
Probabilistic Opacity for a Passive Adversary and its

Application to Chaum’s Voting Scheme

Yassine Lakhnech and Laurent Mazaré

VERIMAG - 2, av. de Vignates, 38610 Gières - FRANCE
yassine.lakhnech@imag.fr,laurent.mazare@imag.fr

Abstract. A predicate is opaque for a given system, if an adversary will never be able
to establish truth or falsehood of the predicate for any observed computation. This notion
has been essentially introduced and studied in the context of transition systems whether
describing the semantics of programs, security protocols or other systems. In this paper, we
are interested in studying opacity in the probabilistic computational world. Indeed, in other
settings, as in the Dolev-Yao model for instance, even if an adversary is 99% sure of the
truth of the predicate, it remains opaque as the adversary cannot conclude for sure. In this
paper, we introduce a computational version of opacity in the case of passive adversaries
called cryptographic opacity. Our main result is a composition theorem: if a system is secure
in an abstract formalism and the cryptographic primitives used to implement it are secure,
then this system is secure in a computational formalism. Security of the abstract system
is the usual opacity and security of the cryptographic primitives is IND-CPA security. To
illustrate our result, we give two applications: a short and elegant proof of the classical
Abadi-Rogaway result and the first computational proof of Chaum’s visual electronic voting
scheme.

Keywords: Opacity, Non-Interference, Chaum’s Voting Scheme, Computational Model,
Probabilistic Encryption.

Introduction

Roughly speaking, a predicate is opaque for a given system, if an adversary will never be able
to establish truth or falsehood of the predicate, for any observed execution of the system. It is
clear that this notion only makes sense when the adversary does not have access to the complete
state of the system but rather accesses its execution through an observation function. Typically,
the predicate of interest concerns some non-determinism that is resolved initially such as the
votes in a voting scheme. This notion has been essentially introduced and studied in the context
of transition systems whether describing the semantics of programs, security protocols or other
systems. It generalizes well-known security properties such as anonymity and non-interference
(See [7] for a discussion).

Opacity has been essentially studied in the so-called formal 1 world of security, where cryptog-
raphy is assumed perfect. A typical formal model, for security protocols for instance, is the Dolev
and Yao model [11] where messages are described by algebraic terms and there is one single adver-
sary that subsumes all possible attacks. In this paper, we are interested in studying opacity in the
probabilistic computational world. Indeed, in the formal world, even if an adversary is 99% sure
of the truth of the predicate, it remains opaque as the adversary cannot conclude for sure. Such a
definition is clearly not useful in the probabilistic computational setting. Therefor, we introduce
a computational version of opacity. We restrict ourselves to the case of passive adversaries and
call our security notion cryptographic opacity. More generally, we introduce probabilistic opacity
that includes : strict opacity, plausible deniability and cryptographic opacity. All three notions are
defined by experiments and in terms of the advantage of the adversaries. Strict opacity requires
that the advantage is null; plausible deniability requires that the probability to win the experiment
is different from 1 and cryptographic opacity requires that the advantage is negligible.

1 One might prefer the word symbolic here since formal is not used in the sense of rigorous.

Then, the question of how to prove probabilistic cryptographic opacity rises. For strict opacity,
we show a decidability result for finite systems. The main core of the paper, however, deals with
cryptographic opacity. Our answer to this question is inspired by a recent trend started by [2] and
pushed further in [4, 18, 15, 10] in bridging the gap that separates the Dolev-Yao model and its
perfect cryptography assumption on one hand and the computational model on the other hand.
Indeed, we prove our main result that states the following: if a predicate is opaque in the formal
model for an abstraction of the considered system and if the cryptographic primitives are IND-
CPA, then cryptographic opacity of the predicate holds in the computation model. The previously
mentioned results on the relationship between the formal and the computational models do not
immediately apply in our case as we have to carefully deal with random coins used for encryption.
Indeed, in the case of Chaum’s voting scheme, for instance, some of these coins appear as plain-
text. On the other hand, for some IND-CPA schemes, e.g. [6], knowledge of the random coins
induces knowledge about the encrypted message. To deal with this problem, we introduce a new
security criterion, called n-RPAT-CPA. We then show that any IND-CPA secure cryptographic
scheme is also n-RPAT-CPA secure.

An other important contribution of our paper is the proof of opacity for Chaum’s visual voting
scheme [8]. This is done by applying our main result. We also give a sort proof of Abadi and
Rogaway’s result as an application of our main theorem.

