1 and T1(x) = x and Chebyshev polynomials of the second kind

Ud(x) = 2xUd−1(x)− Ud−2(x), d ≥ 2

with starting values U0(x) = 1 and U1(x) = 2x. It is well known that that the Chebyshev
polynomials Ti(x), 0 ≤ i ≤ d form a basis for all polynomials of degree at most d. I.e.,
there exist coefficients λi ∈ Zq such that every polynomial F of degree at most d given in

its monomial representation F (x) =
∑d

i=0 aix
i can be expressed in the Chebyshev basis as

F (x) =
∑d

i=0 λiTi(x) mod q. The coefficients λi only depend on F and the modulus q, but not
on x. All λi’s can be computed from the ai’s in O(d2 log2 q) bit operations (using, for instance,
the recursive formulas from [Kro70]).

For x ∈ Zq define the 2× 2 matrix M(x) over Zq as

M(x) =

(

x −1
1 0

)

,

7

and note that M(x) is invertible for each x ∈ Zq (even for the interesting case x = 0). The
following identity is easy to show by induction over d:

M(x)Md−1(2x) =

(

Td(x) −Td−1(x)
Ud−1(x) −Ud−2(x)

)

. (1)

Now a protocol to securely evaluate a given public polynomial F of degree d modulo a prime q
is straight forward as follows: In a precomputation phase each player computes the interpolation
coefficients λi ∈ Zq and stores them in the memory. When the actual protocol is run, the players
first create shares of the invertible matrices M(x) and M(2x), given shares of the secret input
x. Then they compute (component-wise and in parallel) shares of the matrices M(x)M i−1(2x)
for 1 ≤ i ≤ d (as in Lemma 4.1). Security is granted since M(x) and M(2x) are invertible.
By Eq. (1), shares of the value Ti(x) can now be read in the upper left corner of the resulting
matrices. In the last step the players compute shares of F (x) as F (x) =

∑d
i=0 λiTi(x). This

proves Theorem 3.2.

5 Unrestricted Conversion between Different Shares

In this section we prove Theorem 3.1. We start recalling the reader one of our central tools, the
Lagrange Interpolation. Let P be a set of points P = {(xi, yi), 0 ≤ i ≤ d} with (xi, yi) ∈ Zq×Zq

for pairwise distinct xi’s. Then it is well known that there exists an unique polynomial F ∈ Zq[X]
of degree at most d satisfying F (xi) = yi for all 0 ≤ i ≤ d. The polynomial F is explicitly given
by the formula

F (X) =

d
∑

i=0

yi · γi(X), γi(X) =
∏

0≤j≤d

j 6=i

X − xj

xi − xj

mod q (2)

where the γi(X)’s are called the Lagrange interpolation polynomials. The coefficients of γi(X)
only depend on the set P and on the modulus q. Computing the coefficients of F (X) takes
O(k2d log2 d log log d) bit operations [GG99, Chap.10].

It is well known how to convert additive shares over Zq into polynomial shares over Zq and
vice versa. If the players hold τ +1-out-of-n polynomial shares over Zq of a value x they re-share
those with n-out-of-n additive shares over Zq and send the shares to the respective players,
which interpolate the received shares to obtain additive shares. If the players hold n-out-of-n
additive shares over Zq they re-share those with τ + 1-out-of-n polynomial shares over Zq and
send the shares to the respective players, which add up the received shares to obtain polynomial
shares. Converting additive shares over the integers to additive shares over Zq is done by simply
taking all entries modulo q. Note that it is naturally required that the secret is bounded by the
modulus.

Converting additive (or polynomial) shares of x over Zq to additive shares over the integers
turns out to be the hardest of all conversions. The problem is here that if one only considers
the additive shares over Zq as additive shares over the integers then the resulting secret may be
off by a multiple of the modulus q:

x =
∑

〈x〉qj − r̂q, (3)

for an integer 0 ≤ r̂ ≤ n, where r̂ = ⌊
∑n

i=1〈x〉
q
i /q⌋. So the problem reduces to (somehow,

privately) computing this value r̂. It is well known (see, e.g., [DMS94]) that considering the first

8

O(log n) most significant bits of each share 〈x〉qj is sufficient for computing r̂ if x itself is not “too
big”. Now the observation is that unless again x is too big, each player j can reveal these bits
without revealing anything about the common secret x. This fact was used in [ACS02]. Here
we present their protocol using a different representation of Zq. Before we present the protocol
we introduce the following notation: πj(r) = 1 for j ≤ r and πj(r) = 0 for j > r.

Protocol SQ2SIqρ(〈c〉
q
j).

Put t = ⌊log q − 2− log n⌋. Each player j executes the following steps:

1. Compute aj =
⌊

〈c〉qj/2
t
⌋

and publish this value to all other players.

2. Compute r =
⌊

2t
Pn

i=1
ai

q
+ 1

2

⌋

.

3. Create random additive shares over Z by running 〈0〉Zj ← JRIZρ(q).

4. Compute 〈c〉Zj = 〈c〉qj − πj(r)q + 〈0〉Zj .

Theorem 5.1 [[ACS02]] Let ([c]qj)1≤j≤n be random polynomial shares of 0 ≤ c ≤ q/(n2ρ),
where ρ is a security parameter. Then protocol SQ2SIqρ(·) privately computes random additive
shares of c over the integers.

The protocol uses O(B(n, k)) bit operations and it runs in a constant number of rounds. Note
that the protocol violates the privacy property when the shared input exceeds the bound q/n2ρ.
This is since the values aj (the log n most significant bits of the additive shares) are made public
by every player, thereby disclosing parts of his secret share. We present a modification that
overcomes this problem.

