
Cryptographer’s Toolkit for
Construction of 8-Bit Bent Functions?

Hans Dobbertin and Gregor Leander

Cryptology and IT Security Research Group
Ruhr-University Bochum

D-44780 Bochum, Germany
{hans.dobbertin, gregor.leander}@ruhr-uni-bochum.de

Abstract Boolean functions form basic building blocks in various cryptographic al-
gorithms. They are used for instance as filters in stream ciphers. Maximally non-linear
(necessarily non-balanced) Boolean functions with an even number of variables are
called bent functions. Bent functions can be modified to get balanced highly non-linear
Boolean functions. Recently the first author has demonstrated how bent functions can
be studied in a recursive framework of certain integer-valued functions. Based on this
new approach we describe the practical systematic construction of 8-bit bent functions.
We outline also how to compute the number of all 8-bit bent functions.1

1 Introduction

The design of Boolean functions (filters) and Boolean vector functions (S-boxes) is
a significant issue in symmetric cryptography. Surveys and references can be found
for instance in Sections 6.5 and 7.8 of Menezes et alii [12] or in Schneier [15] on
pages 349–351.

To achieve resistance against certain known attacks, criteria such as high non-
linearity and correlation immunity are goals the designer has to follow. The concrete
practical constructions are related with very difficult combinatorial optimization prob-
lems. Fundamental questions are still open today, for instance:

(Q1) what is the maximal non-linearity of a balanced Boolean function with 7
or more variables,

(Q2) is there an APN (almost perfect non-linear) permutation on Fn
2 with even

n ≥ 6,
(Q3) is the multiplicative inversion in finite fields of characteristic 2, i,e

the mapping x 7−→ x−1 on F∗2n ,

maximal non-linear for even n ≥ 6?
? preliminary version
1 to be added in the final version

Already these few selected examples demonstrate that the study of Boolean functions
and Boolean vector functions offers great challenges with practical impact in cryptol-
ogy. We mention that in case n = 8 (the open) questions Q2 and Q3 can be restated
as whether the S-box in the Advanced Encryption Standard (AES) is optimal resistent
against the differential attack, resp. the linear attack.

In this paper we focus on the constructions of bent functions. A main reason for
the significance of bent functions in cryptography is the fact (see [7]) that

– the highest known non-linearity of balanced Boolean functions is achieved by mak-
ing a normal bent function balanced.

Whether this non-linearity is actually maximal is an open questions, see Q1 above.
Bent functions are Boolean functions on Fn

2 with n even and F2 denoting the two-
element field, which are maximally nonlinear in the sense that their Walsh transform
attains precisely the values ±2n/2. Alternatively bent functions can be defined as
±1-valued functions on Fn

2 with ±1-valued Fourier transform.
All bent functions are known for n = 2, 4, 6, and for n = 8 hill climbing techniques

can be used easily to find bent functions with computer support, starting with a
random Boolean function and improving its non-linearity step by step. Disadvantages
of such a procedure are that one can generate only relatively few bent functions,
and even more important that it is not clear whether the selection process of bent
functions is actually at least almost random. Thus the intension of the present note is
to describe a systematic, mathematically well-founded construction of bent functions
with 8 variables. It is based on the first author’s recent approach [8] to study bent
functions in a recursive framework of more general functions, i.e. Z-bent functions. In
the next section we shall cite and summarize the needed concepts and results without
proof.

Finally in the appendix we describe the process, mentioned above, how a normal
bent function can be modified such that we get a balanced Boolean function and at
the same time keep close at the non-linearity of the given bent function.

2 Bent Functions in the Framework of Z-Bent Functions [8]

Bent functions were introduced by Rothaus [14] and Dillon [5]. They have been studied
intensively since then (see for instance Carlet and Guillot [2], [3], and [9] for some very
recent results).

A main obstacle in the study of bent functions is the lack of recurrence laws. There
are only few constructions deriving bent functions from smaller ones. But it seems that
most bent functions appear without any roots to bent functions in lower dimensions,
which could explain their existence.

2

To embed bent functions into a recursive context one needs more general struc-
tures. To this end we consider integer-valued functions f on Fn

2 with the property that
their dual, its Fourier transform f̂ , is also integer-valued. These functions f , which
we call Z-bent functions, can be separated into different levels. (Z denotes the set of
integers.) Higher level Z-bent functions form building blocks that can be glued to-
gether under certain conditions in order to get larger Z-bent functions of lower level
(Theorem 1 on page 8). In this recursion we finally get the usual bent functions at
level zero.

Z-Bent squares are introduced here in order to represent (pairs of dual) Z-bent
functions and to describe the mentioned gluing process in a more transparent way.

Notations. Throughout this paper, n is a positive integer and k = n/2. With excep-
tion of the next section, we require that n is even.

F2n denotes the field with 2n elements, and R the field of real numbers. Given a
Boolean function F : Fn

2 −→ F2, its complement F = G : Fn
2 −→ F2 is defined by

F (x) = F (x) + 1, x ∈ Fn
2 .

The affine group AGL(n, F2) consists of all F2-affine permutations on Fn
2 . If a fixed

set X is given, then AGL(n, F2) operates on the set of all functions f : Fn
2 −→ X. We

denote the orbit of f by

orbit(f) = {f ◦ Φ : Φ ∈ AGL(n, F2)}.

We call f, g : Fn
2 −→ X affine equivalent if they lie in the same orbit.

2.1 Preliminaries on Fourier Transforms

The multiplicative characters of the additive group Fn
2 are

χa(x) = (−1)〈a,x〉 (a, x ∈ Fn
2).

Given a real-valued function f on Fn
2 we denote the Fourier transform of f by f̂ :

f̂(a) =
1
2k

∑
x∈Fn

2

f(x) χa(x), a ∈ Fn
2 .

The values f̂(a) are called Fourier coefficients. (If the factor 2−k is omitted then
we use the terms non-normalized Fourier transform, resp. non-normalized Fourier
coefficients.) The set of Fourier coefficients is called Fourier spectrum.

