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Abstract. Recently, it has been proved that computational security can be automatically
verified using the Dolev-Yao abstraction. We extend these results by adding a widely used
component for cryptographic protocols: Diffie-Hellman exponentiation. Thus our main result
is: if the Decisional Diffie-Hellman assumption is verified and the cryptographic primitives
used to implement the protocol are secure, then safety in the symbolic world implies safety
in the computational world. Therefore, it is possible to prove automatically safety in the
computational world.
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1 Introduction

Historically, verification of cryptographic protocols has been separated in two distinct branches.
Symbolic verification of cryptographic protocols, originates from the work of Dolev and Yao [DY83].
The essential part of this approach is the perfect cryptography assumption that can be roughly
summarized as follows: messages are represented as algebraic terms, it is impossible to decode
an encrypted message without the inverse key, fresh nonce creation is perfect, that is, nonces
range over an infinite domain and freshness is absolute, the same holds for key creation. In the
computational approach, cryptographic primitives operate on strings of bits and their security
is defined in terms of high complexity and weak probability of success [GM84,BKR94] of any
attacker. Protocols as well as attackers are randomized polynomial-time Turing machines. This
computational approach is recognized as more realistic than the symbolic approach, however, its
complexity makes it very difficult to design automatic verification tools.

There has been a recent trend in proving that the symbolic model is a sound abstraction of
the computational model. Soundness means that a computational attack that has non-negligible
probability can be mapped to a symbolic attack. In other words, the non-existence of a sym-
bolic attack implies that any computational attack has a negligible probability. Obviously such
soundness result cannot be established without any assumption on the cryptographic primitives.
Therefore, the seeked results are of the form: if a protocol is secure in the symbolic model and
the cryptographic primitives used to implement it verify some given computational security prop-
erties, then this protocol is secure in the computational model. The quest for this kind of results
has probably been initiated by the work of Abadi and Rogaway [AR00]. This work essentially
shows that, if the underlying symmetric encryption scheme satisfies some computational condi-
tions then symbolic indistinguishability implies computational indistinguishability. In this work
passive adversaries, that do not interact with the security protocol, are considered. Soundness of
the symbolic model has soon been generalized to active adversaries by Backes et al. in [BPW03a].
The same authors also extended the soundness result to a wide class of cryptographic primitives
such as digital signature or symmetric encryption [BPW03b]. Also [MW04,Lau04,JLM05b] relate
a symbolic model to the computational although a different one.

Although these results encompass a large number of protocols, they do not apply to protocols
that include Diffie-Hellman key exchange schema as SSH and TLS [DA99]. On the other hand, re-
cently, symbolic verification of protocols within the symbolic model has been extended to protocols



with Diffie-Hellman exponentiation showing that the existence of attacks is an NP-complete prob-
lem [CKRT03,MS03]. Moreover, in the computational world, efforts have been made to extend the
classical Diffie-Hellman scheme [DH76] in order to design more general protocols [BCP02,BDZ03].

Therefore soundness of symbolic verification when considering Diffie-Hellman exponentiation
is an interesting and challenging problem. To our knowledge, there is hardly any work on the
soundness of the symbolic model in presence of Diffie-Hellman exponentiation. A notable exception
is the work by Jonathan Herzog in [Her03,Her04] where he provides a symbolic model and shows
that any attack in this model can be mapped to an attack in the computational model.

In this paper, we provide a symbolic model close to the Dolev-Yao model, that deals with
protocols using Diffie-Hellman exponentiation as well as symmetric encryption. We prove that
this symbolic model is a sound abstraction of the computational one in the sense explained above.
Our result applies to protocols that use products in exponents and Diffie-Hellman values, that is
exponentiations, as symmetric keys. In this paper, we only consider symmetric keys but exten-
sion to other primitives (e.g. [JLM05b]) such as signature, asymmetric encryption and hashing
is straightforward. To prove our result, we introduce new security criteria inspired from the De-
cisional Diffie-Hellman assumption, chosen-plaintext security and selective forgery. These criteria
are of interest on their own, especially the Dynamic Decisional Diffie-Hellman assumption.

Outline of this paper. The next section introduces variations of the classical Diffie-Hellman
problem. Then section 3 considers a security criterion that combines modular exponentiation as
in Diffie-Hellman and classical criteria for encryption scheme. Section 4 introduces cryptographic
protocols with modular exponentiation. Computational and symbolic semantics are given as well
as adversary models. This allows us to prove soundness of the symbolic adversary model in section
5. Finally, a conclusion of this paper is drawn.

2 The Diffie-Hellman Problem

For the remainder of this document, let η be the security parameter. Let G be a cyclic group of
prime order q and let g be a generator of G. q is assumed large, i.e. its number of digits is linear
in η. We suppose that everyone knows g, G and q.

An adversary is a random Turing machine which execution time is polynomially bounded in η.
An adversary tries to solve some challenge related to a security criterion. The security criterion is
verified if for any adversary A, its advantage is negligible. Negligible means that for any natural
c, there exists η0 such that for any η > η0, |Adv(A)| ≤ η−c.

To illustrate this notion of advantage, let us consider the simplest form of the Diffie-Hellman
scheme. Two agents A and B want to create a shared secret value. A randomly chooses an element
x in [1, q] and sends gx to B. B also chooses an element y in [1, q] and sends gy to A. Then A
and B can both compute the shared value gxy. However, it should be hard for any adversary to
compute gxy from gx and gy.

Formally, the Computational Diffie-Hellman (CDH) assumption is that for any adversary A,
the advantage of A defined thereafter is negligible.

AdvCDH(A) = pr
(

A(gx, gy)→ gxy
∣

∣

∣
x, y

R
← [1, q]

)

However, this computational assumption does not immediately guarantee any secrecy property
on gxy. It may be feasible to compute the first bits of gxy but infeasible to compute its whole
representation. Thus, there exists a stronger assumption: from gx and gy, it is impossible to get
any information on the shared secret gxy.