In the rest of this section we work towards the final unrestricted conversion protocol. This
is done in three steps, each step building on the previous one: First, based on ideas of the
original conversion protocol SQ2SIqρ(·), we present a modification (called SQ2SI 1q

ρ(·)) to weaken
the bound on the size of the shared input to q/2ρ (dropping the factor n). Second, we use this
new protocol to create another conversion protocol (called SQ2SI 2q

ρ(·)) that works for shared
input values up to q/2 (dropping the factor 2ρ−1). The latter protocol also has the property that
it always outputs shares of (the correct value) c or c − q. For the final unrestricted conversion
protocol it leaves to show how to (privately) distinguish between the two cases. This is done
using binary circuits. In order to apply the circuit technique, a protocol to compute shares of
the binary representation of c (or c− q) is constructed in Section 5.1.

To simplify our presentation we make the (technical) assumption that the prime q is large
enough with respect to the number of parties n and the security parameter ρ, i.e. we assume

q > max{n2ρ, 4n2}. (4)

Let (〈c〉qj)1≤j≤n be additive shares of c ∈ Zq such that c =
∑n

j=1〈c〉
q
j mod q. Then

c =

n
∑

j=1

〈c〉qj − r̂q, (5)

for some integer r̂ =

⌊

Pn
i=1

〈c〉qj
q

⌋

with 0 ≤ r̂ < n. The following lemma shows that in some cases

the value r =
⌊

2t
Pn

i=1
ai

q
+ 1

2

⌋

equals to r̂.

9

Lemma 5.2 With the above notation, let aj =
⌊

〈c〉qj/2
t
⌋

with t = ⌊log q − log n − 1⌋. Then

r ∈ {r̂, r̂ + 1}. Furthermore, if 0 ≤ c < q/2, then r = r̂.

Proof: By Eq. (5) we have c =
∑n

j=1〈c〉
q
j − r̂q for some integer 0 ≤ r̂ < n. By division with

remainder write 〈c〉qj as 2taj+bj with bj < 2t ≤ q/2n. Note that bj contains the q/2t = Θ(n) most

significant bits of 〈c〉qj . Moreover we have
∑n

j=1 bj =
∑n

j=1〈c〉
q
j−2t

∑n
j=1 aj = c+ r̂q−2t

∑n
j=1 aj

and thus 2t
∑n

j=1 aj = c + r̂q −
∑n

j=1 bj . This implies

r =

⌊

2t
∑n

j=1 aj

q
+

1

2

⌋

=

⌊

r̂ +
c

q
−

∑n
j=1 bj

q
+

1

2

⌋

= r̂ +

⌊

c

q
−

∑n
j=1 bj

q
+

1

2

⌋

, (6)

where the last equation holds since r̂ is an integer. Observe that by the choice of the parameter
t we have 0 ≤

∑

bj/q < n2t/q < 1/2. For arbitrary values c ∈ Zq we have 0 ≤ c/q < 1 and
therefore r ∈ {r̂, r̂ + 1}. For 0 ≤ c < q/2 we can use the sharper bound c/q < 1/2 to get r = r̂.

Now we modify the protocol SQ2SIqρ(·) as follows. Let the values aj and r as in Lemma 5.2
and let a =

∑n
j=1 aj . Note that each aj is bounded by ⌊q/2t⌋ ≤ 4n and so a is bounded by

4n2. Instead of computing the value r by publishing the value ai to all players we compute r
using polynomial interpolation: Let P be the unique interpolation polynomial over Zq of degree

4n2 through the points {(z,
⌊

2tz
q

+ 1
2

⌋

), 0 ≤ z ≤ 4n2}. Then r = P (
∑

ai) = P (a). We use

Theorem 3.2 to securely evaluate the polynomial P in the shared a. Efficiency is granted since
the degree of P is relatively small.

Protocol SQ2SI 1q
ρ(〈c〉

q
j ;A).

Put t = ⌊log q − log n− 1⌋. Every player j executes the following steps:

1. Compute aj =
⌊

〈c〉qj/2
t
⌋

and distribute random polynomial shares ([aj]
q
i)1≤i≤n of

aj to the resp. players.

2. Compute [a]qj =
∑n

i=1[ai]
p
j mod q.

3. Let P be the unique interpolation polynomial over Zq of degree 4n2 through the

set of points

{(z,

⌊

2tz

q
+

1

2

⌋

), 0 ≤ z ≤ 4n2}.

Compute [r]qj ← POLYq([a]qj ;P) and publish [r]qj to reconstruct r.

4. Run 〈0〉Zj ← JRIZρ(A).

5. Output 〈c〉Zj = 〈c〉qj − πj(r)q + 〈0〉Zj .

Lemma 5.3 Let (〈c〉qj)1≤j≤n be random additive shares of 0 ≤ c ≤ A < q/2ρ, where ρ ≥ log n
is a security parameter. Then protocol SQ2SI 1q

ρ(〈c〉
q
j ;A) privately computes random additive

shares of c over the integers (with respect to the interval [−A,A]).

The protocol runs in a constant number of rounds. The running time of protocol is dominated
by the polynomial interpolation step and is bounded by O(n2B(n, k)) bit operations. The full
proof of Lemma 5.3 is given in Appendix B.

10

The straight forward idea for the next step is to completely hide the value r. This enables
us to construct a protocol that does the conversion privately for all possible shared inputs.
Unfortunately, concerning correctness, Lemma 5.2 is the barrier and for half of the shared
inputs the result of the conversion may be off by an additive factor of q. We may now describe
the protocol.

Protocol SQ2SI 2q
ρ(〈c〉

q
j).

Put t = ⌊log q − log n− 1⌋. Each player j performs the following steps:

1. Compute aj =
⌊

〈c〉qj/2
t
⌋

and distribute random polynomial shares ([aj]
q
i)1≤i≤n of

aj to the resp. players.

2. Compute [a]qj =
∑n

i=1[ai]
q
j mod q.

3. Let P be the interpolation polynomial of degree 4n2 through the set of points

{(z,
⌊

2tz
q

+ 1
2

⌋

), 0 ≤ z ≤ 4n2}. Compute [r]qj ← POLYq([a]qj ;P).