The map f 7→ f̂ is a self-inverse orthogonal operator on the R-vector space of
real-valued functions on Fn

2 , endowed with inner-product given by

〈f, g〉 =
∑
x∈Fn

2

f(x)g(x),

3

i.e. we have ̂̂f = f involution law) and 〈f, g〉 = 〈f̂ , ĝ〉 orthogonality). A linear mapping
is orthogonal if and only if it is norm preserving. Recall that the norm of f induced by
the inner-product is defined as ‖f‖ =

√
〈f, f〉. Another version of the orthogonality

law can therefore be states as
‖f‖ = ‖f̂‖,

which is known as Parseval’s equation.

2.2 Z-Bent Functions

In the remainder of this paper we suppose that n = 2k is even.
Bent functions are usually defined as Boolean functions F : Fn

2 −→ F2 such that
their Walsh transform

FW(a) =
∑
x∈Fn

2

(−1)F (x)χa(x), a ∈ Fn
2 ,

attains precisely the values ±2k. In the present context it is more convenient to replace
F by (−1)F and thus consider bent functions as ±1-valued functions defined by the
property that their Fourier transform is also ±1-valued.

More generally if T is a subset of Z we call a mapping f on Fn
2 a T -bent function if

both f and f̂ are T -valued. In order to separate Z-bent functions into different levels,
we define the increasing sequence of sets Wr, r ≥ 0, as follows:

W0 = {±1},
Wr = {w ∈ Z | − 2r−1 ≤ w ≤ 2r−1} (r > 0).

We have Wr ±Wr = Wr+1 for r > 0.
The union of all Wr-bent functions gives the set of all Z-bent functions, since⋃

r≥0 Wr = Z.

In what follows we shall use the term Z-bent function of level r instead of
Wr-bent function. The usual bent functions are precisely the Z-bent functions
of level zero.

We restate an appropriate definition which includes the level:

Definition 1. We call a function f : Fn
2 −→ Wr a Z-bent function of size k = n/2

and level r if f̂ is also mapping into Wr. In this case, since the Fourier transform is
self-inverse, f̂ is also a Z-bent function of size k and level r, which is called the dual
of f .

4

We have the rules:

f̂ ◦ τa = χaf̂ ,

χ̂a f = f̂ ◦ τa,

f̂ ◦ Φ = f̂ ◦ (Φ∗)−1 ,

where Φ ∈ GL(n, F2), i.e. Φ : Fn
2 −→ Fn

2 is a one-to-one linear mapping, Φ∗ denotes the
adjoint (the transposed if Φ is represented by a matrix), and τa(x) = x+a (a, x ∈ Fn

2)
is any translation.

Let BF k
r denote the set of all Z-bent functions of size k and level r. Obviously we

have

BFk
0 ⊂ BFk

1 ⊂ BFk
2 ⊂ ...,

BFk
r = Wr

Fn
2 ∩ Ŵr

Fn
2 ,⋃

r≥0

BFk
r =

⋃
r≥0

(
Wr

Fn
2 ∩ Ŵr

Fn
2

)
= ZFn

2 ∩ ẐFn
2 .

In this formulas XFn
2 stands for the set of all X-valued mappings on Fn

2 , and X̂Fn
2

abbreviates {f̂ : f ∈ XFn
2 }.

2.3 Decomposition of Z-Bent Functions

Proposition 1 (Decomposition). Let f ∈ BF k
r , and suppose that U is a subspace

of Fn
2 of codimension 2. Without loss of generality say U = U00, where

Uε1ε2 = {(y, ε1, ε2) | y ∈ Fn−2
2 }, ε1, ε2 ∈ F2.

Define the functions hε1ε2 as restrictions of f to Uε1ε2 which is identified with Fn−2
2 :

hε1ε2(y) = f(y, ε1, ε2), y ∈ Fn−2
2 .

Then for r ≥ 1 the functions fε1ε2 defined as

f00 = h00 + h10,

f10 = h00 − h10,

f01 = h01 + h11,

f11 = h01 − h11,

or in matrix notation (
f00 f01

f10 f11

)
=
(

1 1
1 −1

) (
h00 h01

h10 h11

)
, (1)

5

lie in BF k−1
r+1 .

We say that f00, f01, f10, f11 ∈ BF k−1
r+1 form the canonical decomposition of

f ∈ BF k
r . In fact, h00, h01, h10, h11 and therefore f can be recovered via(

h00 h01

h10 h11

)
= 1/2

(
1 1
1 −1

) (
f00 f01

f10 f11

)
. (2)

In the case r = 0 the factor 1/2 appears in equation (1) instead (2).

Reversing the decomposition (i.e. gluing) is possible under certain conditions. However,
in order to give a smoother way to describe the recursive connection between the classes
of Z-bent functions of different levels we shall introduce the concept of a Z-bent square
in the next subsection. There is a one-to-one correspondence between Z-bent functions
and Z-bent squares. Matters often become more transparent in the context of Z-bent
squares, for instance

in terms of Z-bent squares gluing simply means concatenation (see Theorem 1).

2.4 Z-Bent Squares

We define the sets

Vk
r = {2k/2 ĥ | h : Fk

2 −→Wr}.

The reason to multiply with 2k/2 is to get the integer-valued non-normalized Fourier
transform:

2k/2 ĥ(a) =
∑
x∈Fk

2

h(x)(−1)〈a,x〉, a ∈ Fk
2.

Further define

Sk
r = {(h0|h1|...|h2k−1) : hi ∈ Vk

r , i < 2k}

where the functions in Vk
r , written as columns, are concatenated to 2k × 2k matrices.

Definition 2. BSk
r , the set of all Z-bent squares of size k and level r is defined as

BSk
r = Sk

r ∩
(
Sk

r

)tr
.

where tr denotes the transposition operation, which is here applied to each matrix of
the set Sk

r .