The Decisional Diffie-Hellman (DDH) assumption is that for any adversary A, the advantage
of A defined thereafter is negligible.

AdvDDH(A) = pr
(

A(gx, gy, gxy)→ 1
∣

∣

∣
x, y

R
← [1, q]

)

− pr
(

A(gx, gy, gr)→ 1
∣

∣

∣
x, y, r

R
← [1, q]

)

If this assumption holds, an adversary is not able to distinguish the shared secret from a random
information with non-negligible probability.
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The Diffie-Hellman assumption has been generalized in different ways: by authorizing more
than two agents [BCP02] or specifying different related challenges [BDZ03]. Here, we introduce
a dynamic version that is more general than the group version. The idea is that there are an
unbounded number of challenges xi. The adversary can ask for the exponentiation of any product
of xi and has to answer an exponentiation that it did not ask before. For example, the adversary
can ask first for gx1x2 then for gx2 then it may solve the challenge by outputting gx1 . To ask for
exponentiations, the adversary gives a finite list of integers (with no repetition) to an oracle and
receives the exponentiation of the product of xi which index appears in the list.

Let n be an integer greater or equal to 1, n is the bound on the request size. Like before, the
computational version is more simple than the decisional one. The Dynamic Computational Diffie-

Hellman (DCDHn) assumption is a generalization of CDH. There are an unbounded number of
challenges xi which are random numbers. The adversary A has access to an oracle F . This oracle
takes as argument a finite sub-set E ofN (which size is lower than n) and returns g

Q

i∈E
xi (as soon

as there are no possible confusion on the xi, g
Q

i∈E
xi is denoted by gE). At the end, A returns an

element v of G and another finite sub-set E′ of N (which size is also lower than n). and A wins
its challenge iff E′ has not been submitted to oracle F and v = gE′

. The advantage of A is the
probability that it wins its challenge.

Adv(A) = pr
(

A/F → (gE′

, E′)
∣

∣

∣
xi

R
← [1, q]

)

The DDH assumption is strong enough to imply this dynamic assumption. Note that it is not
clear whether CDH implies DCDHn.

Proposition 1. If the DDH assumption is verified, then the DCDHn assumption is also verified.

Proof. See appendix A.

A decisional version of DCDHn is useful to prove our main results. The Dynamic Decisional

Diffie-Hellman (DDDHn) assumption is the decisional version of DCDHn. A bit b is generated
and the adversary tries to guess its value. The oracle F contains the previous oracle that computes
gE from E (these are called standard requests). The adversary can also ask for challenge requests :
it submits a finite sub-set E′ (size lower than n) of N and receives gE′

if b = 1 and gr for some
random r otherwise. This time, the restriction is that any sub-set can be submitted only once to
F . The advantage of A is given by:

Adv(A) = pr
(

A/F → 1|b = 1
)

− pr
(

A/F → 1|b = 0
)

For both dynamic assumptions, an important point is that as the adversary has a bounded
execution time, it can only access a finite number of xi. Hence probabilities are still defined on
finite domains.

Proposition 2. If the DDH assumption is verified, then the DDDHn assumption is also verified.

Reciprocally, if the DDDHn assumption is verified then so is DDH for n ≥ 2.

Proof. See appendix A.

Let rs be an integer. For the rest of the document, DDDH is used instead of DDDHrs and any
request related to an exponentiation only accepts argument which size is lower than rs.

A straightforward extension would be to allow lists with repetition as oracle’s argument. How-
ever, as noted in [BDZ03], the equivalence between DDH and such extension is a difficult yet
unsolved problem. Moreover, this restriction is not really relevant when considering protocols.

3 Melting SYM-CPA and DDH

A symmetric encryption scheme SE = (KG, E ,D) is defined by three algorithms. The key gener-
ation algorithm KG is a randomized function which given a security parameter η outputs a key
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k. The encryption algorithm E is also a randomized function which given a message and a key
outputs the encryption of the message by this key. Finally the decryption algorithm D takes as
input a key and a cypher-text and outputs the corresponding plain-text, i.e., D(E(m, k), k) = m.
The execution time of the three algorithms is assumed polynomially bounded by η. Moreover, we
ask that if r is randomly sampled from [1, q], then the key generated by KG using gr as random
coins has the same distribution as keys generated by KG using classical random coins.

Security criteria are introduced using the game formalism given in [JLM05b]. A security game
is defined as an experiment involving an adversary. The experiment proceeds as follows. First some
parameters θ are generated randomly. The adversary is executed and can use an oracle F which
depends on θ. At the end, the adversary has to answer a string of bits which is verified by an
algorithm V which also uses θ (e.g. θ includes a bit b and the adversary has to output the value
of b).

3.1 Security Game

A game γ is a triple (Θ; F ; V ) where

– Θ is a PRTM (polynomial random Turing machine) that randomly generates some challenge
θ (for example, a bit b and a pair of key (pk, sk)).

– F is a PRTM that takes as arguments a string of bits s and a challenge θ and outputs a new
string of bits. F represents the oracles that an adversary can call to solve its challenge. A/F
denotes the execution of adversary A that may call oracle F using F in its code.

– V is a PRTM that takes as arguments a string of bits s and a challenge θ and outputs either
true or false. It represents the verification made on the result computed by the adversary. The
answer true (resp. false) means that the adversary solved (resp. did not solve) the challenge.

Note that Θ can generate an arbitrary number of parameters and F can represent an arbitrary
number of oracles. Thus, it is possible to define games with multiple Θ and F . As soon as there
is no risk for comprehension, we use the same notation for the challenge generator Θ and the
generated challenge θ (both are denoted using θ).

The advantage of an adversary A against γ is

Advγ
A(η) = 2.