Related work. The initial work of Abadi and Rogaway was pushed further in [1]. This last paper
considers systems with cryptographic primitives and studies indistinguishability, but this property
lacks the generality of opacity. Another interesting work is [3] which links a computational version
of probabilistic non-interference [14] to the notion of simulatability. This work is very general
as it considers active adversaries but as a consequence, their main theorem is more difficult to
apply. In [17], a computational definition of indistinguishability (or strong secrecy) is given. This
security notion is less general than opacity. Laud also formulates an analysis allowing verification
of programs using cryptographic primitives but these primitives are still abstracted.

This paper is structured as follows. The first section recalls some necessary preliminaries. The
second section introduces strict opacity, plausible deniability and cryptographic opacity . The
following section proves a decidability result for strict opacity. Section 4 presents an approach
to verification of cryptographic opacity. This approach is applied to Chaum’s voting scheme in
Section 5. The proof of main result and the security criterion n-RPAT-CPA are discussed in
Section 6.

1 Preliminaries

In this section, we recall some basic definitions that are useful when considering probabilistic
systems and introduce a general definition of security criteria along with a decomposition theorem
that is used later in the paper. All these notions are detailed in [16].

1.1 Cryptographic Primitives

Let η be the security parameter of the system, it characterizes the strength of the cryptographic
primitives as well as the length of nonces.

An asymmetric encryption scheme AE = (KG, E ,D) is defined by three algorithms. The key
generation algorithm KG is a randomized function which given a security parameter η outputs a
pair of keys (pk, sk), where pk is a public key and sk the associated secret key. The encryption
algorithm E is also a randomized function which given a message and a public key outputs the
encryption of the message by the public key. The random part is explicitly represented as a nonce
(bit-string of length η) bs which is given as argument to E . Finally the decryption algorithm
D takes as input a secret key and a cypher-text and outputs the corresponding plain-text, i.e.,
D(E(m, pk, bs), sk) = m for any bs and any pair (pk, sk) produced by the key generation algorithm.
The execution time of the three algorithms is assumed polynomially bounded by η.

A function g : R→ R is negligible, if it is ultimately bounded by x−c, for each positive c ∈ N,
i.e., for all c > 0 there exists Nc such that |g(x)| < x−c, for all x > Nc.

2

1.2 Security Criteria

Security criteria define the correctness (or the expected properties) of an encryption scheme. They
are defined as an experiment involving an adversary. Given access to a set of oracles, the adversary
has to guess a randomly chosen data. 2 Roughly speaking, a scheme is safe w.r.t. a given criterion,
if no adversary has a better probability to win than an adversary who does not have access to the
oracles. Therefor, the strength of a criterion depends on the allowed adversaries and the offered
oracles. In this paper, we consider adversaries that are terminating random Turing machines
(RTM) or polynomial-time random TM (PRTM) when considering computational encryption.
The time is bounded in the security parameter η. An RTM B is said to have a complexity similar

to the complexity of A if the execution of B is polynomially bounded in the (maximum) execution
duration of A.

Let us now define formally security criteria. A criterion γ is a triple (Θ;F ;V) where

– Θ is a (P)RTM that randomly generates some challenge θ (for example, a bit b and a pair of
key (pk, sk)).

– F is a (P)RTM that takes as arguments a string of bits s and a challenge θ and outputs a new
string of bits. F represents the oracles that an adversary can call to solve its challenge.

– V is a (P)RTM that takes as arguments a string of bits s and a challenge θ and outputs either
true or false. It represents the verification made on the result computed by the adversary. The
answer true (resp. false) means that the adversary solved (resp. did not solve) the challenge.

Note that Θ can generate an arbitrary number of parameters and F can represent an arbitrary
number of oracles. Thus, it is possible to define criteria with multiples Θ and F . When no confusion
may rise, we use the same notation for the challenge generator Θ and the generated challenge θ
(both are denoted using θ).