6

Thus a function B : Fk
2 × Fk

2 is a Z-bent square of size k and level r if all vertical
(column) functions

Bx(y) = B(x, y), x, y ∈ Fk
2

and all horizontal (row) functions

By(x) = B(x, y), x, y ∈ Fk
2

of B lie in Vk
r . (As a consequence B maps into Wr+k.) In other words the vertical and

horizonal functions are non-normalized Fourier transforms of Wr-valued functions on
Fk

2. The latter functions can be recovered via Fourier transforms by setting

f(x, y) =
1

2k/2
B̂x(y) for x, y ∈ Fk

2,

g(x, y) =
1

2k/2
B̂y(x) for x, y ∈ Fk

2.

This setting implies that f and g form a dual pair, that is f̂ = g. We call f the vertical
Z-bent function, resp. g the horizontal Z-bent function, associated to or underlying
B.

The term bent square refers to Z-bent squares of level zero, which are associated
to bent functions. Z-Bent squares are just another way to describe Z-bent functions.
Loosely speaking, the Fourier transform on Fn

2 = Fk
2 × Fk

2 is divided in a vertical
part (along cosets of 0 × Fk

2) and in a horizontal part (along cosets of Fk
2 × 0). Up

to the factor 2k/2, in order to get integer entries, Z-bent squares lie in the middle of
computing f f̂ and vice versa f̂ f connecting a pair of dual Z-bent functions.

Interchanging f with its dual means transposition of B. Via

(
B,Btr

)
←→

(
f, f̂

)
one obtains a one-to-one correspondence between adjoint pairs of Z-bent squares and
dual pairs of Z-bent functions of size k and level r. For any Z-bent function h of size
k we define the parity matrix by reducing modulo 2:

Par(h)(x, y) = h(x, y) mod 2, x, y ∈ Fk
2.

If f and g = f̂ are associated with B as before and r > 0 then we call

VerPar[B] = Par(f),
HorPar[B] = Par(g)

the horizontal parity matrix and vertical parity matrix of B, respectively.

7

2.5 Decomposition and Gluing of Z-Bent Squares

Proposition 2 (Decomposition). Suppose that B ∈ BSk
r is a Z-bent square, then

setting
Bε1ε2(u, v) = B(uε1, vε2), u, v ∈ Fk−1

2 ,

that is

B =
(

B00 B01

B10 B11

)
(3)

it follows that B00, B01, B10, B11 ∈ BSk−1
r+1 . We call (3) the canonical decomposition of

B.

A main motivation to introduce Z-bent squares is that we can also nicely describe
the recursive procedure leading from BSk

r to BSk+1
r−1 , the reverse of the preceding

proposition.

Definition 3. We say that f, f ′ ∈ BFk
r are parity equivalent if Par(f) = Par(f ′).

For r > 1 we say f, f ′ ∈ BFk
r , not both in BFk

1, are companions, if

(C1) f and f ′ are parity equivalent and
(C2) we have |f(a)|+ |f ′(a)| ≤ 2r−1 for all a ∈ Fn

2 .

We call f, f ′ ∈ BFk
1 companions, if

(C3) Par(f) and Par(f ′) are complementary, i.e. Par(f ′) = Par(f).

By a admissible parity pair, we mean a pair (P,Q) of 2k× 2k matrices with entries in
F2 of the form (P,Q) = (Par(f),Par(f̂)) with some f ∈ BFk

r such that both, f and f̂
have a companion (see page 9).

Clearly f and f ′ are companions if and only if f+f ′

2 is Wr−1-valued for r > 1, resp.

f + f ′ is W0-valued for r = 1. But this does not imply that also f̂+f̂ ′

2 is Wr−1-valued.
Being companions does in general not inherit to the dual functions.

It is important to note that for r = 1 the companion relation is preserved under
parity equivalence, while this is not true for r > 1.

Theorem 1 (Gluing). Suppose that Z-bent squares

B00, B01, B10, B11 ∈ BSk
r , r > 0,

are given, where fij and gij are the (vertical and horizontal) Z-bent functions under-
lying Bij, respectively. (Recall that gij = f̂ij.)

Then B00, B01, B10, B11 glued together form a Z-bent square

B =
(

B00 B01

B10 B11

)
in BSk+1

r−1 if and only if the following pairs are companions:

8

(i). f00 and f10,
(ii). f01 and f11,
(iii). g00 and g01,
(iv). g10 and g11.

When the companion relation is represented by vertical or horizontal double arrows,
these conditions can be visualized with B in the middle as follows:f00 f01

l l
f10 f11

 vertical
Fourier transform

!

B00 B01

B10 B11

 horizontal
Fourier transform

!

g00 ↔ g01

g10 ↔ g11

Gluing via parity matrices. Define the sets

Uk
r =

{
Par(f) : f ∈ BFk

r

}
,

Pk
r =

{(
Par(f),Par(f̂)

)
: f ∈ BF k

r

}
,

BFk
r [P] =

{
f ∈ BF k

r : Par(f) = P
}

,

BFk
r [P,Q] =

{
f ∈ BF k

r : Par(f) = P, Par(f̂) = Q
}

.

Recall that by definition

VerPar[B] = Par(f),
HorPar[B] = Par(g),

where f and g are the Z-bent functions underlying a Z-bent square B.
Set Pii = Par(fii) and Qii = Par(f̂ii), where fij and f̂ij are the Z-bent functions

underlying Bij . Then we say that the four pairs (Pij , Qij) of parity matrices form a
parity pattern.

Case r > 1. Here parity patterns have the following form:

P00 P11

P00 P11

←−
B00 B01

B10 B11

−→
Q00 Q00

Q11 Q11

9

Case r = 1. The parity pattern according to the gluing theorem can be visualized
for r = 1 as follows:

P00 P01

P 00 P 01

←−
B00 B01

B10 B11

−→
Q00 Q00

Q10 Q10

For all f ∈ BFk
1 we have ‖Par(f)‖ = ‖f‖, since f attains only the values 0,±1. By

Parseval’s equation we conclude that ‖P00‖ = ‖Q00‖ = ‖P11‖ = ‖Q11‖ and ‖P00‖ +
‖P01‖ = ‖Q00‖+ ‖Q10‖ = 2n.