(

pr(Expγ
A(η) = true)− PrRandγ

)

Where Exp is the Turing machine defined by:

Experiment Expγ
A(η):

θ←Θ(η)
d←A/η, λs.F (s, θ)
return V (d, θ)

And PrRandγ is the best probability to solve the challenge that an adversary can have without

using oracle F . Formally, PrRandγ is the maximum of pr(Expγ′

A (η) = true) where A ranges over
any possible PRTM and γ′ is (Θ; 0; V ) (0 is an oracle that always answer the same result, 0).

A game γ is said safe if for any PRTM A, Advγ
A(η) is a negligible function in η. Properties

and a reduction theorem for games appear in [JLM05b].

3.2 Patterns

Patterns are first order terms which extend bit-strings with pattern variables. These variables
represent the different challenge secret information and are denoted by [ki] for keys (this asks the
oracle to replace the pattern variable by the value of symmetric key ki) and [Ni] for nonces used.
Variables can be used as atomic messages (data pattern) or at a key position (key pattern). When
a left-right oracle is given a pattern term, it replaces pattern variables using the corresponding
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values and encodes the so-obtained message. More formally, patterns are given by the following
grammar where bs is a bit-string and i is an integer.

pat ::= 〈pat, pat〉 | bs | [Ni] | [ki] | {pat}key | exp(prod)

key ::= bs | exp(prod) | [ki]

prod ::= bs | [Ni] | prod · prod

This grammar defines general patterns. Patterns that only use symmetric encryption as crypto-
graphic primitive are called symmetric patterns.

The computation (valuation) of a pattern is easily defined recursively in a context θ asso-
ciating bit-string values to the different variables. θ associates to each integer i a symmetric
key θk(i) and a bit-string θN (i). The valuation produces a bit-string and it uses the symmet-
ric encryption algorithm E , the concatenation denoted by the operator ·, the exponentiation
algorithm Exp (from G × N to G) and the product algorithm Prod (from N × N to N).

v(bs, θ) = bs

v([ki], θ) = θk(i)

v([Ni], θ) = θN (i)

v(〈p1, p2〉, θ) = v(p1, θ).v(p2, θ)

v({p}k, θ) = E(v(p, θ), v(k, θ))

v(exp(p), θ) = Exp(g, v(p, θ))

v(p1 · p2, θ) = Prod(v(p1, θ), v(p2, θ))

3.3 N-SYM-CPA

The N -SYM-CPA criterion has been introduced formally in [JLM05b]. It includes both aspects
indistinguishability and authentication that are present in asymmetric encryption and digital
signature respectively. Therefore, our criterion for symmetric encryption is in a combination of
IND-CPA and selective forgery. The case N = 1 is similar to the IND-CPA ∧ INT-CTXT criterion
described in [BN00]. However, we reformulate this in our formalism in order to add the Diffie-
Hellman part.

The N -SYM-CPA criterion is γN = (Θ; F ; V ) where Θ generates N symmetric keys and a bit b;
F gives access to one oracle for each key: a left-right encryption oracle that takes as argument a pair
of symmetric patterns 〈pat0, pat1〉 and outputs patb completed with the secret keys (v(patb, θ)) and
encoded with ki. There is an acyclicity hypothesis regarding keys: the encryption oracle related to
key i works only on pair of symmetric patterns 〈pat0, pat1〉 such that for any j in var(〈pat0, pat1〉),
i < j.

Finally, V is composed of two parts: VIND returns true when the adversary returns bit b; VUNF

returns true when the adversary outputs a message encoded by one of the symmetric key and this
message has not been produced by an encryption oracle. Then V is satisfied if VIND or VUNF is
satisfied. We require that there is no string that satisfies both VIND and VUNF (this can be done
by asking the name of the challenge together with its solution to the adversary). The criterion
related to IND (Θ; F ; VIND) (resp. to UNF (Θ; F ; VUNF )) is denoted by N -SYM-CPA/IND (resp.
N -SYM-CPA/UNF).

A symmetric encryption scheme SE is said N -SYM-CPA iff for any adversary A in PRTM ,
AdvγN

SE,A(η) is negligible. There exist some algorithms strongly believed to be N -SYM-CPA.
Note that left-right oracle can be used with 〈m1, m2〉 where m1 and m2 have different sizes.

This aspect is discussed in [AR00].

3.4 N-DH-SYM-CPA

The N -DH-SYM-CPA security criterion is an extension of N -SYM-CPA to general patterns.
The N -DH-SYM-CPA criterion is γN = (Θ; F ; V ) where Θ randomly generates N symmetric

keys, N nonces N1 to NN and a bit b; F gives access to one oracle for each key: a left-right
encryption oracle that takes as argument a pair of patterns 〈pat0, pat1〉 and outputs patb completed
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with the secret keys (v(patb, θ)) and encoded with ki. Moreover if pat0 or pat1 contains a [Ni] and
this is replaced by the value defined in θ.

An other oracle is related to the Diffie-Hellman part. The adversary can submit a finite subset
E of N and receives gE (i.e. g

Q

i∈E
θk(i)).

Finally, the last oracle takes as argument a finite subset of E and a pair of patterns 〈pat0, pat1〉.
It outputs pattern patb encoded using key kE . kE is produced by KG using gE as random coins,
thus it is specific to a given E.

There are a few restrictions on how the oracles may be called: gE can be asked iff no left-right
encryption using kE has been asked. There is also an acyclicity hypothesis: there exists a total
order among nonces and keys denoted by · > ·. If x > k then x cannot be asked in a pattern
submitted to the oracle related to key k. If x > Ni then x cannot be asked in a pattern given to
an oracle related to key kE where i ∈ E.