4. Convert the pol. shares of r to additive shares over Z: 〈r〉Zj ← SQ2SI 1q
ρ([r]

q
j ;n).

5. Run 〈0〉Zj ← JRIZρ(nq).

6. Output 〈b〉Zj = 〈c〉qj − 〈r〉
Z

j q + 〈0〉Zj

Lemma 5.4 Let (〈c〉qj)1≤j≤n be random additive shares of c ∈ Zq. Then protocol SQ2SI 2q
ρ([c]

q
j)

privately computes random additive shares over the integers of b ∈ {c, c − q} (with respect to
the interval [−qn, qn]). Moreover, if c < q/2, then b = c.

The protocol runs in a constant number of rounds and uses O(n2B(n, k)) bit operations.

Proof: Correctness follows as in the proof of Lemma 5.3, now the shares computed in step three
are shares of r ∈ {r̂, r̂ + 1} with r = r̂ if 0 ≤ c < q/2. By Lemma 5.3 the application of the
protocol SQ2SI 1q

ρ(〈r〉
q
j) in step 4 is secure since 0 ≤ r < n < q/2ρ (the latter inequality holds

by Eq. (4)). Therefore (〈r〉Zj)1≤j≤n are random additive shares of r over the integers and

n
∑

j=1

〈bj〉
Z =

n
∑

j=1

(〈c〉qj − 〈r〉
Z

j q + 〈0〉Zj) =
n

∑

j=1

〈c〉qj − rq = b ∈ {c, c− q}.

Security of the protocol follows immediately by composition of the sub-protocols. It leaves to
show that the output shares (〈b〉Zj)1≤j≤n have the right distribution. The protocol SQ2SI 1q

ρ(·;n)

in step four outputs random additive shares (〈0〉Zj)1≤j≤n of 0 ≤ r ≤ n with respect to the interval

[−n, n]. That means the integer shares are bounded by |〈r〉Zj | ≤ 2ρn. Hence |〈c〉qj−〈r〉
Z

j q| ≤ 2ρnq
and adding random additive share of zero (with respect to the interval [−nq, nq]) from step five
gives the right distribution for the output shares (〈b〉Zj)1≤j≤n.

We want to emphasize that, in contrast to the original conversion protocol from [ACS02],
our protocol stays secure for inputs c ≥ q/2. It may then only be that the resulting integer
shares of b are off by an additive factor of q. For simplicity add q to the result of the shares
of protocol SQ2SI 2q

ρ([c]
q
j). In the remainder of this section we show how to efficiently decide

between the two cases b = c + q or b = c.

Lemma 5.5 Let (〈b〉Zj)1≤j≤n be random additive shares of 0 ≤ b ≤ 2q − 1 over the integers.
There exists a protocol that privately computes random polynomial shares of the comparison
bit d indicating if b ≤ q − 1 (d = 0) or b > q − 1 (d = 1).

11

The protocol runs in a constant number of rounds and uses O((kn log n + k3)B(n, k)) bit oper-
ations. The proof of Lemma 5.5 is postponed to the next subsection.

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1: Let ([x]qj)1≤j≤n be random polynomial shares of x ∈ Zq. First
convert them to additive shares (〈x〉qj)1≤j≤n of x ∈ Zq. Then run protocol SQ2SI 2q

ρ([x]qj) (and

add random shares of q to the resulting shares) to obtain random additive shares (〈b〉Zj)1≤j≤n

over the integers of an integer b ∈ {x, x + q} (with respect to the interval [−nq, nq]). Next
use the protocol implied by Lemma 5.5 to compute random polynomial shares of the bit d
indicating if b ≤ q − 1 (d = 0) or b > q − 1 (d = 1). Convert the resulting shares to random
additive shares (〈d〉Zj)1≤j≤n over the integers of d with respect to the interval [−q, q] (using

protocol SQ2SI 1q
ρ(〈d〉

q
j ; 1)). Then random integer shares (〈c〉Zj)1≤j≤n of c (with respect to the

interval [−qn, qn]) are obtained by letting each player compute 〈c〉Zj ← 〈b〉
Z

j − 〈d〉
Z

j (q − 1). The

protocol uses O((k3 + kn2)B(n, k)) bit operations and it runs in a constant number of rounds.
Privacy follows by composition and correctness by the arguments given above. So far we have
showed how to compute random additive shares (〈b〉Zj)1≤j≤n over the integers with respect to the
interval [−qn, qn]. If we want to compute random additive shares over the integers with respect
to the (smaller) interval [−q, q], we can proceed as follows. Choose a new prime q′ > 2ρq, set

〈c〉q
′

j = 〈c〉Zj mod q′ and run the protocol SQ2SI 1q′

ρ (〈c〉q
′

j ; q). The output are random additive
shares over the integers with respect to the interval [−q, q]

5.1 Proof of Lemma 5.5

We want to prove Lemma 5.5, i.e. give a protocol that computes shares of the comparison bit
d given additive shares of x over the integers.

Any k-bit number is uniquely determined by its residues modulo polynomially many primes,
each having O(log k) bits. The Prime Number Theorem guarantees that there will be more than
enough primes of that length. More precisely, let p1, . . . , pm be m primes with pi = Θ(k). Let
P =

∏

pi. Any number x < P can be represented uniquely by the sequence (x1, . . . , xm) with
x = xi mod pi for all i. We call the sequence (x1, . . . , xm) the CRR of x. More precisely, to
compute the CRR of a k + 1 bit integer x < P := 2q ≤ 2k+1, then m = O(log P) = O(k) primes
pi ∈ O(k) are sufficient (see, e.g., [GG99]).

