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AES side channel attacks protection  
using random isomorphisms 

General method of side-channel attacks protection, based on random cipher isomorphisms is 
presented. Isomorphic ciphers produce common outputs for common inputs. Cipher isomor-
phisms can be changed independently on transmitting and receiving sides. Two methods of 
RIJNDAEL protection are considered. The first one is based on random commutative isomor-
phisms of underlying structure. The set of field 256 isomorphisms consists of 30 subsets; each of 
them has 8 commutative elements presented as Galois group elements. This allows increasing 
the strength with respect to side channel attacks about 32 times, the encryption ratio decreases 
slightly. This method has comparatively small efficiency. 

The second method is based on cipher byte affine isomorphisms σ(x) = Lx + a, and allows in 
practice eliminate side-channel attacks. The rate of this method is approximately the same as in 
previous case. The most convenient affine isomorphisms are involutions. Method of such affine 
isomorphisms generation is presented. 
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1. Side channel attacks and random isomorphisms 

Information system is secure if it can resist adversary attacks. The set of possi-
ble attacks is determined by adversary model — the set of its possibilities. Adver-
sary models can be ordered as sets. Model A is larger then model B, if set of possi-
bilities of B is subset of possibilities of A. The larger is adversary model, the larger 
is the set of possible attacks. Adversary model ordering induces dual ordering on 
the set of secure systems. Each information system is characterized by maximal 
adversary model, under which this system is secure. Each adversary model induces 
minimal set of protection mechanisms that provides security of information sys-
tem. For example, if adversary model is empty, all information systems are secure. 
If adversary possesses extrasensory possibilities and can guess all secrets, there are 
no secure systems. 

Traditional cryptanalytic attacks use mathematical, computational and cryptana-
lytic possibilities. But adversary can also use laboratory possibilities. Such attack 
was implemented by Intelligence service against French encryption apparatus 
about 50 years ago [1]. Adversary can detect and recognize signals of different na-
ture, which appear while cryptographic device processes secret information (inter-
mediate texts during encryption). 

Side channel attacks include set of attacks based on timing analysis, analysis of 
instant supplying power, electromagnetic and acoustic signals that carry informa-
tion on a secret key [2, 3]. Side channel attacks are often more effective then well-
known differential [4] or linear [5] attacks. For instance, such attack allows easy 
computing the secret key of mobile telephone [6]. 



To prevent side channel attacks users are to change secret keys periodically. 
This stipulates inconvenience in large communication systems. The goal of this 
paper is key lifetime magnification due to protecting side channel attacks. 

Universal approach to protection the side channel attacks is based on random 
isomorphisms of cryptographic algorithms [7]. Side channel attack can be success-
ful only if adversary knows the encryption algorithm. But if he knows input and 
output of encryption algorithm and does not know the method, he cannot compute 
secret information (the key). 

Definition 1. Algorithms A and A′ are isomorphic if they produce common out-
puts for common inputs. The computable invertible map between isomorphic algo-
rithms inputs, outputs and methods is algorithm isomorphism. 

There exist physical and mathematical type isomorphisms of algorithms. Physi-
cal isomorphisms use random permutation of processed words, empty commands, 
varying the clock generator frequency and so on. Mathematical isomorphisms use 
isomorphisms of underlying algebraic structure that determines the algorithm. 

For example, elliptic curve digital signature generation according to ECDSA is 
described in terms of group /r, where r is prime group order. Multiplication by 
m ≠ 0 is automorphism of group /r. Side channel attack protection can be based 
on random isomorphisms of this group [7]. 

Symmetric ciphers are usually described in terms of Boolean functions normal 
algebraic form defined as quotient ring 

Gn ≅ 2[x1, …, xn]/(x1
2 + x1, …, xn

2 + xn). 
Each element f ∈ Gn satisfies equation f 2 + f = 0 and hence divides zero. The 

only invertible element in Gn is 1. Indeed if we assume that fg = 1, then f = f 2g = fg 
and g = fg2 = fg, so f = g = 1. 

Definition 2. Element p ∈ Gn is irreducible if its possible factorizations are 
only p = 1⋅p or p = p⋅p. 

Theorem 3. Ring Gn is isomorphic to ring V of 2n-dimentional binary vectors 
with item addition and multiplication modulo 2.  