A criterion (Θ;F ;V) and adversary A produce the following experiment. First θ is generated
randomly. The adversary can now make some computation using the oracle F , this is denoted by
A/F . The behavior of the oracle depends on θ. At the end of computation, the adversary has to
return a string of bits which is verified by an algorithm V . Also V uses θ (e.g. θ includes a bit
b and the adversary has to output the value of b). The aim of the adversary A is produce a bit
string that is verified by V . More formally, the experiment Exp

γ
A

(η) involving A and γ is defined
by the following Turing machine:

Experiment Exp
γ
A

(η):
θ←Θ(η)
d←A/η, λs.F (s, θ)
return V (d, θ)

Experiment Exp′γ
A(η):

θ←Θ(η)
d←A/η
return V (d, θ)

We can now define the advantage of A against γ as follows:

Adv
γ
A

(η) = 2.
(

pr(Exp
γ
A

(η) = true)− PrRandγ
)

,

where PrRandγ is the best probability to solve the challenge that an adversary can have without
using oracle F . Formally, PrRandγ is the maximum of pr(Exp′γ

A(η) = true) where A ranges over
any possible adversaries and Exp′ is similar to Exp except that F cannot be used by A.

1.3 Decomposition of Security Criteria

In this section, we recall the reduction theorem given in [16]. Let γ = (θ1, θ2;F1, F2;V2) be a
criterion. Let γ1 and γ2 be two criteria such that:

– There exist two PRTM G and H such that:

G(H(s, θ2, θ
′
2), 1, θ1) = F1(s, θ1, θ2)

G(H(s, θ2, θ
′
2), 0, θ1) = F1(s, θ1, θ

′
2)

2 In some cases, as for symmetric encryption or signature, the adversary has other ways to win. This is
not relevant for this paper.

3

Oracle G operates on a string of bits, thus it must receive two challenge informations, a bit b
and θ1.

– γ2 = (θ2;F2;V2) and γ1 = (b, θ1;G; verifb) where b generates a random bit and verifb is the
PRTM verifying that the output of the adversary is b: verifb(s, b, θ1) = (s⇔ b).

– F2(s, θ1, θ2) and V2(s, θ1, θ2) do not depend on θ1.

Then we say that (γ1, γ2) is a valid simplified partition of γ.

Theorem 1. Let (γ1, γ2) be a valid simplified partition of γ. For any RTM A, there exist two

RTM Ao and B of similar complexity such that

|Adv
γ
A

(η)| ≤ 2.|Adv
γ1
B

(η)|+ |Adv
γ2
Ao(η)|

2 Probabilistic Opacity

2.1 Systems and Observations

First, we give a general definition for random systems then we explain how their behaviors can be
observed by an eavesdropper. As the results of this section do not depend on any particular model
of systems, we simply consider randomized functions.

Let Σ be a finite alphabet representing actions made by a system. A trace is a finite sequence
of actions, i.e., a word over Σ. Let Σ∗ be the set of words over Σ and ǫ be the empty word.

A system is a random function ∆ from a finite set S of initial states to sequences of actions.
Random means that the system can perform some non-deterministic operations. For example it
can pick up a random bit b. If b = 0, it performs action a else action b. The set of possible traces
of a system ∆ is denoted by ∆(S). In a similar way, ∆({s}) is the set of possible traces starting
from s in S. This set can have more than one element as function ∆ is random.

An observation function allows the eavesdropper to see only limited information about traces
produced by the studied system. These functions are mappings from Σ to Σ ∪ {ǫ}. Hence, it is
possible for an action to be totally invisible from the outside if the observation function replaces
it with ǫ.

2.2 Opacity

Let us consider a system ∆ with possible initial states S and an observation function obs. A
property ψ is a predicate over S. A property ψ is opaque if given s ∈ S and t ∈ ∆({s}), it is
not possible, for an adversary that has access uniquely access to obs(t) to know whether s verifies
ψ. Here, not possible means that it should not be possible to achieve this with ”reasonable”
probability. This notion of opacity is introduced under the name of initial opacity in [7].

More than in opacity itself, we are here interested in the advantage that an adversary can get by
having access to the observation of the trace. If a very vast majority of initial states in S verify ψ,
the adversary can suppose that s verifies ψ even without looking at the trace. However, by looking
at the trace, it is possible to get some new information and to deduce the result for sure. To define
this advantage, we consider that the adversary A tries to win the following game/experiment:

1. An initial state s is chosen randomly in S;
2. The adversary A is given the observation of a trace in ∆({s}) and has to output a bit b;
3. A wins its challenge, when b is equivalent to the property ”s satisfies ψ”.

This game is represented by an experiment which is a random Turing machine. The experiment
related to adversary A and to obs is the following RTM.

Experiment ExpobsA :
s← S
t← ∆(s)
b← A(obs(t))
return b⇔ (s ∈ ψ)

4

The advantage is the difference between the probability that A solves its challenge and the best
probability that one can get without access to the observation. Hence, it is defined by the following
formula.