Finally, V is composed of two parts: VIND returns true when the adversary returns bit b; VUNF

returns true when the adversary outputs a message encoded by one of the symmetric key and this
message has not been produced by an encryption oracle. Then V is satisfied if VIND or VUNF

is satisfied. We require that there is no string that satisfies both VIND and VUNF . The criterion
related to IND (Θ; F ; VIND) (resp. to UNF (Θ; F ; VUNF )) is denoted by N -DH-SYM-CPA/IND
(resp. N -DH-SYM-CPA/UNF).

A symmetric encryption scheme SE is said N -DH-SYM-CPA iff for any adversaryA, AdvγN

SE,A(η)
is negligible.

The main result concerning this new criterion is that it is equivalent to 1-SYM-CPA if the
Decisional Diffie-Hellman assumption holds.

Proposition 3. If the symmetric encryption scheme SE is 1-SYM-CPA and DDH is verified,

then SE is also N -DH-SYM-CPA for any integer N .

Proof. See appendix B

This last proposition links N -DH-SYM-CPA to standard notions in the computational world.
Moreover, the proof of our main theorem is greatly simplified by assuming that the encryption
scheme used in the implementation is N -DH-SYM-CPA.

For simplicity’s sake, we only considered a bounded number of challenges. However, using the
technique presented in [JLM05b], one can easily extend this result to a number of challenges that
is polynomial in η. As our protocols only use a fixed number of challenges, this is not necessary
in this document.

4 Protocol Models

4.1 Messages and Deduction

The symbolic model is an idealized representation of cryptographic protocols. The main abstrac-
tions are that nonces values cannot be predicted and that it is impossible to decrypt an encoded
message without knowing the inverse key. In this model, messages are represented by first-order
terms. Let Ag, No, Ne and Keys be disjoint countable sets of, respectively, identities, nonces,
exp-nonces and key names. Let A, N , Ne and key be meta-variables over these sets.

msg ::= Ne | N | A | {msg}key | 〈msg, msg〉 | exp(prod)

key ::= K | exp(prod)

prod ::= Ne | prod · prod

The function symbols exp and [·] represents modular exponentiation and product. In particular,
[·] is considered associative and commutative.
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We consider the classical Dolev-Yao [DY83] adversary and let E ⊢ m denote that message m
is deducible from the set of messages E. This entailment relation is extended to the exp operator
by adding the two following rules:

E ⊢ Ne

E ⊢ exp(Ne)

E ⊢ Ne E ⊢ exp(p)

E ⊢ exp(p ·Ne)

These new rules seem quite natural in the computational world: it is possible from a value x to
compute gx and from x and gy to compute gxy.

The main result of this paper is that the Dolev-Yao model extended with these rules yields
a sound symbolic model meaning that any computational attack with non-negligible probability
corresponds to a symbolic attack.

4.2 Description of Cryptographic Protocols and Semantics

For the sake of presentation, we consider protocols that only involve a single role. Moreover, this
role is only instantiated in one session. This is done without loss of generality when a bounded
number of sessions is considered. Indeed, each interleaving of the actions of the different partici-
pants can be seen as a role and the different interleavings correspond to different protocols.

Thus, a protocol is described by a list of actions which are either emission !m or reception ?m
of a message m. To make protocols readable, we use the usual BAN syntax. For example, a version
of Diffie-Hellman protocol between two roles A and B is:

A→ B : exp(NA)

B → A : exp(NB)

A→ B : {A, B}exp(NA·NB)

The session that involves agents A and B is represented by the simplified protocol:

!exp(NA) ?exp(x) !exp(NB) ?exp(y) !{A, B}exp(NA·y) ?{A, B}exp(x·NB)

We consider the classical adversary model where the adversary controls the network, receives all
the outputs (!m) and submits some forged message to the inputs (?m).

Henceforth, let us consider an arbitrary fixed protocol ‡1t1...‡ktk, where ‡i is either ”!” or ”?”
and ti is a term. There are two different execution models, one for the symbolic setting and one
for the computational setting producing a symbolic and a computational trace, respectively. A
symbolic action sequence is a list of actions s m where s is either ? or ! and m is a ground (closed)
message. A symbolic trace is a symbolic action sequence ‡1m1...‡

′
km′

k with k′ ≤ k that satisfies
the following conditions:

1. There exists a ground substitution σ such that for any i, tiσ = mi;
2. For any i, if ‡i is ”?”, then mi is deducible from the previous messages m1 to mi−1 and the

initial knowledge of the adversary E0,i.e.,

E0, m1, ..., mi−1 ⊢ mi.

The set E0 contains the atomic messages of the mi’s that do not appear in any ti, i.e. E0 =
⋃

i atoms(mi) \
⋃

i atoms(ti).

The set trace(Π) contains the possible traces for protocol Π . Our symbolic semantics is essentially
the one used in [CKRT03], where it is shown that secrecy is an co-NP-complete problem.

A computational action sequence is a list of actions ‡ bs where bs is a bit-string and ‡ is either
”?” or ”!”. A computational trace is the result of the interaction of an adversary A, which is a
polynomial random Turing machine, and the protocol. This interaction is defined using the Turing
machine Exec(A, Π). Since we are interested in relating the symbolic and computational semantics
we define Exec in such way that along the computational trace it outputs a corresponding symbolic
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action sequence. We then show that the symbolic action sequence is a trace except for negligible
probability. The reader should be convinced that producing the symbolic action sequence by no
means interferes with the computational semantics.

To simplify the presentation of the Exec algorithm, we only give pseudo-code using the fol-
lowing functions:

– init(Π) generates the keys, nonces and exp-nonces that are chosen by the protocol Π , i.e.,
those in atoms(Π), and not by the adversary. It returns a substitution θ associating bit-string
values to these elements.

– parse(bs, t, θ, σ) parses the bit-string bs using prototype t and knowledge from θ, it returns
the updated version of θ as well as an updated symbolic substitution σ.

– concr(m, θ) concretizes message m using knowledge from θ and returns the corresponding
bit-string.