Proof. Each Boolean function f of n variables can be unequally determined both 
as binary vector f ∈ V and as polynomial f ∈ Gn. Hence there is bijection between 
V and Gn. Define vector addition and multiplication in V as bit-wise XOR and & 
operations. Then V becomes a commutative ring with zero 0 = (0..., 0) and unit 1 = 
(1, ..., 1). Let two Boolean functions are represented both as vectors f, g ∈ V and as 
polynomials f, g ∈ Gn. Then vector f + g corresponds to polynomial f + g, and vec-
tor fg corresponds to polynomial fg. Hence rings V and Gn are isomorphic. n 

This isomorphism is representation of polynomial (as the Boolean function) by 
vector of its binary values. There are 2n irreducible elements in V, that contain only 
one zero coordinate. Hence there are 2n irreducible polynomials in Gn. 



Product of two different irreducible vectors in V has two zero coordinates, 
product of r different irreducible vectors has r zero coordinates. It is easy to see 
that ring V and hence ring Gn has unique factorization. 

Theorem 4. Any automorphism of ring Gn maps irreducible polynomial to an 
irreducible polynomial. 

Proof. Let pi, pj be irreducible polynomials and T — permutation defined over 
set of irreducible polynomials such that T(pi) = pk. Then T(pipj) = T(pi)T(pj), 
T(pi + pj) = T(pi)+ T(pj). Due to unique factorization property we have T(fg) = 
T(f)T(g) for any f, g ∈ Gn. Permutation T can be represented as 2n × 2n matrix over 
2, so T(f + g) = T(f) + T(g). Assume that ϕ is isomorphism, p is irreducible poly-
nomial and ϕ(p) = gh, where g, h are two different non-constant polynomials. Then 
ϕ−1(gh) = = ϕ−1(g)ϕ−1(h) ≠ p because binary vector in V, corresponding to 
ϕ−1(g)ϕ−1(h), has at least two zero coordinates. n 

Theorem 5. Set of automorphisms of ring Gn coincides with the set of permuta-
tion of irreducible polynomials. 

Proof. According to theorem 1 any such permutation is isomorphism. Assume 
that there exists an automorphism ϕ that isn’t a permutation of irreducible polyno-
mials. Since ϕ(f + g) = ϕ(f) + ϕ(g), ϕ can be represented as binary invertible ma-
trix. Then there exists a row that has at least two units. Each row and column cor-
responds to irreducible polynomial. So ϕ maps an irreducible polynomial to prod-
uct of at least two different irreducible polynomials, which is impossible. n 

Product of permutations corresponds to product of automorphisms, so group of 
ring Gn automorphisms is isomorphic to group of permutations of 2n elements. 
There exists 2n! different isomorphisms of ring Gn and the cardinality of Gn auto-
morphisms is larger then the key set cardinality. 

Side channel attack protection of a cipher can be based on random periodically 
changed automorphisms. Before encryption beginning plaintext x and key k are 
transformed by automorphisms x ← σ(x), k ← σ(k). Let S — an encryption opera-
tion for input x in original algorithm and σ is automorphism of algebraic structure. 
Then isomorphic operation S ′ is defined by equation S ′(x) = σ(S(σ−1(x))) or 

 S ′ = σSσ−1. (1) 
After encryption is finished inverse automorphism is applied to ciphertext. 

Automorphism σ must agree with operator S structure so that modified operator S ′ 
is effectively computable. Most of automorphisms of Gn follows that modified en-
cryption operation (such as DES substitution) depends on larger number of vari-
ables. 

Assume that operator S ′ uses secret information and is cryptographically weak. 
If adversary knows input and output of operator S ′, he can compute the secret. If 
input, output and method of operator S ′ change according to (1) at random and ad-



versary knows input and output of operator S ′, but does not know its method, he 
cannot obtain the secret. 

Let Si, Si+1 are two consecutive operators and σi, σi+1 — corresponding commu-
tative isomorphisms. Then due to commutative property equality holds 

Si+1′Si′ = σi+1Si+1σi+1
−1σiSiσi

−1 = σi+1Si+1σiσi+1
−1Siσi

−1. 
This equation shows that between two consecutive operators the text is always 

protected: previous isomorphism is taken off only after the next isomorphism is 
applied. Last equation by induction describes protection of encryption algorithm. 
Used random automorphisms must commute. 