AdvobsA = 2.
(

pr(ExpobsA → true)− PrRandψ
)

Where PrRandψ is the greatest possible value for pr(ExpǫB → true) for any B and ǫ represents
the observation function that associates ǫ to any action in Σ.

Note that the above definitions for the experiment and the advantage can easily be defined in
an equivalent way by using the general notion of security criterion.

– Θ randomly generates an initial parameter s and a trace t;
– F gives access to the trace observation obs(t);
– V verifies that the output bit b correctly answers the question: does s verify ψ ?

Criterion (Θ;F ;V) has exactly the same related experiment and advantage as those given above.
Using the definition of advantage, it is possible to tell if an observation function has any use

in trying to solve the challenge.

Definition 1. Let ∆ be a system, S be the set of its initial states and ψ a property over S. An

observation function obs is called

– safe for strict opacity of ψ , if for any RTM A, AdvobsA = 0
– safe for cryptographic opacity of ψ, if for any PRTM A, AdvobsA is negligible
– safe for plausible deniability of ψ, if for any RTM A, AdvobsA 6= 2 − 2.P rRandψ i.e.

pr(ExpobsA → true) is different from 1.

Plausible deniability coincides with the opacity notion introduced in [7], which is itself closely
related to anonymity [19] and non-interference [12, 20]. This link and some useful basic properties
are detailed in appendix A.1.

For strict opacity, if an observation function is safe then an adversary gets no advantage at all
by looking at the observation. This is for example the informations exchanged by cryptographers
during the cryptographs diner (if we consider that one of them paid the diner for any element of
S).

For cryptographic opacity, an observation function may return some relevant information that
cannot be exploited in a reasonable (i.e. polynomial) time. For example, if we consider that all the
actions made by a system are encrypted using a safe encryption scheme, then the observation is
safe. In this context, a safe encryption scheme is an IND-CPA encryption scheme, this is detailed
further in this document.

The idea is that with plausible deniability, if the adversary observes some trace t, then it
cannot conclude for sure whether property ψ is verified or not. There exists at least one initial
state satisfying ψ and one not satisfying ψ that both produce the observation obs(t).

There is no clear hierarchy among strict opacity and plausible deniability as the first notion
does not imply the second one (this implication is only true when PrRand is different from one).

3 Decidability of Strict Opacity for Finite Systems

Let us consider the case where only a finite number of traces can occur. Thus, we suppose that
both S and ∆(S) are finite. With this assumption, the greatest advantage for any adversary can
be computed. Moreover, there exists an adversary that reaches this advantage.

Let O be the set of all possible observations, i.e. O = obs(∆(S)). We first define the interest
of an observation function obs. This definition is rather intuitive as an observation function can
bring some advantage if the probability for ψ to be true knowing the observation is different from
the general probability of ψ. This explains why this definition uses the term |pr(ψ)− pr(ψ|o)|.

Definition 2. The interest Iobs of an observation function obs is given by:

Iobs = 2.
∑

o∈O

pr(o).
∣

∣pr(ψ) − pr(ψ|o)
∣

∣

5

Then, the main result of this section is that the interest is the greatest possible advantage. For
that reason, as it is possible to effectively compute the interest of a given observation, safety for
strictly opacity of an observation function is a decidable problem. The following proposition states
the main result. Its proof is given in Appendix A.

Proposition 1. For any adversary A and observation function obs, |AdvobsA | ≤ Iobs. Moreover,

there exists an RTM Aobs whose advantage is exactly Iobs.

It is important to notice that the second statement of the previous proposition asserts existence
of an RTM Aobs with AdvobsA = Iobs. This RTM is not necessarily a legal adversary. Indeed,
Aobs has an execution time which is linear in the number of possible observations. This is not a
problem when considering strict opacity or plausible denying as adversaries are RTM. However,
for cryptographic opacity, we only admit adversaries in PRTM. Worse, even if we assume the quite
fair hypothesis (for an eavesdropper) that there is only a bounded number of messages which all
have some bounded size, the number of possible observations may be exponential in the security
parameter η, and hence, Aobs may not a PRTM.