3 On the structure and size of Uk
r and Pk

r

In the sequel we shall consider Reed-Muller codes. Recall that the Reed-Muller code
RM(`,m) is defined as the set of all Boolean functions with m variables of degree at
most `.

For each fixed k the Uk
r , r > 0, form an increasing sequence of sets.

Theorem 2. For all r, k we have Uk
r ⊆ RM(k, 2k), and moreover

Uk
r = RM(k, 2k)

for each fixed k and sufficiently large r. In the latter case, where

dimUk
r = dim RM(k, 2k) = 22k−1 + 1/2

(
2k

k

)
,

we say that Uk
r is maximal.

Proof. Suppose that P = Par(f), with f ∈ BFk
r . We have to show that deg(P) ≤ k.

Our proof is essentially the same that shows that bent functions have at most degree
k. We denote the coefficients of the algebraic normal form of P by αν for ν ∈ Fn

2 , i.e.

Par(f)(x) = f(x) mod 2 =
∑
ν∈Fn

2

ανx
u.

It its well known that αν can be written as

αν =

(∑
a∈Vν

Par(f)(a)

)
mod 2 =

(∑
a∈Vν

f(a)

)
mod 2

where Vν = {x ∈ Fn
2 | x ≤ ν}. Note that the dimension of Vν is the binary weight ‖ν‖

of ν.

10

Furthermore for any Boolean function g and any subspace U ⊆ Fn
2 we have

∑
a∈U

ĝ(a) = 2−k
∑
x∈Fn

2

g(x)
∑
a∈U

(−1)〈a,x〉 = 2−k #U

∑
x∈U⊥

g(x)

 .

Using this equation we see that

αν =

2k−(n−‖ν‖)
∑

a∈V ⊥
ν

f̂(a)

 mod 2

= 2‖u‖−k

∑
a∈V ⊥

ν

f̂(a)

 mod 2. (4)

As f is a Z-bent function f̂(a) is an integer for all a, and thus whenever ‖ν‖ > k we
see that αν = 0 as stated.

To prove the second statement we have to show, that for every Boolean function
P of degree at most k, there exist a function f from Fn

2 to the integers, such that all
the Fourier coefficients are integers again and Par(f) = P . First assume that P is a
monomial, for instance P (x0, . . . , xn−1) = x0x1 · · ·xt−1 for some t ≤ k. As then P is
independent of xt, ..., xk−1, that is at least k variables, it is clear that all the Fourier
coefficients are integers. Moreover the monomials xν with ‖ν‖ ≤ k form a basis of
RM(k, 2k). Hence

dim RM(k, 2k) =
∑
i≤k

(
2k

i

)
= 22k−1 + 1/2

(
2k

k

)
.

Now if P ∈ RM(k, 2k), say

P (x) =

 ∑
‖ν‖≤k

λνx
ν

 mod 2, λi ∈ {0, 1} ⊆ Z,

and we can simply define f(x) =
∑

‖ν‖≤k λνx
ν , where the sum is over the integers.

Then, due to the linearity of the Fourier transform, f̂ is integer-valued, which means
that f ∈ BFk

r for sufficiently large r. 2

In the sequel we shall consider the subcode

RM∗(`,m) ⊆ RM(`,m)

11

consisting of all F ∈ RM(`,m) which are sums of monomials with degree `. (Note
that RM∗(`,m) can be canonically identified with RM(`,m)/ RM(`− 1,m).) For u ∈
RM(`,m) we set

u∗ = degree ` part of u.

In this way we get the canonical projection u 7→ u∗ from RM(`,m) onto RM∗(`,m).

Lemma 1. Suppose (`,m) = (k, 2k). For P = Par(f) (f ∈ BFk
r) the setting

P 7→ P̃ = Par(f̂)∗, Uk
r −→ RM∗(k, 2k)

we get a well-defined mapping (i.e., this setting is correct in the sense that it does not
depend on the respective choice of f).

Proof. Suppose Par(f) = Par(f ′) for Z-bent functions f , f ′ of size k. We have to show
that Par(f̂)∗ = Par(f̂ ′)∗. As Par and ()∗ are linear, we can assume f ′ = 0, i.e. we
suppose that f attains only even values. Then by equation (4) above, with f replaced
by f̂ , we conclude that Par(f̂) ∈ RM(k − 1, 2k) and hence Par(f̂)∗ = 0, since∑

a∈V ⊥
ν

f(a)

is even, since it is a sum of even numbers. 2

For each fixed k the Pk
r , r > 0, form an increasing sequence of sets. Based on the

previous lemma and similar arguments as in the proof of Theorem 2, it is now easy to
verify the next theorem. (We note that for u ∈ RM(k, 2k), one can describe ũ directly
as follows: ũ is the sum of all complemented degree k monomials, which occur in u.)

Theorem 3. For all r, k we have

Pk
r ⊆ {(u, ũ + v) |u ∈ Uk

r , v ∈ RM(k − 1, 2k)} ∼= Uk
r ×RM(k − 1, 2k).

Moreover we have Uk
r = RM(k, 2k) and

Pk
r = {(u, ũ + v) |u ∈ RM(k, 2k), v ∈ RM(k − 1, 2k)}
∼= RM(k, 2k)× RM(k − 1, 2k)

for each fixed k and sufficiently large r. In the latter case, where

dimPk
r = dim RM(k, 2k) + dim RM(k − 1, 2k) = 22k,

we say that Pk
r is maximal.

We are now prepared to construct bent function with 8 variables by applying two
times the recursion via gluing described in Theorem 1:

BF 2
2 BF 3

1 BF 4
0 .

12

4 From BF2
2 to BF3

1

The set BF2
2 of Z-bent functions of size 2 and level 2 can be computed simply by

checking the about 237 functions on F4
2 with values in W2 = {0,±1,±2}.