So the protection method takes operations: 
1. Take at random set of commutative automorphisms. Apply initial automor-

phism to key and plaintext (to ciphertext if decryption holds). 
2. Modify set of encryption operators according to (1). 
3. Apply the inverse last automorphism to ciphertext (to plaintext if decryption 

holds). 
4. Periodically change random automorphisms. 
Note that random isomorphisms can be used independently on transmitting and 

receiving sides. 
Note that almost all automorphisms of ring Gn are not computable. Usually it is 

hard to find set of commutative random isomorphisms that doesn’t decrease the 
rate of the cipher significantly. For example Russian cipher GOST 28147−89 is not 
convenient for such protection method. 

2. Isomorphisms of RIJNDAEL based on field 256 isomorphisms 

RIJNDAEL has block size 16 bytes, key size 16, 24 or 32 bytes for 10, 12 or 14 
rounds correspondingly [8]. Encrypted text is presented as set of elements of field 
256 = 2[x]/(p(x)), where p(x) = x8 + x4 + x3 + x + 1 is irreducible polynomial. Let t 
be the root of p(x). Each round has next operations. 

1. XOR (text, round key). 
2. Byte substitution represented as a table (method of its computation is ines-

sential). 

3. Shift rows. Block is represented as 4×4 matrix 
0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

b b b b
b b b b
b b b b
b b b b

 
 
 
  

. It is trans-

formed to matrix 
0 4 8 12
5 9 13 1

10 14 2 6
15 3 7 11

b b b b
b b b b
b b b b
b b b b

 
 
 
  

. 

4. Mix columns. Columns of 4×4 matrix are multiplied by matrix 
1 1 1

1 1 1
1 1 1

1 1 1

t t
t tC t t

t t

+ 
 +=  + + 

 over field 256. 



Decryption procedure takes inverse operators in inverse order. 

There are 8 commutative automorphisms of field 256, given by degrees of map 
σ(x) = x2. Since there are 30 irreducible polynomials of degree 8, RIJNDAEL can 
be described in 240 different views. Those automorphisms save the structure of the 
cipher and are RIJNDAEL isomorphisms [9]. Note that only 8 automorphisms 
commute, defined for given irreducible polynomial. Galois group of irreducible 
polynomial p(x) over field 2 is generated by automorphism σ(t) = t2. If t is a root 
of irreducible polynomial p(x), then other its roots are t2, t4, ..., t128. 

All 240 isomorphisms of RIJNDAEL, based on finite field isomorphisms, act 
on set of text and key bytes as 8×8 matrices over field 2 [10]. Each isomorphism 
changes substitution and constants of mix column operator according to (1), but 
elements 0 and 1 stay fixed. Hence if substitution output byte is zero for original 
RIJNDAEL, then it is zero for any isomorphic RIJNDAEL. 

Note that these 240 isomorphisms remain the RIJNDAEL structure and repre-
sent a small part of all possible isomorphisms of this cipher. Each round of iso-
morphic cipher includes XOR text and key operation, byte look-up substitution, 
shift rows (as in original cipher) and mix columns (with changed constants) opera-
tions. 

Consider next side channel attack using chosen plaintext (ciphertexts). Assume 
that adversary knows clock frequency of the encryption device, can precisely de-
termine the moment of substitution output reading and can choose plaintexts. As-
sume that substitution is performed for bytes and adversary can find hamming 
weight of substitution output byte. This assumption can be explained because elec-
tronic cell switches 0 → 1 and 1 → 0 in different time, hence electromagnetic sig-
nals are different. The smaller is hamming weight of substitution output, the larger 
is corresponding signal level. In practice this signal is smaller than noise, but ad-
versary can detect, recognize and receive the signal by repeating it sufficiently 
many times. 

Cryptanalytic side-channel attack has two stages. First stage is search for plain-
text bytes that give likely zero output substitution bytes in the first round. If substi-
tution output byte and corresponding plaintext byte are known, the key byte can be 
easily computed. This allows ordering possible keys according their probabilities 
to be true. Second stage is key enumeration beginning most likely ones. 

In the first stage of side channel attack adversary can adaptively change bits in 
the plaintext first byte to minimize hamming weight of the corresponding substitu-
tion output byte in the first round. Then he can find first key byte. Other key bytes 
can be obtained in similar way. 