Nevertheless, this result is interesting at least for strict opacity as shown now. Indeed, a con-
sequence of this proposition is that no adversary has an advantage if and only if for any o in
O, pr(ψ) = pr(ψ|o). When one wants to verify strict opacity, it is possible to test that for any
observation, the probability for ψ to be true assuming that observation is exactly the general
probability for ψ to be true. Hence, we have

Proposition 2. Let obs be an observation function and ψ a property. Then, obs is safe for strict

opacity of ψ if and only if for any o ∈ obs(∆(S)), pr(s ∈ ψ) = pr(s ∈ ψ|obs(s) = o)

4 An Approach to the Verification of Cryptographic Opacity

As we noted in the previous section, we make the finite behavior hypothesis for cryptographic
systems (with passive adversaries). That is, we assume that S and ∆(S) are finite. The approach
proposed for proving strict opacity using the interest of the observation function and the existence
of an adversary matching this interest is not applicable for cryptographic opacity. Indeed, when
considering cryptographic opacity, adversaries are restricted PRTM. Therefor, we present here a
different approach. The main clue in this approach is to decompose the verification of cryptographic
opacity into the verification of strict opacity for an abstracted system on one hand and the safety
of the underlying encryption scheme on the other hand.

It is useful to notice that this approach is similar to the approach followed for proving secrecy
properties of cryptographic protocols, where one proves an abstraction of the secrecy property while
making the perfect cryptography hypothesis and relies on the fact that this verification is valid
in the computational model, if the cryptographic primitives satisfy some well-defined properties.
The formal justification of this approach is the result of recent research aiming at relating the
formal and the computational models for security protocols [2, 4, 10]. These papers show that the
Dolev-Yao [11] model is a safe abstraction of the computational model (where adversaries are
poly-time Turing machines) as soon as the cryptographic primitives (e.g. the encryption scheme)
verify some computational properties.

4.1 Specifications and Patterns

In the cryptographic setting, the alphabet Σ consists of the symbols, 0 and 1. Thus, an action of
the alphabet is a bit-string. We consider systems that produce some finite size bit-string (usually,
their size is polynomial in the security parameter η).

To define the abstract systems, we introduce patterns which are simply elements of the free
algebra of terms almost as in the Dolev-Yao model. It is almost because in our setting and as we are
interested in opacity, we have to be careful in handling the random coins3 used in encryption. Let us

3 Random coins are also nonces but some times we use rather random coins to insist on the fact they are
used to randomize encryptions

6

explain. In the simplest Dolev-Yao model (also called the formal or symbolic model) an encryption
of a message m with key pk is represented by the term {m}pk. Thus, two message {m1}pk1 and
{m2}pk2 are equal iff m1 = m2 and pk1 = pk2. Moreover, an adversary who does not know the
inverse key of pk cannot get any information from {m}pk. This means that the random nonce is
completely abstracted away. In some refinements of this model, however, labels are introduced to
distinguished encryptions made at different instants during a protocol execution [10]. Such labels
are only an approximation of random coins as the latter may be equal even when two encryptions
are performed at different instants. As we want to verify the Chaum voting scheme, we have to
include explicitly random coins in our patterns. Therefor, we write {m;N}pk to represent the
result of encrypting m with key pk using nonce N as random coins for the encryption algorithm.

Let K be an infinite set of keys (as explained above rather key names); k−1 represents the
private key corresponding to a public key k. Moreover, let N be a set of nonces. Patterns are
defined by the following grammar where k is a key, bs a bit-string and N is a nonce:

pat ::= bs|N |〈pat, pat〉|{pat;N}k|k k may be a public or private key

Without loss of generality, we consider abstract systems that only produce one pattern and not a
list of patterns as it is possible to concatenate patterns using pairing. Thus, a specification ∆s is
a function from S to pat.

Obviously, given a pattern pat the information that can be extracted from pat depends on the
set of private keys that can be computed from pat. The set of patterns that can be learned/computed
from a pattern is defined as follows:

Definition 3. Let p be a pattern, the set dec(p) is inductively defined by the following inferences.

– p is in dec(p).
– If 〈p1, p2〉 is in dec(p), then p1 and p2 are in dec(p).
– If {p1;N}k and k−1 are in dec(p), then p1 and N are in dec(p).
– If {p1;N}k and N are in dec(p), then p1 is in dec(p).

Notice that since, we only consider atomic keys, we only have to consider decompositions. It is also
useful to notice that the last clause is usually not considered in the Dolev-Yao model. This clause
is motivated by the existence of IND-CPA algorithms such that the knowledge of the random used
for encryption allows to decrypt the message. An example of such algorithm is presented in [6].