Fact 1. #BF2
2 = 488 090 305 = 228.86.

Fact 2. Our experimental results have shown that U2
1 and P2

2 are maximal:

U2
1 = U2

2 = RM(2, 4), dimU2
1 = 11,

P2
2
∼= RM(2, 4)× RM(1, 4), dimP2

2 = 16.

Note that, to confirm the above, it is sufficient to check the respectively stated dimen-
sions for U2

1 and P2
2, which are the maximal dimensions by Theorems 2 and 3.

In order to glue four Z-bent functions together to get functions in BF3
1, we first

consider the conditions on their parity patterns. By condition (C1) of Definition 3 and
Theorem 1, given f00, f01, f10, f11 ∈ BF2

2 can be glued together only if

Par(f00) = Par(f10),
Par(f01) = Par(f11),
Par(f̂00) = Par(f̂01),
Par(f̂10) = Par(f̂11).

If we denote Pij = Par(f00) and Qij = Par(f̂ij) this gluing condition translates to

((P00, Q00), (P01, Q01), (P10, Q10), (P11, Q11)) ∈ V,

where we set

V1 = P2
2×P2

2×P2
2×P2

2,

V2 = {
(
(P ′

00, Q
′
00), (P

′
01, Q

′
00), (P

′
00, Q

′
10), (P

′
01, Q

′
10)
)

: P ′
ij , Q

′
ij ∈ U2

2}

and V = V1 ∩V2. As both V1 and V2 are vector spaces, the intersection V can be
easily computed. Our computer calculations have shown:

Fact 3. dim(V) = 26.

For actually gluing functions together we compute for each parity pair P,Q the set

BF2
2[P,Q] =

{
f ∈ BF2

2 :
(
Par(f),Par(f̂)

)
= (P,Q)

}
.

By computer calculations we found the distribution of the sizes of these sets:

13

‖P‖+ ‖Q‖ #BF2
2[P,Q] [number of times]

0 213 249 [1]
8 34 366 [560], 21 072 [60]
12 14 620 [7 168], 12 584 [6 720]
16 5 840 [14 336], 6 400 [480], 1 120 [2],

3 992 [1 120], 6 852 [20 160], 7 368 [420]
20 2 880 [6 720], 3 480 [7 168]
24 896 [60], 2 064 [560]
32 896 [1]

Note that the 896 functions in the last line, where P = Q is the 4 × 4 matrix with
constant entry 1, are precisely the bent functions with 4 variables. (The first line of
the table, where P = Q = 0, means that

#BF2
1 = #2BF2

1 = 213 249 = 217.70.

In order to generate to the set BF3
1 by gluing, we take the second condition (C2)

of Definition 3 into account. This is not a condition for the parity matrices, but on the
functions in BF2

2 itself. Given the 226 possible parity patterns and the size of the sets
BF2

2[P,Q] (see table above) we can determine the effort by simply multiplying the
corresponding sizes of BF2

2[P,Q]. This gives a huge number of about 280 quadruples
of functions contained in BF2

2 that have to be considered in order to compute BF3
1.

But we do not need BF3
1, it suffices to compute U3

1 and the size of P3
1, and this

is easy to do as we shall see in the sequel. (Actually BF3
1 could be computed, not by

brute force, but using the technique explained in the next section, suitably modified.)
Obviously Theorem 3 has strong consequences for the form of a parity pattern

(Pij , Qij) ∈ Pk
r in case r > 1: there are unique T ∈ RM∗(k, 2k) and ∆i ∈ RM(k−1, 2k),

i = 1, 2, 3, 4 such that

P00 = T + ∆1, P01 = T + ∆2,
P10 = T + ∆2, P11 = T + ∆2,

Q00 = T̃ + ∆3, Q01 = T̃ + ∆3,

Q10 = T̃ + ∆4, Q11 = T̃ + ∆4.

Moreover, we can deduce information about the parity matrix of the resulting glued
function in BF3

1. For example if P00(x) = 0 (and so P10(x) = 0 due to the required
parity equivalence) with x ∈ F4

2, by considering all possible values of the underlying
functions f00 and f10 we see that the parity matrix of the glued function takes on
either the pairs of values 0, 0 or 1, 1 at the positions (x, 0, 0) and (x, 0, 1). If P00(x) =

14

P11(x) = 1 then the parity of the glued function attains either the pair of values 1, 0
or 0, 1.

In addition computing BF3
1[P] we can use the fact that f and χaf have the same

parity matrix and that χ̂af = f̂ ◦τa (see page 5). This means that in order to construct
f ∈ BF3

1[P] we can prescribe signs of its values for linearly independent arguments.
These observations lead to

a fast algorithm to compute a parity class BF3
1[P] = {f ∈ BF3

1 ; Par(f) = P}.

This forms a kind of fast2 elementary macro operation in our algorithms to construct
bent functions. We shall refer to it as a measure unit for the complexity of algorithms
in the next section.

Computing U3
1. We known that U3

1 is a subset of RM(3, 6). Moreover, U3
1 is closed

under affine equivalence. Thus it suffices to check if BF3
1[P] is non-empty, where P

runs to a subset, say S, of RM(3, 6) representing the (few thousand) orbits under the
affine group. This works, since #U3

1 ≤ # RM(3, 6) = 242:

U3
1 =

⋃
{orbit(P) : P ∈ S and BF3

1[P] is non-empty}.

Computing #P3
1. From the first statement in Theorem 3 it follows that #P3

1 ≤ 264.
Compute BF3

1[P] for P ∈ S, and

bP := #{Par(f̂) ; f ∈ BF3
1[P]}.

Then
#P3

1 =
∑
P∈S

orbit(P)× bP .

If Uk
r and Pk

r are maximal then

#Uk
r = 222k−1+ 1

2(
2k
k)

and
#Pk

r = 222k
.