Definition 6. Let N0 is number of chosen plaintext encryptions needed to find a 
key using side channel attack without protection, N1 is number of chosen plaintext 
encryptions needed to find a key using side channel attack with given protection. 
Efficiency of side channel attack protection method is ratio N1/N0. 



If cipher is protected by finite field random isomorphisms, adversary can use 
the next attack method. He adaptively chose the plaintext first byte so that substitu-
tion output byte becomes zero. Each random isomorphism fixes zero, hence this 
substitution output byte does not depend on random isomorphisms. 

If cipher has no protection, adversary must change ≈8 plaintext bits to obtain 
zero byte. If cipher has protection, based on finite field isomorphisms, adversary 
must make ≈256 attempts to obtain zero output byte. So efficiency of such protec-
tion method is ≈32. 

If RIJNDAEL random isomorphisms based on of field 256 isomorphisms are 
used, then each byte, different from 0 and 1, becomes random and its hamming 
weight is random too. Before encryption irreducible polynomial and set of commu-
tative field automorphisms are to be chosen, plaintext and the round keys must be 
transformed by these automorphisms. After encryption is finished ciphertext must 
be transformed by inverse automorphism. If one uses common automorphism for 
all bytes during encryption, the encryption rate is maximal. Assume that processor 
can multiply elements over 256 fast. Then encryption process in original and trans-
formed RIJNDAEL differ only by plaintext, key and ciphertext transformations. So 
the rate decreases less then 10%. 

3. Affine isomorphisms of the RIJNDAEL 

The cause of weakness of the finite field isomorphism protection is that each 
isomorphism fixes zero byte. Consider random affine isomorphism of the cipher 
given by equation 

 σ(x) = Lx + a,  σ−1(x) = L−1(x + a). (2) 

for random invertible 8×8 matrix L and random vector a. Such isomorphism does 
not fix zero byte and hence its efficiency can be more than in previous case. Num-
ber of plaintexts encrypted with common affine isomorphism before changing is 
determined by adversary laboratory possibilities. Note that affine map in field 256: 
σ(x(t)) = g(t)x(t) + a(t) for constants g(t), a(t) is also cipher isomorphism and can 
be described as map (2). 

Consider RIJNDAEL protection by common random isomorphisms for all 
bytes. Cipher affine isomorphisms differentially acts on text bytes and round key 
bytes. Let x , k are plaintext (intermediate text) and round key bytes. Then σ(x) = 
Lx + a, σ(k) = Lx, σ(x + k) = L(x + k) + a. 

Protected substitution operation can be computed according to (1). 
Shift rows operation is the same as in original RIJNDAEL. 
Mix column operation takes finite field multiplication and addition. This opera-

tion can be written as 

(y1, y2, y3, y4) = ψCψ−1(x1, x2, x3, x4). 

Here ψ means the action of σ operator for each byte. First output byte is de-
scribed by equation 



y1 = L(t⋅(L−1(x1 + a)) + (t + 1)⋅(L−1(x2 + a)) + L−1(x3 + a) + L−1(x4 + a)) + a =  

L(t⋅L−1x1 + (t + 1)⋅L−1x2 + L−1x3 + L−1x4), 

since LL−1a = a and LtL-1a + LtL−1a = 0. 
This equation shows that cipher common affine isomorphism (2) acts on mix 

column input, output and method as cipher common linear isomorphism. 
It is not hard to choose involution σ(x) = σ−1(x) that allows simplification of 

protected encryption according to (1). Then 

Lx + a = L−1x + L−1a. 

This equality holds if L2 = E — identity matrix and (L + E)a = 0. If rank of 8×8 
matrix L + E is r, then number of solutions of equation (L + E)a = 0 is 28−r. 

Matrix L over field 2 is invertible if its rows li satisfy inequalities: l1 ≠ 0, l2 ∉ 
{0, l1}, l3 ∉ {0, l1, l2, l1 + l2}, l4 ∉ {0, l1, l2, l3, l1 + l2, l1 + l3, l2 + l3, l1 + l2 + l3} and 

so on. There are ( )
1

0
2 2

n
n i

n
i

N
−

=

= −∏  invertible n×n matrices over field 2 and N8 = 

228⋅35⋅52⋅72⋅17⋅31⋅127. 
Random square root of identity matrix can be found by next algorithm. 
1. Choose at random upper triangle matrix Lu and lower triangle matrix Ll, with 

elements aii = 1 and permutation matrix P. These matrices are invertible. 
2. Compute L = PLuLl. 
3. Let m = 35⋅52⋅72⋅17⋅31⋅127. If Lm = E, then go to step 1, else set Li+1 ← Li

2 
until Lk = E. 