At a high level, the protocol for computing shares of the comparison function works as follows.
Given integer shares of x ∈ Zq, we first compute polynomial shares of the CRR (x1, . . . , xm) of
x. Second, we compute shares of the binary representation of each of the values xi (1 ≤ i ≤ m).
This can be done efficiently (using polynomial interpolation) since all the xi’s are small. By a
result from [DMS94] there exists an NL algorithm that, given the (binary representation of the)
CRR of x and q, decides if x > q or not. We apply the generic NL technique from [FKN94] to
compute shares of the bit d.

We now give more details. Given integer shares of x ∈ Zq, we compute polynomial shares of
the CRR of x. That is, we compute shares of xi = x mod pi over Zpi

in parallel for 1 ≤ i ≤ m.
This is done by letting each player j take his additive share 〈b〉Zj modulo pi to get additive shares
of xi over Zpi

. The resulting shares are converted into polynomial shares over Zpi
.

In the second step we compute shares of the binary representation of all the values xi using
polynomial interpolation. For each prime pi (1 ≤ i ≤ m = O(k)) and each bit j (0 ≤ j ≤
⌊log pi⌋), this can be done using O(pi · B(n, k)) bit operations, where pi = O(k). Performing all
interpolations in parallel this sums up to O(k2 log k · B(n, k)) bit operations.

12

Note that the definition of polynomial shares over pi formally requires that pi > n. Since
pi = Θ(k) we need k ≥ n. In case k ≤ n we choose all primes pi such that pi = Θ(n) and the
running time sums up to O(kn log n · B(n, k)) bit operations.

Hence computing shares of the binary representation of the CRR of x can be computed in
O((kn log n + k2 log k)B(n, k)) bit operations.

By a result from Dietz, Macarie and Seiferas [DMS94] we know that there exists a space-
efficient algorithm that, given the CRR of a value x, computes the comparison bit d:

Theorem 5.6 From its residues modulo p1, . . . , pm, we can decide in space O(log log P) the
relative order of two numbers less than P =

∏m
i=1 pi.

Using this observation we apply the generic constant-round NL multi-party protocol by Feige,
Kilian and Naor [FKN94] to securely compute shares of the binary representation of d.

The NL protocol takes l = O(k) input bits (all the bits of the binary representation of the
CRR of x). The binary representation of q can be hard-wired into the protocol.

It exploits the fact that every problem in NL can be reduced to s-t-connectivity and s-t-
connectivity can be reduced to matrix multiplication. It first creates 2l + 4 = O(l) invertible
l × l matrices Mi, the entries of each matrix consist either of constants or of one of the input
bits. The matrices are created in such a way that the output bit of the NL computation can be
read at a specific fixed position of the product of those matrices (say in the top right corner).
These matrices are part of the reduction to s-t-connectivity and are described in [FKN94] in
detail. Hence the problem reduces to securely computing the product of O(l) l × l matrices.
With the techniques from Section 4 this can be done in constant rounds using O(l3B(n, k)) =
O(k3B(n, k)) bit operations (O(l) multiplications of l × l matrices). The overall protocol takes
O((k3 + kn log n)B(n, k)) bit-operations. This completes the proof.

6 Equality, Comparison and Bits

In this section we present efficient constant round protocols for privately computing shares of
equality, comparison, the binary representation and exponentiation. All protocols input and
output polynomial shares over the field Zq. Our general strategy can be outlined as follows: we
switch between the field representation and integer representation depending on the operation
we want to perform in each step of the protocol (using the protocol implied by Theorem 3.1).
Operations involving multiplication or polynomial evaluation are carried out over the finite field.
On the other hand, for non-field operations like modulo computations we prefer working over
integer shares. In the end we retransform into polynomial shares over Zq and output the result.
Since in most cases we don’t have control over the shared values we also can’t guarantee an
upper bound on them. Hence our unrestricted conversion protocol (Theorem 3.1) becomes one
of the crucial ingredients for our strategy.

6.1 Comparison and Bits

The following theorem was implicitly proven in Section 5:

Theorem 6.1 Let random polynomial shares of x and y over Zq be given. There exists a
protocol that privately computes random polynomial shares of the comparison bit indicating if
x > y or not.

13

The protocol runs in constant rounds and uses O((kn2 + k3)B(n, k)) bit operations. In [ACS02]
an efficient protocol to compute shares of the binary representation was given that runs in
O(log n + log k) rounds of communication and O(nkB(n, k)) bit operations using the generic
circuit protocol from [BGW88]. We present a constant round protocol for the same task.

Theorem 6.2 Let random polynomial shares of x over Zq be given. Then there exists a protocol
that privately computes random polynomial shares of the binary representation of x.

The protocol runs in a constant number of rounds and uses O((kn2 + k4)B(n, k)) bit operations
Actually, the last theorem can be combined with the circuit based results [BIB89, Bea00] to
state a more general result:

Corollary 6.3 Let random polynomial shares of x over Zq be given. Let f : {0, 1}k → {0, 1}
(when viewed as a circuit) be any function contained in the complexity class NL. Then there
exists an efficient constant-round protocol that privately computes random polynomial shares
of of f(x).

Theorem 6.2 is a simple corollary of Theorem 3.1 and the following Lemma:

Lemma 6.4 Let (〈x〉Zj)1≤j≤n be random additive shares of 0 ≤ x < q over the integers. There
exists a protocol that privately computes random polynomial shares of all bits biti(b) ∈ {0, 1},
0 ≤ i ≤ k − 1.

The protocol runs in a constant number of rounds and uses O((kn log n + k4)B(n, k)) bit oper-
ations.

Proof: The protocol uses the same techniques as the protocol in the proof of Lemma 5.5
(Section 5.1). The key ingredient is again the following space-efficient protocol by Dietz, Macarie
and Seiferas [DMS94]:

Theorem 6.5 From its residues modulo p1, . . . , pk, we can sequentially generate all the bits of
a number less than P =

∏k
i=1 pi, in space O(log log P) if the bits of P are available.