We shall refer in the next section to the quotients between these values and the
corresponding values for r = 1, that is we define

u(k) = #Uk
1 /222k−1+ 1

2(
2k
k), (5)

p(k) = #Pk
1 /222k

, (6)
pu(k) = p(k)/u(k). (7)

2 Concretely fast means: say a few milliseconds on a PC.

15

Hence for k = 3

u(k) = #U3
1 /242,

p(k) = #P3
1 /264.

By Theorem 3 we know that

p(k) ≤ u(k) ≤ 1.

5 From BF3
1 to 8-Bit Bent Functions

Now bent functions in 8 variables can be constructed by gluing together suitable
functions selected in BF3

1. This final step is simpler than the previous gluing in so far
as now condition (C3) in Definition 3, a pure parity condition, has to be fulfilled.

From Theorem 3 we conclude for each parity pattern (Pij , Qij) ∈ Pk
1 (this is the

analogue of (5) for r = 1): there are unique T ∈ RM∗(k, 2k) and ∆i ∈ RM(k− 1, 2k),
i = 1, 2, 3, 4 such that

P00 = T + ∆1, P01 = T + ∆2,

P10 = T + ∆1, P11 = T + ∆2,

Q00 = T̃ + ∆3, Q01 = T̃ + ∆3,

Q10 = T̃ + ∆4, Q11 = T̃ + ∆4.

(8)

Recall that moreover

‖P00‖ = ‖Q00‖ = ‖P11‖ = ‖Q11‖,
‖P01‖ = ‖Q01‖ = ‖P10‖ = ‖Q10‖

and

‖P00‖+ ‖P01‖ = 22k.

For a bent function f ∈ BFk+1
0 we call the collection of the associated Par(fij) = Pij ,

i, j = 0, 1 (with P1i = P 0i) the left parity pattern of f . (8) is the basis for the following
algorithm.

16

BasicGluing:

Algorithm to compute all bent functions with prescribed left parity
pattern

– Initialize. Either the input left parity pattern (P00, P01) is given or a suit-
able input can be found as follows: Choose any T ∈ RM∗(k.2k). Choose
∆1,∆2 ∈ RM(k − 1, 2k) according to (8), i.e.

P00 := T + ∆1 ∈ Uk
1,

P01 := T + ∆2 ∈ Uk
1,

P10 := P 00 = T + ∆1 ∈ Uk
1,

P11 := P 01 = T + ∆2 ∈ Uk
1,

and such that ‖P00 + P01‖ = 22k.
– Step A1. Compute all f00 ∈ BFk

1[P00], and the set D3 ⊆ RM(k− 1, 2k) of
all

∆3 := Par(f̂00) + T̃ .

Compute all f01 ∈ BFk
1[P01], and the set D′

3 ⊆ RM(k − 1, 2k) of all

∆′
3 := Par(f̂01) + T̃ .

Compute the collision set

E3 := {X : X ∈ D3, X ∈ D′
3}.

Store all sets

BFk
1[P00, X], X ∈ E3,

BFk
1[P01, X], X ∈ E3.

This procedure can be visualized as follows:

P00 = Par(f00) ⇒ Par(f̂00) = Q00
complement?←→ Q11 = Par(f̂01) ⇔ Par(f01) = P01

– Step A2. Compute all f10 ∈ BFk
1[P10], and the set D4 ⊆ RM(k− 1, 2k) of

all
∆4 := Par(f̂10) + T̃ .

Compute all f11 ∈ BFk
1[P01], and the set D′

3 ⊆ RM(k − 1, 2k) of all

∆′
4 := Par(f̂11) + T̃ .

17

Compute the “collision” set

E4 := {Y : Y ∈ D4, Y ∈ D′
4}.

Store all sets

BFk
1[P10, Y], Y ∈ E4,

BFk
1[P11, Y], Y ∈ E4.

This procedure can be visualized as follows:

P 00 = Par(f10) ⇒ Par(f̂10) = Q10
complement?←→ Q11 = Par(f̂11) ⇔ Par(f11) = P 01

– Step B. For each pair (X, Y) ∈ E3×E4 we get a parity pattern by setting

Q00 := X, Q01 := X

Q10 := Y, Q11 := Y .

That is, each selection of functions fij ∈ BF [Pij , Qij] can be glued together,
and give a bent function of size k + 1:

f :=
(

h00 h10

h01 h11

)
= 1/2

(
1 1
1 −1

) (
f00 f10

f01 f11

)
.

Remark 1. Note that for all k
BFk

1[1] = BFk
0 .

Thus the very special case P00 = 1 means that we glue two bent functions, in the
sense that f00, f11 are bent functions and f01 = f10 = 0. In terms of concatenation
(see Proposition 1) this is the well-known construction

f =
(

h00 h01

h10 h11

)
=
(

f00 f11

f00 −f11

)
.

Only here the Gluing Theorem provides a recursion from bent functions of size k to
bent functions of size k + 1. Otherwise none of the glued functions is bent.

Remark 2. Let F be the Boolean function associated to a bent functions f generated
by BasicGluing, that is

f(z) = (−1)F (z), x ∈ Fn+2
2 (n = 2k).

It is easy to see that for all x = (x1, ..., xn) ∈ Fn
2 we have

F (x, xn, xn+1) = xn+1xn+2 (P00(x) + P01(x))+xn+1 (P00(x) + 1)+xn+2U(x)+V (x),

where U ∈ RM(k, 2k) and V ∈ RM(k + 1, 2k) depend on the specific choice of the fij

which are glued together.

18

BasicGluing requires 4 parity class computations, and the heuristic average num-
ber of found parity pattern is

pu(k)4 (# RM(k − 1, 2k))2 , pu(k) = p(k)/u(k). (9)

In fact we can estimate that the subsets Di, D′
i, i = 3, 4 of the coset T̃ +RM(k−1, 2k)

have size (p(k)/u(k))×# RM(k−1, 2k). Thus the “collision” sets Ei have an estimated
size of (pu(k))2 ×# RM(k − 1, 2k), and therefore the number #E3 ×#E4 of found
parity pattern can be estimated as stated in (9).