A pattern has also a denotation in the cryptographic setting. This depends on a context θ that
associates keys and nonces to their corresponding bit-string values. Thus, the cryptographic (or
computational) value of a term {pat;N}k is E(m, bs, bs′), where m is the value of pat, bs the value
of pk and bs′ the value N . Let θ be a mapping associating bit-strings to nonces and keys. The
value of a pattern in the context θ is defined recursively:

v(bs, θ) = bs v(〈p1, p2〉, θ) = v(p1, θ).v(p2, θ)
v(N, θ) = θ(N) v({p;N}k, θ) = E(v(p, θ), θ(k), θ(N)) v(k, θ) = θ(k)

Let us briefly summarize what we have introduced. We defined the systems we want to consider
whose behavior in each initial state s is a set of patterns and we have associated to each pattern
its value, a bit-string, in a given context.

We now turn our attention to the observations we can make about a pattern. We define
two observations. The concrete observation of a pattern pat in a context θ is defined as follows:
obsc(pat, θ) = v(pat, θ), that is, obsc corresponds to the observations that can be made in the
cryptographic setting. The abstract observation obsa applied to a pattern replaces every sub-
terms of the form {pat;N}k with ♦N , that is, it simply replaces it by a black box. Formally,
patterns are transformed in obfuscated patterns which are given by the following grammar:

opat ::= bs|N |〈opat, opat〉|{opat;N}k|♦
N |k

And observation obsa of a pattern pat is recursively defined by the following rules.

obsa(bs) = bs obsa(〈p1, p2〉) = 〈obsa(p1), obsa(p2)〉
obsa(N) = N obsa({p;N}k) = {obsa(p);N}k if k−1 ∈ dec(pat) ∨N ∈ dec(pat)
obsa(k) = k obsa({p;N}k) = ♦N else

7

As encryption cycles may lead to some vulnerabilities, we restrict ourselves to well-formed

patterns. For that purpose, we define an ordering on pairs consisting of a key and a nonce. Let pat
be a pattern and let E< be the set of pairs (k,N) such that there is a pattern of the form {pat′;N}k
in dec(pat) with k and N not in dec(pat). Then, for (k,N), (k′, N ′) ∈ E<, (k,N) < (k′, N ′) iff
there exist two patterns {pat1;N}k and {pat2;N ′}k′ in dec(pat) verifying one of the following
conditions:

1. N , k or k−1 is a sub-term of pat2;N
′;

2. N = N ′ and {pat1;N}k 6= {pat2;N}k′ .

A pattern pat is well-formed, if the projection of < on keys is acyclic. Finally, we only consider
well-formed specifications, i.e. specifications that output well-formed patterns.

The conditions above imply that if pat is well-formed, then for (k,N) ∈ E<, there is only
one encoding using each N (and a non-deducible key) in dec(pat). Hence when obsa transforms
an encoding into ♦N , this always denotes the exact same encoding (in particular, there is no
randomness-reuse as described in [5]). Thus the N label can be seen as a constraint over encodings
(specifying possible bit-to-bit equalities). This is why, equality between two opat is defined modulo
renaming of the nonces. To illustrate this, let us consider two patterns pat0 = 〈{m;N}k, {m;N}k〉
and pat1 = 〈{m;N ′′}k, {m;N ′}k〉. Then obsa(pat0) = 〈♦N ,♦N〉 and obsa(pat1) = 〈♦N

′

,♦N
′′

〉. As
obsa(pat1) and obsa(pat2) are different, and hence, pat0 and pat1 are distinguishable. If we consider
pat0 = {m;N}k and pat1 = {m;N ′′}k. Then obsa(pat0) = ♦N and obsa(pat1) = ♦N

′

. In this case,
obsa(pat1) and obsa(pat2) are equal (modulo renaming), and hence, pat0 and pat1 are indistin-
guishable. And in fact, if the encryption scheme is IND-CPA, pat0 and pat1 are indistinguishable
even in the computational setting.

Main result The main result of this paper, that we prove in Section 6, is that for each adversary
A, there exist two adversaries Ao and B such that

|Advobsc×obsa

A
| ≤ |Advobsa

Ao |+ 2.|Advn−RPAT−CPA
B |

Where n is the number of keys, n-RPAT-CPA is a security criterion verified by any IND-CPA
algorithm, observable obsc×obsa gives access to both obsc and obsa (see appendix A.1 for details).
This means that if the encryption scheme used is IND-CPA, opacity in the formal world implies
opacity in the computational world.