4. If rank r of matrix Lk−1 + E satisfies r < 8, Lk−1 is the required square root of 
identity matrix that allows getting involution σ. 

Non-zero vector a, satisfying equation (L + E)a = 0 can be obtained by little 
enumeration or by using linear algebra methods. 

For example, square roots of identity matrix 

1

0 0 0 1 1 0 0 1
1 1 0 1 1 0 0 1
1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 1
0 0 1 1 1 0 0 1
0 0 1 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 1 1 0 0 0 0

L

 
 
 
 =  
 
 
 
 

, 2

0 1 0 1 0 1 0 0
0 1 0 0 0 0 0 0
1 1 1 1 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
1 1 0 1 0 0 0 0
1 1 0 1 0 1 1 0
1 1 0 1 0 1 0 1

L

 
 
 
 =  
 
 
 
 

 

give ranks r(L1 + E) = 2, r(L2 + E) = 1. So there are many vectors a1, a2 which de-
fine involutions. For instance, vectors a1 = (1, 0, 1, 0, 0, 0, 1, 1), a2 = (1, 0, 1, 1, 0, 
1, 1, 0) with the matrices give involutions L1x + a1, L2x + a2 correspondingly. 

If all bytes are protected with common random isomorphism, then adversary 
can use differential side channel attack. He fixes the first plaintext byte and 
changes the second plaintext byte to obtain common substitution outputs for first 
and second bytes. He can detect this fact by search maximum of product of signals 



corresponding to first and second byte. Then second key byte can be expressed as 
function of first key byte. Adversary repeats this procedure for first and third bytes, 
for first and fourth bytes and so on. Then round key ban be easily computed. 

To protect such attack, different isomorphisms can be used for different bytes. 

Theorem 7. If cipher isomorphisms ϕ1(x) = Lx + a, ϕ2(x) = Lx + b are involu-
tions, then ϕ3(x) = Lx + a + b is involution and ϕ1ϕ2 = ϕ2ϕ1. 

Proof. For first statement it is sufficient to prove that L(a + b) = a + b. This is 
true because L(a + b) = La + Lb, La = a, Lb = b. 

Consider products of isomorphisms 

ϕ1ϕ2(x) = L(Lx + b) + a = L2x + Lb + a, 

ϕ2ϕ1(x) = L(Lx + a) + b = L2x + La + b. 
Sum of right parts of these equations gives Lb + a + La + b = La + a + Lb + b = 

0, hence ϕ1ϕ2(x) + ϕ2ϕ1(x) = 0 and ϕ1ϕ2(x) = ϕ2ϕ1(x). n 

Theorem 8. Let L — arbitrary invertible matrix over 2 and La = a. Then 
equality Lia = a holds for all i. 

Proof. From equality La = a obtain L2a = La = a. Further by induction. n 

Theorem 9. Let L — arbitrary invertible matrix over 2 and La = a, Lb = b. 
Then maps ϕ1(x) = Lix + a, ϕ2(x) = Ljx + b commute. 

Proof. Consider products of maps.  

ϕ1ϕ2(x) = Li(Ljx + b) + a = Li+jx + Lib + a, 

ϕ2ϕ1(x) = Lj(Lix + a) + b = Li+jx + Lja + b. 
Sum of right parts of these equations gives Lib + a+ Lja + b = Lja + a + Lib + b 

= 0 (according to theorem 8). Hence ϕ1ϕ2(x) + ϕ2ϕ1(x) = 0 and ϕ1ϕ2(x) = ϕ2ϕ1(x).n 

According to theorem 9 different affine isomorphisms for different bytes can be 
used. In such isomorphisms matrices are degrees of given matrix L and vectors ai 
satisfy condition Lai = 0. 

If such random isomorphisms change sufficiently often, then there are no 
known methods of side channel attacks. So efficiency of affine isomorphisms can 
be extremely large and we can suppose that side channel attacks can be eliminated. 

The rate of such protection method is near to the rate of protection method 
based on finite field isomorphisms. 
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