In the practically relevant case k = 3 we get from (9) the estimation of

pu(3)4 × 244

found parity patterns. (We only know that pu(3) ≤ 1, but not its precise value yet.)
Given a parity pattern, say Pij , Qij we get a bent function for each choice of functions
fij ∈ BF3

1[Pij , Qij], respectively. We say that these bent functions belong to the same
class with respect to parity-pattern equivalence (see definition below). Their number
is ∏

i,j∈{0,1}

#BF3
1[Pij , Qij]. (10)

See below how this can be used to find the number of all 8-bit bent functions.

Definition 4. We call bent functions f, f ′ ∈ BFk+1
0 parity-pattern equivalent, resp.

left parity-pattern equivalent, if we have Par(fij) = Par(f ′ij) and Par(f̂ij) = Par(f̂ ′ij),
resp. Par(fij) = Par(f ′ij), for their canonical decompositions fij, f ′ij (see Proposi-
tion 1).

Exchanging fij by −fij leads to an equivalent bent function (in the sense of the
below definition). In general the structure and size of the sets BF3

1[P,Q] has still to
be analyzed, theoretical and by experiments (some information can already be found
in [8]).

Definition 5. We call Z-bent functions f, g ∈ BFk
r equivalent if

g(x) = ±χaf(Φ(x)), a, x ∈ Fn
2 , Φ ∈ AGL(n, F2).

In the additive setting this means that Boolean functions are equivalent if they are
affine equivalent up to addition of an affine map.

19

Computing all 8-bit bent functions up to equivalence. Our intension is to com-
pute a collection of 8-bit bent functions representing all equivalence classes. Therefore
we can suppose that P00 runs through a system of representatives for RM(3, 6) un-
der equivalence. The number of orbits in RM(3, 6)/ RM(1, 6) under the affine group
AGL(6, F2) is known to be 34. Define the set

I = {(P0, P1) : P0, P1, P 0, P 1 ∈ U3
1, P ∗

0 = P ∗
1 , ‖P0‖+ ‖P1‖ = 22k}

of allowed input for BasicGluing. The number of BasicGluing computations, which
are necessary to find all 8-bit bent function up to equivalence, is 4 times the number
of orbits in I under the affine group operating as follows:

Φ(P0, P1) = (P0 ◦ Φ,P1 ◦ Φ), Φ ∈ AGL(6, F2).

The number of orbits, that is # (I/ AGL(6, F2)), is bounded by

(RM(3, 6)/ RM(1, 6) mod AGL(6, F2))×# RM(1, 6)×# RM(2, 6)
= 34× 27 × 222 = 234.09.

The size of # (I/ AGL(6, F2)) is certainly much smaller. (It has still to be computed.)
The critical bottleneck is to handle the huge amount of bent functions, which can

be derived in Step B of BasicGluing. The effort depends on

– the precise value of p(3) ≤ 1 and u(3) ≤ 1,
– the precise size of # (I/ AGL(6, F2)),
– fast equivalence tests for bent functions.

A very rough and optimistic guess is that we have to sieve bout 250 bent functions.

Computing the number of 8-bit bent functions. For even m let Bm = #BFm/2
0

denote the number of bent functions with m variables (of size m/2). Adding a Step C
to the algorithm BasicGluing we can compute the number, say B8[P00, P01], of 8-bit
bent functions with a prescribed left parity pattern as follows:

Step C. Compute (see [8])

– N(X) := #BF3
1[P00, X]×#BF3

1[P01, X] for all X ∈ E3,
– M(Y) := #BF3

1[P 00, Y]×#BF3
1[P 01, Y] for all Y ∈ E4,

– B8[P00, P01] :=
(∑

X∈E3
N(X)

)
×
(∑

Y ∈E4
M(Y)

)
.

We have to do Step C with input (P00, P01) running through a set of pairs representing
the orbits in I/ AGL(6, F2). An optimistic estimation of the number of orbits is 215.
We anticipate to determine B8 as described within the next monthes.

20

Estimating the number of bent functions. Recall that B4 = 896, as can be
found by hand calculations and that also

B6 = 5425 430 528 = 232.34

is known for more than ten years (see [13]).
Theorem 4. We have the following heuristic recursive estimation:

log2 #BFk+1
0 = log2 B2k+2 ≈ 4 log2 #BFk

1 −22k+1 −
(
2k
k

)
. (11)

Proof. In order to cover all possible parity patterns we consider all triples

(T,∆1,∆2) ∈ RM∗(k, 2k)× RM(k − 1, 2k)× RM(k − 1, 2k)

and define Pij (i, j = 1, 2) as in BasicGluing. The probability that all Pij ∈ Uk
1

for i, j = 1, 2 is u(k)4 (otherwise we do not get a parity pattern), and in this case
the estimated number of derivable parity patterns is given in (9). Hence the overall
number of parity patterns is about

p(k)4 ×# RM∗(k, 2k)×# RM(k − 1, 2k)4. (12)

Since
#BFk

1 =
∑

(P,Q)∈Pk
1

#BFk
1[P,Q],

the average size of the sets BFk
1[P,Q] is

#BFk
1 /#Pk

1 = #BFk
1 /
(
p(k)× 222k

)
.

The 4-th power of this number has to be multiplied with (12) to get the number of
bent functions of size k + 1 (see Step B in BasicGluing and (10)). This proves (11).
(Note that we can argue also using the restricted form of parity pattern given in (8).)
2

The reason why we cannot simply continue the recursion in (11) is that we have to take
into account a certain reduction factor, to be analyzed, which comes from condition
(C2) and which is relevant for r > 1. We shall discuss this matter and add some results
along this line in the final version.

(11) is rather realistic for k = 1, 2. In fact, since #BF1
1 = 33 and #BF2

1 = 213 249
we get

log2 B4 = log2 #BF2
0 ≈ 10.18 (correct value: 9.81),

log2 B6 = log2 #BF3
0 ≈ 32.80 (correct value: 32.34).