Let shares of the binary representation of the CRR of x be given (they can be computed in
O((kn log n + k2 log k)B(n, k)) bit operations). For computing shares of each individual bit
biti(x), the problem again reduces to securely computing the product of O(k) matrices, what
can be done in constant rounds using O(k3B(n, k)) bit operations. The protocol has to be run
for each bit in parallel. Therefore the protocol that computes shares of all bits of the binary
representation of x uses O(k4B(n, k)) bit operations.

6.2 Equality

Define the equality (to zero) function δ : Zq → {0, 1} as δ(x) = 1 if x = 0 and δ(x) = 0
otherwise. Since x = 0 iff x ∈ {0, . . . , (q−1)/2} and −x = q−x ∈ {0, . . . , (q−1)/2}, computing
δ(x) is reducible to comparing x and −x = q − x to zero. Hence a protocol for Equality can
be constructed by means of Theorem 6.1. Now we present an alternative approach using the
Chinese Remainder Representation (CRR) which is more efficient.

Let (x1, . . . , xk) be the CRR of 0 ≤ x < q. Clearly we have x = 0 iff xi = 0 mod pi for all
1 ≤ i ≤ k. This observation can be used to build an alternative constant round protocol for the
equality function as follows:
We assume that k ≥ n. First assume we are given random additive shares of x over the integers.
For each prime pi do the following (in parallel):

14

• Compute random additive shares of xi = x mod pi over Zpi
.3

• By polynomial interpolation over Zpi
compute zi = δ(xi).

• Transform the polynomial shares of zi over Zpi
first to random additive shares over the

integers, then to polynomial shares over Zq. The first transformation can be carried out
by the protocol SQ2SI 2pi

ρ (〈zi〉
pi

j ; 1) (with ρ = log pi) since we know that zi ∈ {0, 1}.

Finally, we can compute shares of δ(x) as δ(x) =
∏m

i=1(1− δ(x mod pi)) using unbounded fan-in
multiplication.

We count the bit operations for the protocol for each prime pi = O(k): The polynomial
interpolation step takes piB(n, log pi) = O(k(log kn2 log n + n log2 k)) bit operations. The con-
version protocol takes B(n, log pi) bit operations. In total we get k2(log kn2 log n + n log2 k)) =
k log kB(n, k) bit operations. So far we assumed to start with integer shares of x ∈ Zq. We
now show how to deal with the case that we are given integer shares of b ∈ {x, x− q} obtained
by the (more efficient) conversion protocol SQ2SI 2q

ρ(〈x〉
q
j). In this case we can run the above

Chinese Remainder based protocol twice. The first time on integer shares of b, the second time
on integer shares of b+ q and return a share of zero if one of the two invocations of the protocol
returns zero.

By the above observations we can extract the following theorem:

Theorem 6.6 Let ([x]qj)1≤j≤n be random polynomial shares of x over Zq. Then there exists a
protocol that privately computes random polynomial shares of δ(x) ∈ {0, 1}.

The protocol runs in a constant number of rounds. It takes O((k log k + n2)B(n, k)) bit opera-
tions.

6.3 Modulo Reduction

We are given a shared value x over Zq and a public integer p. The problem is to privately
compute shares of (x mod p) over Zq. A constant-round multi-party protocol this task can be
constructed using the methods of Section 5 as follows: First convert the shares of x to integer
shares of x. This is basically computing shares of x mod q (here q is the modulus of the field).
Then apply the same technique again to compute shares of (x mod p). The protocol runs in a
constant number of rounds and takes O((kn2 + k3)B(n, k)) bit operations.

6.4 Private Modulo Reduction

We are given a shared value x and a shared integer p of known bit-size k0 < k over Zq. The prob-
lem is to privately compute shares of (x mod p) over Zq. There already exists an efficient protocol
for this task due to [ACS02] but it does not run in a constant number of rounds. We quickly
want to mention that combining the techniques of this paper with the results from [ACS02]
and [KLML05] (the latter one approximates the fractional part of 1/p by a Taylor polynomial),
we get an efficient constant round protocol for this problem.

3Here we actually need our assumption k ≥ n since for polynomial shares the modulus pi must be as least as
big as the number of players n.

15

6.5 Private Exponentiation

The exponentiation function over Zq is given by exp(x, a) = xa mod q. We first deal with the
case where the exponent a is publicly known and the value x is given as shares. We want
to compute shares of xa mod q over Zq. Assume there exists a protocol that outputs random
shares of a random non-zero value r ∈ Z∗

q together with shares of its ath power ra mod q. Then a
protocol to securely compute the exponentiation function is straight forward (using the Bar-Ilan
and Beaver [BIB89] inversion trick): The parties run the protocol to get shares of a random
(non-zero) r and ra. Then they multiply the shared r into the shared x to get shares of xr mod q,
open the share, and every player individually computes y = (xr)a = xara mod q which then is
again shared among the players. Now shares of xa are obtained by multiplying the shares of y by
shares of r−a = (ra)−1 mod q that can be obtained from the shares of ra mod q by the INVq(·)
protocol. It is easy to see that this protocol is private as long as x 6= 0. We handle the case
x = 0 as an “exception” using the equality function δ. Substitute x by x′ = x + δ(x)s, where s
be a random value from Z∗

q. Note that this always assures x′ 6= 0. Then

xa = δ(x) + (x′)a(1− δ(x)) mod q.

We note that the “exception trick” can also be used in some other places (like in the inversion
protocol) to handle special shared inputs that may lead to information leakage. Any protocol
that initially leaks information for m different shared input values can now be updated to
a protocol providing perfect privacy by the cost of additional O(m(n2 + k log k)B(n, k)) bit
operations.

It leaves to provide a protocol that, given a public a, outputs shares of a random non-zero
value r together with shares of its ath power ra mod q. In the honest-but-curious model this is
simply done by letting every player j locally select a random non-zero value rj together with its
ath power ra

j . The values are shared to the players. Define r as the product of all rj modulo
q such that ra also equals to the product of all ra

j modulo q. Both products can be computed
with the unbounded fan-in multiplication protocol.