4.2 Application: the Classical Abadi-Rogaway Result

Using our main theorem, it is possible to prove a slightly extended version of the seminal result of
Abadi and Rogaway [2]. This result states that provided the used encryption scheme is IND-CPA
indistinguishability in the formal (Dolev-Yao) model implies indistinguishability in the computa-
tional model. In fact, obfuscated patterns are close to patterns as introduced in [2]. The main
difference is that our patterns explicitly represent random coins. However, it is still possible to get
exactly Abadi and Rogaway’s result by assuming fresh distinct nonces for every encryption. If we
consider messages with no encryption cycles, then the corresponding patterns (using fresh nonces)
are well-formed. Moreover as nonces used for encryption are fresh, each ♦N has a different label,
thus to test equality these labels are not considered. The Abadi-Rogaway theorem can be stated
as an opacity problem. Let m0 and m1 be two well-formed patterns. There are two initial states
in S: 0 and 1. Specification ∆S(s) outputs ms. Then m0 and m1 are indistinguishable if for any
adversary A, |Advobsc

A
| is negligible.

Proposition 3. Let m0 and m1 be two well-formed patterns such that obsa(m0) = obsa(m1). If

the encryption scheme AE used in v is IND-CPA then m0 and m1 are indistinguishable.

This result is immediate if we apply the above theorem: as obsa returns the same result for the
two patterns, |Advobsa

Ao | is equal to zero. Hence as |Advn−RPAT−CPA
B | is negligible, the advantage

of A is also negligible and we get the desired result.

8

5 Application: Chaum’s Visual Electronic Voting

To illustrate our results, we consider a slightly modified version of the electronic voting scheme
proposed by Chaum [9]. The main advantage of this scheme is that it is verifiable using an audit
procedure that preserves opacity of the votes [13], i.e., what did voter V vote?. However, this
paper still makes the perfect cryptography hypothesis, encryptions are considered as black-box
and are not taken into account. We give here a proof of security for Chaum’s voting scheme in
a computational setting. For that purpose, we assume that the encryption scheme is IND-CPA
and prove that then, security results still hold (but we may have to add some negligible terms
representing brute force attack against the encryption scheme).

5.1 System Description

Let us briefly recall how the Chaum’s voting scheme works. We omit some important pieces (mostly
the visual aspect) that are not relevant for this paper. The interested reader may consider read-
ing [9] or [8] for details.

v1
1

v1
2

v1
3

v1
4

v1
5

v1
6

v1
7

v1
8

v2
1

v2
2

v2
3

v2
4

v2
5

v2
6

v2
7

v2
8

v3
1

v3
2

v3
3

v3
4

v3
5

v3
6

v3
7

v3
8

v4
1

v4
2

v4
3

v4
4

v4
5

v4
6

v4
7

v4
8

v5
1

v5
2

v5
3

v5
4

v5
5

v5
6

v5
7

v5
8

A vote session uses n trustees to guarantee the secu-
rity of the procedure. Each trustee Ci has a public
key pki and an associated secret key ski. The vote
procedure works as follows: voters choose a vote value
v, then the following bit-string is given to C1 where
each nonce N i (unique for any voter) represents the
random information used to compute the encryp-
tion layer using key pki:

{

...{v;Nn}pkn
;N1

}

pk1
. Each

trustee decodes its layer then makes a random per-
mutation of all the votes and submits the resulting
list to the next trustee. All the intermediate lists are
made public and the last list allows anyone to com-
pute the results of the vote.

After the decoding phase, an audit process allows to verify that trustees behave correctly with
great probability. Hence each trustee Ci has to reveal the permutation it used for half the ballots.
Thus it shows for these ballots the link between the input ballot encoded by pki and the output
ballot encoded by pki+1, the trustee also shows nonce N i to allow anyone to check that the link is
valid (it is supposed that the encryption algorithm allows the trustee to get this nonce). Verified
ballots are not chosen randomly but as described in figure above. The first set of verified ballot (for
step 1) is chosen randomly. For step 2, verified ballots correspond to unconnected ballots w.r.t.
step 1. For step 3, verified ballots are half unconnected ballots and half connected ones, the halves
are chosen randomly. Finally, for step 4, verified ballots are unconnected ballots w.r.t. step 3. In
the figure, vij is the ith ballots in the input of the jth trustee and σj is the permutation chosen by

this trustee. The set Ij consists of integers k such that the transition that reaches vjk is revealed.

5.2 Verification of the system

The property we are interested in is opacity of the vote. However, it should be possible to generalize
our results to more complex properties like the bound over variation distance given in [13].