As it is easy to compute #BF3
1 with very low effort (see previous section), we can

hope to derive from (11) also a good estimation for log2 B8 = log2 #BF4
0 and compare

it with the exact value to test the quality of the estimation (11).

21

Practical application

Summarizing, to construct 8-bit bent functions proceed as follows: First compute
U3

1 ⊆ RM(k, 2k) (see page 4) and then

V3
1 := {P ∈ RM(k, 2k) : P ∈ U3

1, P ∈ U3
1}.

Sort the P ∈ V3
1 in sublists according to their degree k part P ∗ ∈ RM∗(k, 2k).

Choose P00, P01 ∈ V3
1 from the same sublist, that is with P ∗

00 = P ∗
01, and such that

‖P00‖+‖P01‖ = 22k. In this way one gets an allowed input to run BasicGluing. (Oth-
erwise BasicGluing would return the empty set.) Our experiments have shown that
BasicGluing gives about 235 to 238 bent functions on the average, after reduction of
those, which are evidently equivalent.

Suppose you have already constructed an 8-bit bent function, for instance by hill-
climbing techniques or a mathematical construction. Then you can use BasicGluing
to compute its complete left parity-pattern equivalence class.

Since obviously (left) parity-pattern equivalence is not invariant under affine equiv-
alence, the latter also works with an affine modification or the dual of a bent function
that was obtained by a previous application of BasicGluing. In this way BasicGluing
can also be iterated.

As addition to this paper we shall provide programs, data and results of exper-
iments on the homepage http://www.ruhr-uni-bochum.de/cits/ of our research
group CITS (Cryptography and IT Security).

References

1. C. Carlet, H. Dobbertin, G. Leander, Normal extensions of bent functions, IEEE Transactions
on Information Theory 50 (2004), 2880 – 2885.

2. C. Carlet, P. Guillot, A characterization of binary bent functions, J. Comb. Theory, Ser. A 76
(1996), 328 – 335.

3. C. Carlet, P. Guillot, An alternative characterization of the bentness of binary functions, with
uniqueness, Des. Codes Cryptography 14 (1998), 133 – 140.

4. M. Daum, H. Dobbertin, G. Leander, An algorithm for checking normality of Boolean functions,
Proceedings of the Workshop on Coding and Cryptography (WCC 2003), Versailles, France,
March 2003, pp. 133 – 142.

5. J.F. Dillon, Elementary Hadamard difference sets. Ph.D. Thesis, University of Maryland, 1972.
6. J.F. Dillon, H. Dobbertin, New cyclic difference sets with Singer parameters, Finite Fields and

Their Applications 10 (2004), 342 – 389.
7. H. Dobbertin, Construction of bent functions and balanced Boolean functions with high nonlinear-

ity, Fast Software Encryption (Workshop on Cryptographic Algorithms, Leuven 1994), Lecture
Notes in Computer Science, vol. 1008, Springer-Verlag 1995, 61 – 74.

8. H. Dobbertin, Bent functions embedded into the recursive framework of Z-bent functions,
preprint, January 2005 (submitted to IEEE Transactions on Information Theory).

22

9. H. Dobbertin, G. Leander, A survey of some recent results on bent functions, Proceedings of the
Workshop on Sequences and Their Applications 2004 (SETA ’04), Seoul, Korea, October 2004,
Lecture Notes on Computer Science, Springer Verlag 2005, to appear.

10. J. Fuller: http://www.isrc.qut.edu.au/people/fuller/
11. G. Leander, Normality of bent functions, monomial and binomial bent functions, Ph.D. Thesis,

Ruhr-University of Bochum, December 2004.
12. A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook of Applied Cryptography CRC Press,

Boca Raton, 1997.
13. B. Preneel, Analysis and design of cryptographic hash functions, Ph.D. thesis, KU Leuven (Bel-

gium), February 1993.
14. O.S. Rothaus, On “bent” functions, Journal of Combinatorial Theory, Ser. A, 20 (1976), 300 – 305.
15. B. Schneier, Applied Cryptography Second Edition: protocols, algoritms, and source code in C,

John Wiley & Sons, New York 1996.

Appendix

Making Normal Bent Functions Balanced

In the sequel it is more convenient to consider bent functions not as ±1-valued, but
as F2-valued (i.e. as special Boolean functions). The notion of a normal bent function
was introduced in [7]. By definition such a bent function, say F : Fn

2 −→ F2, n = 2k,
is constant on an affine subspace, say A ⊆ Fn

2 , of dimension k. A natural idea to make
F balanced is to add (mod 2) a Boolean function, say φ, with support φ−1(1) ⊆ A of
size 2k−1 (see [7]). Obviously we can consider φ as a balanced Boolean function on Fk

2

by identifying A with Fk
2.

Given H : Fn
2 −→ F2 we refer to its Walsh transform (see Section 2.2) in order to

define the Walsh radius

Rn(H) = max{|HW(a)| : a ∈ Fn
2}

of H as a measure for the linearity of H. By the definition of a bent function, Rn(F)
attains the minimal possible value 2k. For the balanced Boolean function G = F + φ
one can show easily that Rn(G) = 2k +Rk(φ) (see [7], Proposition 2). Thus we get the
minimal Rn(G) for this approach precisely if the k-bit Boolean function φ is chosen
with minimal Rk(φ). This construction leads to the smallest linearity (i.e. highest
non-linearity) which is known today.

Non-normal bent functions exist, which has been shown only recently for n = 14
(see [1], [4], [6]). Based on a collection of 8-bit bent functions representing all of them
up to affine equivalence (see previous section), we would be able to decide whether
there are non-normal 8-bit bent functions or not. (A fast normality test is described in
[4].) Those which are normal can be made balanced in the above described way such
that they have Walsh radius 24 +8 = 24. It remains a challenge to improve this value.

23