– compl(σ) completes the symbolic substitution σ by associating remaining free variables to a
distinct fresh nonces.

The Exec algorithm uses two substitutions: the symbolic substitution σ that links protocol
variables to messages and the computational substitution that links variables to strings of bits.
Notice that the adversary can decide to stop interacting with the protocol by providing an answer
other than an updated memory mem and a bit string bs when an action ?t is to be executed.

Algorithm Exec(A, ‡1n1...‡knk):
θ ← init(‡1n1...‡knk)
mem← []
for i in [1, k] do

if ‡i =! then
bs← concr(ni, θ)
mem← A(bs, mem)
tc ← append(‡ibs, tc)

else
X ← A(mem)
if X = bs, mem then

σ, θ ← parse(bs, mi, θ, σ)
tc ← append(‡ibs, tc)

else
goto done

done
σ ← compl(σ)
return (‡1m1...‡imi−1)σ, tc

The next proposition relates precisely the computational trace and symbolic action sequence
that Exec outputs. A computational trace tc is a possible concretization of a symbolic action
sequence tf if there exists a computational substitution θ such that one of the possible valuation
of tf using θ is tc.

Proposition 4. Let A be an adversary and Π a protocol. If Exec(A, Π) outputs tf , tc, then tc is

a possible concretization of tf .

5 Soundness of the Symbolic Model

In this section, we show that the symbolic sequence action produced by Exec(A, Π) is a sym-
bolic trace except for negligible probability. Together with Proposition 4, this implies that only
computational traces with negligible probability might not correspond to symbolic traces.

To do so, it is important to characterize when a symbolic action sequence is not a symbolic
trace. Let E be a set of messages. Then, let keys(E) denote the set of keys (including exponenti-
ations) that are deducible from E. Moreover, let dec(E, K) denote the set of messages deducible
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from messages in E using unpairing and decompositions with keys in K. Then, we have the
following:

Proposition 5. Let E be a set of messages and m be a message. If E 0 m then, one of the

following holds:

– There exists a message {n}key in dec(m, keys(E)) such that key is not in keys(E) and {n}key

is not in dec(E, keys(E)). This corresponds to the case where the adversary forges {n}key.

– There exists a key k or a nonce N or an exp-nonce Ne or an exponentiation exp(p) in

dec(m, keys(E)) that is not in dec(E, keys(E)). This corresponds to the case where the adver-

sary guesses a secret value or breaks an encryption.

There are a few restrictions over protocols Π considered. These restrictions are defined in the
symbolic world (as they are easier to check with automated tools).

1. Keys and exp-nonces that are not chosen by the adversary remain secret throughout the
protocol execution. Moreover, exponentiations that are used as keys also remain secret. Let S
be the set of such exponentiations, keys and exp-nonces.

2. There exists an order among exp-nonces and keys from S such that if u < v then for any
symbolic trace, v cannot appear encoded by a key using u (the key is exactly u if u is a key, if
it is an exp-nonce, the key is an exponentiation using u). This is the usual acyclicity condition
on keys.

3. No execution can lead to send exp(Ne ·Ne · ...) where Ne is an exp-nonce of S.
4. Whenever a reception of exp(x) occurs, either x is known by the honest parties or exp(x) is

signed by a key from S.

Among these conditions the last one seems the most restrictive. Let us discuss it. In general, the
Dolev-Yao abstraction is not a sound abstraction of the computational model. To illustrate this, let
us consider the protocol ?exp(x) !exp(x ·N) and the group G of quadratic residues over Z/m2 (as
introduced in [BCP03]). It is clear that a symbolic adversary cannot deduce N . A computational
adversary, however, can submit 1 + m for exp(x). Then it receives (1 + m)N mod m2 which is
equal to (1 + N.m) mod m2. Therefore, the adversary can deduce information on the value of N
(i.e. the value of N mod m). That should not be possible as the DDH assumption is classically
assumed true on G.

There are at least two other ways to solve this problem:

– A solution is to strengthen the DDH assumption. Parameter g can also be chosen by the
adversary. This assumption is less classical. It does not hold for quadratic residue.

– Else, we could put restrictions on protocols and adversaries. For example, there are no problems
for a passive adversary.

Our restriction given as hypothesis 4 is a more subtle restriction on protocols than the passive
case. It is quite fair as Diffie-Hellman does not provide any authentification. In particular, this
restriction is true for the simplified version of TLS that appears in the introduction of [Her03].

The next theorem is our main result : traces produced by a computational adversary can be
abstracted to symbolic traces with overwhelming probability. Let Π be a protocol and SE be the
encryption scheme used to implement Exec.

Theorem 1. If the DDH assumption holds and SE is SYM-CPA then for any concrete adversary

A:

pr
(

tf , tc ← Exec(A, Π) and tf /∈ traces(Π)
)

is negligible

Proof. Let us consider an adversary A such that the probability to create a symbolic trace that is
not in traces(Π) is not negligible. Then it is possible to use A and a modified version of the Exec
algorithm in order to gain a non negligible advantage against N -DH-SYM-CPA. This is detailed
in appendix C.
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Using this main theorem, it is possible to relate properties in the symbolic world to properties
in the computational world. These properties can be verified in the symbolic world and then hold
in the computational world. This has been done for some trace properties in [JLM05a,MW04]
such as authentication and a weak version of secrecy. But also a stronger version of secrecy, called
SecNonce, can be verified [CW05] except for exp-nonces. The SecNonce property can be defined as
a game that goes as follows: two nonces N0 and N1 are chosen randomly. The secrecy of a nonce
name N means that an adversary cannot distinguish between the protocol executed with N0 and
N1 taken as values for N . The SecNonce property for exp-nonces is not correctly abstracted by
non-deductibility in the symbolic model. Indeed, if we consider the protocol !exp(N), then if an
adversary is given two exp-nonce values N0 and N1, it can easily guess which value was used in
the protocol (as exponentiation is deterministic). Hence the SecNonce property can only be used
to abstract secrecy of nonces (as they do not appear in exponentiations).