Now we consider the case where the exponent a comes also shared and show how this case
can be reduced to the previous one. First run the bit protocol from Section 6.1 to obtain shares
of the bits (a0, . . . ak) of the exponent a such that a =

∑k
i=0 2iai. Then shares of xa mod q can

be obtained via

xa = x
Pk

i=0
2iai =

k
∏

i=0

x2iai =

k
∏

i=0

(aix
2i

+ 1− ai) mod q. (7)

Shares of x2i

mod q can be securely computed (in parallel for 1 ≤ i ≤ k) with the exponentiation
protocol above.

Together with the results from Section 6.4 this enables us to build a constant round protocol
that privately computes shares over Zq of xa mod p, where all three inputs, x, a, and p are given
as shares (together with the bit-size k0 of p). First reduce the shared x modulo the shared p and
the shared a modulo the shared p − 1 with modulo reduction protocol from Section 6.4. Then
choose the prime q large enough (of bit-size k2

0) such that in Eq. (7) no wrap modulo q appears:
after computing shares of xa over Zq, the modulo reduction protocol is used again to compute
shares of xa mod p over Zq.

16

6.6 Computing any function in constant rounds

Using polynomial interpolation, Theorem 3.2 implies that any function f : Zq → Zq is securely
computable in a constant number of rounds. However, the degree of f may be about q in
which case the protocol has exponential running time. (In [BIB89], a similar general theorem is
obtained. Our result is more efficient in terms of the running time.)

7 Acknowledgment

We thank Gregor Leander and Patrick Felke for helpful comments on Section 4.

References

[ACS02] Joy Algesheimer, Jan Camenisch, and Victor Shoup. Efficient computation modulo
a shared secret with application to the generation of shared safe-prime products. In
Moti Yung, editor, Advances in Cryptology – CRYPTO 2002, volume 2442 of Lecture

Notes in Computer Science, pages 417–432, Santa Barbara, CA, USA, August 18–22,
2002. Springer-Verlag, Berlin, Germany.

[Bea00] D. Beaver. Minimal latency secure function evaluation. In Bart Preneel, editor,
Advances in Cryptology – EUROCRYPT 2000, volume 1807 of Lecture Notes in

Computer Science, pages 335–350, Bruges, Belgium, May 14–18, 2000. Springer-
Verlag, Berlin, Germany.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems
for noncryptographic fault-tolerant distributed computations. In 20th Annual ACM

Symposium on Theory of Computing, pages 1–10, Chicago, Illinois, USA, May 2–4,
1988. ACM Press.

[BIB89] J. Bar-Ilan and D. Beaver. Non-cryptographic fault-tolerant computing in a constant
number of rounds interaction. In 8th ACM Symposium Annual on Principles of

Distributed Computing, pages 201–209, Edmonton, Alberta, Canada, August 14–16,
1989.

[BOC92] M. Ben-Or and R. Cleve. Computing algebraic formulas using a constant number of
registers. SIAM J. Comput., 21(1):54–58, 1992.

[Can00] R. Canetti. Security and composition of multi-party cryptographic protocols. Journal

of Cryptology, 13(1):143–202, 2000.

[CCD88] David Chaum, C. Crépeau, and Ivan B. Damg̊ard. Multiparty unconditionally secure
protocols. In 20th Annual ACM Symposium on Theory of Computing, pages 11–19,
Chicago, Illinois, USA, May 2–4, 1988. ACM Press.

[CD01] Ronald Cramer and Ivan Damgrd. Secure distributed linear algebra in a constant
number of rounds. In Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001,
volume 2139 of Lecture Notes in Computer Science, pages 119–136, Santa Barbara,
CA, USA, August 19–23, 2001. Springer-Verlag, Berlin, Germany.

17

[DFNT05] I. Damg̊ard, M. Fitzi, J. B. Nielsen, and T. Toft. How to split a shared number into
bits in constant round and unconditionally secure. Report 2005/140, Cryptology
ePrint Archive, May 2005.

[DMS94] P. F. Dietz, I. I. Macarie, and J. I. Seiferas. Bits and relative order from residues,
space efficiently. Information Processing Letters, 50:123–127, 1994.

[FKN94] U. Feige, J. Kilian, and M. Naor. A minimal model for secure computation. In 26th

Annual ACM Symposium on Theory of Computing, pages 554–563, Montral, Qubec,
Canada, May 23–25, 1994. ACM Press.

[GG99] J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge University
Press, New York, 1999.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but
their validity or all languages in NP have zero-knowledge proof systems. Journal of

the ACM, 38(3):691–729, 1991.

[Gol04] O. Goldreich. Foundations of Cryptography, Volume 2, Basic Applications. Cam-
bridge University Press, 2004.

[GRR98] Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified VSS and fast-track
multiparty computations with applications to threshold cryptography. In 17th ACM

Symposium Annual on Principles of Distributed Computing, pages 101–111, Puerto
Vallarta, Mexico, June 28 – July 2, 1998.

[IK97] Y. Ishai and E. Kushilevitz. Private simultaneous messages protocols with appli-
cations. In Proc. 5th Israel Symposium on Theoretical Comp. Sc. ISTCS, pages
174–183, 1997.

[IK00] Y. Ishai and E. Kushilevitz. Randomizing polynomials: A new paradigm for round-
efficient secure computation. In 41st Annual Symposium on Foundations of Computer

Science, Las Vegas, Nevada, USA, November 12–14, 2000. IEEE Computer Society
Press.

[JY96] M. Jakobsson and M. Yung. Proving without knowing: On oblivious, agnostic and
blindfolded provers. In Neal Koblitz, editor, Advances in Cryptology – CRYPTO’96,
volume 1109 of Lecture Notes in Computer Science, pages 186–200, Santa Barbara,
CA, USA, August 18–22, 1996. Springer-Verlag, Berlin, Germany.