6 Conclusion and Future Works

We prove soundness of a symbolic model that deals with Diffie-Hellman exponentiation. Although
we only considered Diffie-Hellman exponentiation and symmetric encryption, adding other prim-
itives such as asymmetric encryption, hashing or digital signature should not be complicated.
In particular, [JLM05b] uses a specific technique to combine some security primitives and their
related criteria.

As future work, we plan to investigate automatic verification of the protocol restrictions in the
symbolic world. With such verification, it would be possible to entirely verify a protocol with an
automatic prover.
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A Proofs for Propositions 1 and 2

Proposition 1: If the DDH assumption is verified, then the DCDHn assumption is also verified.
Proposition 2: If the DDH assumption is verified, then the DDDHn assumption is also verified.
Reciprocally, if the DDDHn assumption is verified then so is DDH for n ≥ 2.

We first prove proposition 2. Proposition 1 is a direct consequence. The order < used between
pairs of naturals is the lexical order.

DDH ⇒ DDDH : let A be an adversary against DDDHn and P its polynomial bound. Let i and
j be two integers in [1, P (η)] such that i < j. We build some adversaries Bi,j against DDH using
A and a modified version of the F oracle denoted by Fi,j .

Adversary Bi,j(X, Y, Z)

b
R
← {0, 1}

b′ ← A/Fi,j

return b = b′

Oracle Fi,j uses X , Y , Z and the random bit b to simulate oracle F . The application of Fi,j to E
is computed as follows.

– For any k in N different from i and j, xk is randomly sampled in [1, q] when necessary.
– For k and k′ in N, a value xk,k′ is also randomly sampled in [1, q] when necessary.

The application of Fi,j to E returns gr for some randomly sampled r if b = 0. Else if b = 1, it
returns f(g, E) which is recursively defined by:

– For the lowest pair (k, k′) in E such that (k, k′) < (i, j), f(g, E) returns f(g, E \ {k, k′})xk,k′ .
– If i and j appear in E, then f(g, E) returns f(Z, E \ {i, j}).
– If only i appears in E, then f(g, E) returns f(X, E \ {i}).
– If only j appears in E, then f(g, E) returns f(Y, E \ {j}).
– For any remaining k in E, f(a, E) returns f(a, E \ {k})xk .
– f(a, ∅) returns a.

Then the advantage of Bi,j is defined by:

Adv(Bi,j) = pr(A/Fi,j wins|Z = gxy)− pr(A/Fi,j wins|Z = gr)

When i = 1 and j = 2 and Z = gxy, the situation is the same as when A is confronted to F .
Moreover, let (i′, j′) be the successor of (i, j) for the lexical order (i and j are bounded by P (η)),
then the case Fi,j when Z = gr is similar to the case (i′, j′) when Z = gxy. By summing these
advantages, we get:

∑

1≤i<j≤P (η)

Adv(Bi,j) = pr(A/F wins)− pr(A/FP (η)−1,P (η) wins)

2
(

∑

1≤i<j≤P (η)

Adv(Bi,j)
)

= Adv(A) −Adv(Ao)

The first advantage is related to A against DDDHn and the last probability is the advantage
of a modified version of A against DDDH⌊n/2⌋+1. Namely Ao simulates A confronted to oracle
FP (η)−1,P (η). Hence Ao only makes requests of size lower than ⌊n/2⌋+ 1 (⌊x⌋ denotes the integral
value of x).

Now, we proceed by induction on n to prove our result. For n = 1, the requests can only have
size one and ask for gxi for some i. The adversary has to distinguish between gxi and gr without
any other information on xi. Therefore, the advantage of any adversary against DDDH1 is 0.
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Let us suppose that DDDHi holds for any i lower than n. Then let A be an adversary against
DDDHn which execution is bounded by polynomial P . There exists an adversary Ao against
DDDH⌊n/2⌋+1 and P (η) adversaries against DDH such that:

2
(

∑

1≤i<j≤P (η)

Adv(Bi,j)
)

= Adv(A) −Adv(Ao)

As DDH and DDDH⌊n/2⌋+1 hold (⌊n/2⌋+1 < n), the advantage of A is negligible. The assumption
DDDHn hold. ⊓⊔

DDDH ⇒ DDH : Let A be an adversary against DDH. B is an equivalent adversary against
DDDHn (for n ≥ 2):

Adversary B
X ← F (standard, {1})
Y ← F (standard, {2})
Z ← F (challenge, {1, 2})
b← A(X, Y, Z)
return b

The advantage of A and B are equals. As we assume DDDH, the advantage of B is negligible.
Hence the advantage of A is also negligible. ⊓⊔

DDH⇒ DCDH : Let A be an adversary against DCDHn. Then B is the adversary against DDDHn

defined by:

Adversary B
(v, E′)← A/F
v′ ← F (challenge, E′)
return v = v′

The advantage of B is:

Adv(B) = pr(A wins|b = 1)− pr(A wins|b = 0)

The first probability corresponds to the advantage of A against DCDH. The second one is the
probability that A outputs gr where r is randomly sampled from [1, q] and A has no other infor-
mation related to r. As q is large, this probability is negligible. Thus the advantage of A against
DCDH is negligible. ⊓⊔

B Proof for Proposition 3

Proposition 3: If the symmetric encryption scheme SE is 1-SYM-CPA and DDH is verified,
then SE is also n-DH-SYM-CPA for any integer n.

This proof uses the following proposition from [JLM05b]:

Proposition 6. If the symmetric encryption scheme SE is 1-SYM-CPA, then SE is also n-DH-

SYM-CPA for any integer n.

For this proof, we introduced two new criteria: the first one n, m-DH-SYM-CPA is similar to
n-DH-SYM-CPA where the bound on challenge keys is n and the bound on challenge nonces is
m. Criterion n, m-DH-SYM-CPA’ is the same criterion where the left-right encryption oracles can
only be used with strings of bits instead of patterns.

We proceed in three steps. First we prove that an encryption scheme is n-DH-SYM-CPA if
and only if it is 0, 2n-DH-SYM-CPA. After that we prove that if the DDDH assumption holds
and an encryption scheme is n-SYM-CPA, then it is also 0, n-DH-SYM-CPA’. Finally, using our
reduction technique, we prove that if an encryption scheme is 0, n-DH-SYM-CPA’, it is also 0, n-
DH-SYM-CPA. From there it is easy to conclude.
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Lemma 1. An encryption scheme is n-DH-SYM-CPA if and only if it is also 0, 2n-DH-SYM-CPA

for any n.

Proof. It is possible to build an adversary A′ against 0, 2n-DH-SYM-CPA from any adversary
A against n-DH-SYM-CPA such that the advantages of A and A′ are the same. Adversary A′

executes A as a sub-routine. Oracle calls from A are submitted to the oracle of A′ except that
whenever A issues a request related to a key k, A′ replaces the reference to k by a reference to
i(k) where i(k) is the index of a nonce that A does not use. Moreover, the acyclicity hypothesis is
preserved. ⊓⊔

Lemma 2. If DDDHn hold, an encryption is n-SYM-CPA implies that it is also 0, n-DH-SYM-

CPA’ for any n.

Proof. Here, we consider the case where patterns can only be strings of bits. Let A be an adversary
against 0-DH-SYM-CPA’. Then we build an adversary B against DDDHn using A. A is executed
as a subroutine, its oracle is implemented by F that works as follows:

– When asked for exponentiation of E, B issues a standard request to its DDDH oracle with
argument E.

– When asked for encryption related to E, B issues a challenge request to its DDDH oracle with
argument E. Using the result, B computes the symmetric key kE .

As each E may only be submitted once to the DDDH oracle, B has to store the answers of its
oracles. A has two ways to win and B returns 1 iff A succeeds.

Adversary B

b′
R
← {0, 1}

res← A/F
return res = b′ or res is a ”fresh” encoding by kE

The advantage of B is defined by:

Adv(B) = pr(A wins|b = 1)− pr(A wins|b = 0)

The second probability is related to the event ”A wins” when b = 0. When b equals 0, keys are
generated randomly. Hence this behavior can be simulated by an adversary Ao against n-SYM-
CPA. Ao executes A, it also generates the necessary values for the different xk. When asked for a
left-right encryption related to E, Ao uses the left-right encryption oracle related to a given key
k. It also stores the association of E and k in order to use the right key for the next oracle calls.
Hence, we get:

2.Adv(B) = Adv(A) −Adv(Ao)

The advantage of B is related to DDDHn. The advantage of A is against 0-DH-SYM-CPA’ whereas
the advantage of Ao is against n-SYM-CPA. Hence the advantage of A is negligible.

⊓⊔

Lemma 3. If DDDHn hold. Then for any n an encryption scheme is 0, n-DH-SYM-CPA’ if and

only if it is 0, n-DH-SYM-CPA.

Proof. This proof uses the reduction theorem from [JLM05b]. This theorem is stated in appendix E.
Let us consider the 0, n-DH-SYM-CPA criterion and the order between nonces: N1 < N2 < Nn.
We first treat the case of the indistinguishability part of the criterion. A valid partition of this
criterion is:

– θ1 generates nonce N1 and θ2 generates nonces N2 to Nn and the challenge bit b.
– Oracle F1 can be cut in two layers G and H using for G the classical left-right oracle related

to θ1 and:
H(bs, θ2, θ

′
2) = 〈F2(bs, θ2), F2(bs, θ

′
2)〉
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– The verification oracle only uses bit b and so θ2.

Hence, applying the reduction theorem 2 gives us that for any adversary A there exists two
adversaries Ao and B such that:

|Advγ
A(η)| ≤ 2.|Advγ1

B (η)|+ |Advγ2

Ao(η)|

Criterion γ is 0, n-DH-SYM-CPA, γ1 is 0, 1-DH-SYM-CPA and γ2 is 0, (n−1)-DH-SYM-CPA. The
acyclicity hypothesis implies that criterion 0, 1-DH-SYM-CPA is equivalent to 0, 1-DH-SYM-CPA’.
Hence, using an easy recursion, we get that there exists some adversaries Bi verifying:

|Advγ
A(η)| ≤ 2.

n
∑

i=1

|Advγ1

Bi
(η)|

Hence, if γ1 is safe then γ is also safe.
For the UNF part of the criterion, the proof is more straightforward. Let A be an adversary

against 0, n-DH-SYM-CPA/UNF. The adversary B against DDDHn uses A as a sub-routine. At
first, B randomly chooses a subset Er of [1, n]. With non-negligible probability, Er is related to
the key that A finally attacks. After that, B executes A and simulates the necessary oracles using
challenge request for gEr and standard requests for the other exponentiations. Finally, B returns
one if A correctly solved its challenge. As usual, the advantage of B is

Adv(B) = pr(A wins|b = 1)− pr(A wins|b = 0)

The case b = 1 corresponds to a standard execution of A whereas in the case b = 0, A is confronted
to a random key if it tries to attack Er.

Adv(A) ≤ Adv(B) + 2n.Adv(Ao)

The advantage of B and A are respectively related to DDDHn and 1-SYM-CCA. Therefore the
advantage of A is negligible. ⊓⊔

We have that DDH implies DDDHn. Moreover 1-SYM-CPA implies n-SYM-CPA. Hence DDH
and 1-SYM-CPA imply 0, 2n-DH-SYM-CPA and so n-DH-SYM-CPA.