[Kil05] E. Kiltz. Unconditionally secure constant round multi-party computation for equal-
ity, comparison, bits and exponentiation. Report 2005/066, Cryptology ePrint
Archive, February 2005.

[KLML05] E. Kiltz, G. Leander, and J. Malone-Lee. Secure computation of the mean and
related statistics. In TCC 2005: 2nd Theory of Cryptography Conference, Lecture
Notes in Computer Science, pages 283–302, Cambridge, MA, USA, February 10–12,
2005. Springer-Verlag, Berlin, Germany.

[Kro70] F. T. Krogh. Efficient algorithms for polynomial interpolation and numerical differ-
entiationi. Math. Comput., 24:185–190, 1970.

18

[Rab98] T. Rabin. A simplified approach to threshold and proactive RSA. In Hugo Krawczyk,
editor, Advances in Cryptology – CRYPTO’98, volume 1462 of Lecture Notes in

Computer Science, pages 89–104, Santa Barbara, CA, USA, August 23–27, 1998.
Springer-Verlag, Berlin, Germany.

[Sha79] Adi Shamir. How to share a secret. Communications of the Association for Com-

puting Machinery, 22(11):612–613, November 1979.

[Yao82] Andrew C. Yao. Theory and applications of trapdoor functions. In 23rd Annual

Symposium on Foundations of Computer Science, pages 80–91, Chicago, Illinois,
November 3–5, 1982. IEEE Computer Society Press.

[Yao86] A. Yao. How to generate and exchange secrets. In 27th Annual Symposium on

Foundations of Computer Science, pages 162–167, Toronto, Ontario, Canada, Octo-
ber 27–29, 1986. IEEE Computer Society Press.

A Security Definitions

We follow the definitions of Goldreich [Gol04]. Henceforth, all multi-party protocols will involve
the n players P1, . . . ,Pn. We will consider honest-but-curious (a.k.a. semi-honest) adversaries.
A honest-but-curious adversary is an adversary that follows the instructions defined by the
protocol; however, it might try to use the information that it obtains during the execution of
the protocol to learn something about the input of the other party.

Let f : ({0, 1}∗)n → ({0, 1}∗)n be a function and I = {i1, . . . , it} ⊆ {1, . . . , n} be a set
of t players. For ~x = (x1, . . . , xn), denote the ith element of f(~x) by fi(~x) and fI(~x) =
(fi1(~x), . . . , fit(~x)). Let π be a multi-party protocol for computing f on input ~x. The views
of Pi (player i) during an execution of π(~x), denoted viewπ

i (~x), are

viewπ
i (~x) = (xi, ri,mi,1, . . . ,mi,v)

where ri denotes Pi’s random input, and mi,j denotes the jth message received by Pi. We define

viewπ
I (~x) = (I, viewπ

i1
(~x), . . . , viewπ

it
(~x)).

The outputs of Pi during an execution of π(~x) are denoted outputπi (~x). We define

outputπ(~x) = (outputπ1 (~x), . . . , outputπn(~x)).

Definition A.1 [Privacy w.r.t. honest-but-curious adversaries] We say that π privately com-

putes a function f if there exists a probabilistic, polynomial-time algorithm S such that for every
set of corrupted players I = {i1, . . . , it} of cardinality |I| ≤ t,

{S(I, (xi1 , . . . , xit), fI(~x)), f(~x)} ≡ {viewπ
I (~x), outputπ(~x)} (8)

where ≡ denotes statistical indistinguishability (with respect to a security parameter).

Equation (8) states that the view of the corrupted parties can be simulated given access to the
corrupted party’s input and output only. Recall that the adversary here is honest-but-curious
and therefore the view is exactly according to the protocol definition. Note that it is not sufficient
for simulator S to generate a string indistinguishable from viewI(~x): the joint distribution

19

of the simulator’s output and the functionality output f(~x) must be indistinguishable from
{viewπ

I (~x), outputπ(~x)}. This is necessary for probabilistic functionalities [Gol04]. The inputs
and outputs to our multi-party protocols will always be random shares, so the functionalities
we consider will be probabilistic ones. It can be shown that security is preserved under non-
concurrent, modular composition of protocols [Can00]. Most of the time we will simply argue
that by the composition theorem security follows directly from security of the sub-protocols
used. A more formal treatment of composition in terms of “oracle aided protocols” is given
in [Gol04]. Since we use (additive) n-out-of-n secret sharing schemes we have to assume that
no player stops participating in the protocol prematurely. This may seem a strong requirement.
However we want to point out that by the ‘share back-up’ method from Rabin [Rab98] one can
obtain τ + 1-out-of-n secret sharing schemes. We do not pursue this possibility here.

Furthermore we want to mention that from a theoretical point of view the honest-but-curious
model is not a real restriction since the players can be forced to behave honestly. This is done
by having them to commit to their inputs, generate their individual random strings jointly,
and prove (using proofs of knowledge) that they followed the protocols correctly. However, the
corresponding proofs of knowledge are not always easy to find and in most cases are not very
practical. Making our results robust against active adversaries is left as an open problem.

B Proof of Lemma 5.3

Proof: First we show correctness of the protocol, i.e. that it computes random additive shares
over the integer of the integer c. The values aj computed in the second step of the protocol are

bounded by 0 ≤ aj =
⌊

〈c〉qj/2
t
⌋

< q/2k−log n−2 = 4n. So a =
∑n

j=1 aj is bounded by 4n2 and no

wrap around modulo q > 4n2 (by Eq. (4)) can occur. In step three of the protocol shares of the

function r = P (a) = ⌊
∑n

j=1 2ta/q⌋ = ⌊
∑n

j=1 2t
⌊

〈c〉qj/2
t
⌋

/q⌋ are computed. By Lemma 5.2 we

have r = r̂ and hence the protocol is correct.