C Proof of the Main Theorem

Theorem: Let Π be a protocol. Let SE be the encryption scheme. If the DDH assumption holds
and SE is SYM-CPA then for any concrete adversary A:

pr
(

tc, tf ← Exec(A, Π) and tf /∈ traces(Π)
)

is negligible

In this section, we suppose that all the nonces randomly generated have different values. This
is justified in appendix D. Let A be an adversary such that its probability to create a symbolic
trace that is not in traces(Π) is not negligible. Let N be a bound on the number of different
keys and nonces that Π may use. Using A, we build an adversary B against N -DH-SYM-CPA. B
randomly executes one of the two machines B0 and B1.

Adversary B0 handles the case where the trace is not possible because of A output a fresh
symmetric encryption, an element of S or a fresh exponentiation. It is defined by Exec(A, Π)
with modified versions of the init, parse and concr primitives.

– Exp-nonces and keys from S are the challenges of our criterion N -DH-SYM-CPA. Hence only
the remaining nonces and keys have to be generated by init.

– concr uses oracles to concretizes messages encoded by a challenge key or challenge exp-nonces.
These symbolic messages and their concretization are stored so that parse can use them. The
first three hypothesis over protocols make it possible to use these oracles in every possible
cases if the beginning of the trace is possible.
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– parse parses the messages as usual. As it cannot decrypt messages m encoded by challenges
there are two possibilities: either m has been generated in concr and its symbolic version is
used by parse or m is a ”fresh” encryption. In this last case, B0 wins its challenge against the
UNF part of N -DH-SYM-CPA. If B0 receives a challenge exp-nonce or a key, it can deduce
the value of the challenge bit b and B0 wins its challenge. The same thing occurs if B0 receives
an exponentiation that concr did not build using its oracle (the way to recover b is detailed
further in this section).

When B receives an exponentiation gx and has to output gxy, then our hypothesis over protocols
allow two possible cases: x is known by B (either a bit-string or a challenge exp-nonce), hence the
exponentiation oracle can be used to generate gxy; or gx is signed by a key in S, hence B generated
gx and also knows x.

Finally, if Exec terminates then B0 plays against IND and returns randomly 0 or 1.
Adversary B1 works exactly like B0. It handles the case where A output the value of a nonce

that it should not know. For that purpose, B1 randomly chooses a nonce N among the P (η) possible
nonces. For this nonce, two values are generated N0 and N1. B1 uses its left-right encryption oracle
to simulate the protocol using N0 when b = 0 and N1 when b = 1 (this technique was initiated
in [MW04]). If A reveals the value of N , then B1 deduce the value of b. Else B1 returns randomly
0 or 1 for the value of b.

According to proposition 5, if Exec outputs tf that is not in traces(Π) then either B0 or one
of the P (η) possible B1 wins its challenge. The advantage of B can be approximated by:

(1 + P (η)).|Adv(B)| ≥ pr
(

tc, tf ← Exec(A, Π) and tf /∈ traces(Π)
)

However, as SE verifies N -DH-SYM-CPA the advantage of B is negligible. Therefore, the proba-
bility to output a trace that is not in traces(Π) is also negligible.

There is one last thing to detail: how can B0 deduce the value of b from a challenge nonce,
key or an ”interesting” exponentiation. If B0 knows a secret symmetric key, it uses the associated
left-right oracle with 〈0, 1〉 to get the value of b. If B0 knows nonce N , then it asks for gE where
E is a set such that B0 did not ask for gE·N before. Then it uses the left-right oracle with 〈0, 1〉
and gE·N as key. Finally, if B0 knows gE , then it uses directly the left-right oracle related to gE

(this is possible as gE is not the output of the exponentiation oracle).

D Nonces are Probably Different

We consider that anytime a computational adversary picks up some nonces, they are different
one from another. The adversary can only get a number m of nonces that is polynomial in η and
we suppose that the number n of possible nonces is exponential in η (so m < n). Let p be the
probability that the adversary gets two times the same nonces.

1− p =
n

n

n− 1

n
...

n− (m− 1)

n

Thus, we have the following inequalities:

0 ≤ p ≤ 1−
(

1−
m− 1

n

)m

Proposition 7. For any x ∈ [0, 1[ and a ≥ 1,
(

1− x
)a
≥ 1− x.a

Proof. Consider the function f(x) =
(

1− x
)a
− 1 + x.a. Derive it twice to get the result.

Applying the proposition, we get:

0 ≤ p ≤
m.(m− 1)

n

As m is polynomial and n is exponential in η, p is negligible in η. When considering an adversary
that has a non-negligible advantage against something, it still has its advantage if we consider
only executions where nonces are distinct.
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E Reduction Theorem

In order for the paper to be self-contained, the main theorem from [JLM05b] is given in this
appendix:

Let γ = (θ1, θ2; F1, F2; V2) be a criterion. Let γ1 and γ2 be two criteria such that:

– There exist two PRTM G and H such that:

G(H(s, θ2, θ
′
2), 1, θ1) = F1(s, θ1, θ2)

G(H(s, θ2, θ
′
2), 0, θ1) = F1(s, θ1, θ

′
2)

Oracle G operates on a string of bits, thus it must receive two challenge information, a bit b
and θ1.

– γ2 = (θ2; F2; V2) and γ1 = (b, θ1; G; verifb) where b generates a random bit and verifb is the
PRTM verifying that the output of the adversary is b: verifb(s, b, θ1) = (s⇔ b).

– F2(s, θ1, θ2) and V2(s, θ1, θ2) do not depend on θ1.

Then we say that (γ1, γ2) is a valid simplified partition of γ.

Theorem 2 (Simplified Reduction Theorem). Let (γ1, γ2) be a valid simplified partition of

γ. For any PRTM A, there exist two PRTM Ao and B such that

|Advγ
A(η)| ≤ 2.|Advγ1

B (η)|+ |Advγ2

Ao(η)|
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