In this protocol we don’t simply combine secure sub-protocols, we actually give away secret
information, namely the value r itself. Therefore we have to prove privacy in the sense of
Definition A.1. We provide a simulator S(I, (〈c〉q1, . . . , 〈c〉

q
t), (〈c〉

Z

1 , . . . , 〈c〉Zt)) that simulates the
view of the corrupted players, where w.l.o.g. I = (1, . . . , t) is the set of t ≤ τ corrupted players.
The simulator chooses an arbitrary number 0 ≤ c′ < q/2ρ. The additive shares (〈c〉qj)1≤j≤t are
extended to additive shares for this number c′ as follows: It chooses random values for (〈c〉qj) for

t + 1 ≤ j ≤ n− 1 and sets 〈c〉qn = c′ −
∑n−1

i=1 〈c〉
q
j . Now we have c′ =

∑n
j=1〈c〉

q
j mod q. Note that

the shares (〈c〉qj)1≤j≤t have the right distribution, i.e. they are random additive shares of c′ over
Zq.

Then the simulator computes aj =
⌊

〈c〉qj/t
⌋

and creates random polynomial shares ([aj]
q
i)1≤i≤n

of aj for 1 ≤ j ≤ n. This simulates the values ([aj]
q
i)1≤i≤t that the corrupted players would

receive in the protocol.

It computes r as r =
⌊

2t
Pn

j=1
aj

q

⌋

and creates random polynomial shares ([r]qj)1≤j≤n of r. It

runs the simulator of the polynomial interpolation protocol (on random inputs) such that these
shares ([r]pj)1≤j≤t are the outputs of the corrupted players. This simulates the values ([r]pj)1≤j≤t

the corrupted players would receive in the protocol. For 1 ≤ j ≤ t, it sets

〈0〉Zj = 〈c〉Zj − 〈c〉
q
j − πj(r)q

20

and runs the simulator of the JRIZρ(A) protocol with these outputs. This completes the de-
scription of the simulator.

It leaves to show that for the described simulator, the joint distribution of the simulator’s output
and the functionality and the view and output of the actual run of the protocol are statistical
indistinguishable.

As already proved, the protocol correctly computes additive shares of the value c over the
integers. We have to take care that the protocol’s output distribution is statistically indistin-
guishable from the distribution of the (randomized) functionality we want to compute: random
additive shares of c over the integers with respect to the interval [−A,A]. The latter one means
that for every set I of n − 1 players, the distribution of the output values (〈c〉Zj)j∈I must be
statistically indistinguishable from from independent and uniformly chosen values from the in-
terval [−A2ρ, A2ρ]. This is achieved by adding random integer shares of zero (coming from the
JRIZρ(A) protocol) to the output. This shows that the distributions of the output of the protocol
and the functionality are statistically indistinguishable.

Let us now show that the distribution of the r for different shared values c are statistically

indistinguishable. The value r is given by r = r̂ =

⌊

Pn
j=1

〈c〉qj
q

⌋

. Now consider the value c̃ =
∑n−1

i=1 〈c〉
q
j . The shares (〈c〉qj)1≤j≤n are random additive shares, so we can assume that c̃ is

uniformly distributed modulo q. Now r =

⌊

P

〈c〉qj
q

⌋

=
⌊

c̃+〈c〉qn
q

⌋

can only depend on c =
∑

〈c〉qj =

c̃ + 〈c〉qn mod q, if a wrap around modulo q in the sum appears, i.e. if c̃ + 〈c〉qn ≥ q holds. Since c̃
is uniformly distributed modulo q and 0 ≤ c̃+ 〈c〉qn mod q < q/2ρ, this happens with probability
at most 2−ρ.

C Comparison of the Results

21

existing solution proposed solution

Protocol Ref time rounds restriction Ref time rounds restriction

polynomial
evaluation

[BIB89, BOC92] d2 O(1) Thrm. 3.2 d O(1)

conversion [ACS02] 1 O(1) < q/n2ρ Lem. 5.4 n2 O(1) < q/2
conversion [ACS02] 1 O(1) < q/n2ρ Thrm. 3.1 kn2 + k4 O(1) none
Equality circuit nk O(log n + log k) Thrm. 6.6 n2 + k log k O(1) n ≤ k
Equality circuit nk O(log n + log k) Thrm. 6.6 kn2 + k3 O(1) none
Comparison circuit nk O(log n + log k) Thrm. 6.1 kn2 + k3 O(1)
Bits circuit [ACS02] nk O(log n + log k) Thrm. 6.2 kn2 + k4 O(1)
Modulo
reduction,
shared mod-
ulus

[ACS02] log k O(log k + log log n) Sec. 6.4 poly(n, k) O(1)

Exp. over Zq 1 O(k) Sec. 6.5 kn2 + k4 O(1)
−, shared
exp.

[ACS02] nk O(log n + k) Sec. 6.5 kn2 + k4 O(1)

−, shared
exp, mod

[ACS02] k log k O(log n + log k) Sec. 6.5 poly(n, k) O(1)

Figure 1: Comparison of our results. Here n is the number of parties, k = ⌊log q⌋ is the bit-size of the underlying field. The running time
is given as a multiple of B(n, k) = O(kn2 log n + nk2) (the time for basic operations on shares). The column “existing solution” refers
to the prior to this paper most efficient protocol with respect to the lowest round complexity. The word “circuit” refers to the generic
circuit evaluation protocol [BGW88] whose round complexity is linear in the circuit depth.

22

	Introduction
	Related Work
	Our Contribution

	Preliminaries
	Notation
	Model
	Known Primitives Used

	Main Results
	Secure Polynomial Evaluation
	Unrestricted Conversion between Different Shares
	Proof of Lemma 5.5

	Equality, Comparison and Bits
	Comparison and Bits
	Equality
	Modulo Reduction
	Private Modulo Reduction
	Private Exponentiation
	Computing any function in constant rounds

	Acknowledgment
	Security Definitions
	Proof of Lemma 5.3
	Comparison of the Results