To simplify, let us suppose that there are two possible values for the vote: y and n. Then the
set S of initial states contains all the vote distributions that give a fixed final result, i.e. for any
element of S the number of voters that choose y is fixed, all the other variables are chosen at
random (permutations, audit sets).

We study the opacity of property ψ = (v1
1 = y) : are we able to deduce that the vote chosen

by voter 1 is y ? We want to prove that the audit information cannot bring any advantage to an
attacker. This requires that for any observation o, pr(ψ|o) = pr(o). Then, as PrRand is given by
the vote result, it is clear that it is impossible to guess the value of v1 with better efficiency than
when answering the most probable vote with respect to the result. The specification of the system

9

is pretty straightforward: ∆s outputs the revealed permutations, the ballots lists and the nonces
used to check the link for any k ∈ Ij . The output pattern is well-formed (there are no cycles for
<, the form of the ballots gives pkn < pkn−1 < ... < pk1).

After applying obsa, the abstract system gives information on the permutations and the final
ballot line, indeed there are two cases for remaining encrypted ballots: they can be abstracted
to ♦N or they can be linked by a permutation to a vote in the final (unencrypted) line and
so these ballots are useless to the description because it would be possible from the rest of the
description to rebuild them using the final vote and the revealed nonce. Let o be an observation in
the formal world. Let py be the percentage of voter that choose y. Then a quick calculus detailed
in appendix A.3 gives us that pr(v1

1 = y|o) = py. This proves opacity of ψ in the abstract world.

Security in the computational world is easy to obtain by applying our composition theorem:
let A be a PRTM, then there exist Ao and B two PRTMs such that:

|Advobsc×obsa

A
| ≤ |Advobsa

Ao |+ 2.|Advn−RPAT−CPA
B |

The advantage related to obsa is zero. Moreover, if we consider that the encryption scheme used
is IND-CPA, then Advn−RPAT−CPA

B is negligible. Thus the advantage of A is negligible and we
can conclude that the observable obsc is safe for the cryptographic opacity of ψ.

6 Formal Description of the Main Result

The aim of this section is to prove our main result. We proceed in two steps. We first define
n-RPAT-CPA and relate it to IND-CPA. Then, we prove that the advantage of any adversary
who accesses the observation functions obsa and obsc is bounded by a linear combination of the
advantage of an adversary that has access to obsa and the advantage of an adversary that has
access to obsc. In both steps, we apply Theorem 1. Although, the criterion we introduce is implied
to IND-CPA, it is technically more appealing to use it to prove the main result. Besides this, our
new criterion is of interest on its own as it clarifies and discloses some subtleties related to the
treatment of random coins.

6.1 The RPAT Extension to IND-CPA

In IND-CPA, the experiment consists of generating a random bit b and a random public key pk. The
adversary tries to guess the value of b. For that purpose, it accesses a left-right oracle submitting
two bit-strings bs0 and bs1 and receives the encryption of bsb using pk. The adversary also has
access to the public key. An encryption scheme AE is said secure against IND-CPA if any PRTM
has a negligible advantage in trying to find b (the advantage is two times the probability to answer
correctly minus one). The criterion we introduce below allows the adversary to ask for encryption
of patterns where challenged keys may be included and insisting on using the same random coins
in different encryptions. Moreover, patterns may include encryption with the adversaries keys. As
we show later these extensions do not give more power to an adversary, if he is deemed to produce
well-formed patterns.

Let us now introduce n-RPAT-CPA. To do so, let n be a non-negative integer. We first define
R-patterns:

rpat ::= bs|N |〈rpat, rpat〉|{rpat;N}k|{rpat;N}bs|{rpat; bs}k|{rpat; bs}bs′ |k

The only difference with respect to patterns introduced in Section 4 is the encryption with a
non-challenge key or a non-challenge nonce. The evaluation function v is extended to R-patterns.

10

The experiment defining the criterion n-RPAT-CPA is as follows:

pat0, pat1, σ ← A1;
b← {0, 1};
(bsi, bs

′
i)← KG(η); for i = 1, · · · , n

bs′′i ← {0, 1}
η; for i = 1, · · · , l

θ ← [b, (pk1, sk1) 7→ (bs1, bs
′
1), · · · , (pkn, skn) 7→ (bsn, bs

′
n),

N1 7→ bs′′1 , · · · , Nl 7→ bs′′l];
y ← v(patb, θ);
d← A2(y, σ)
V (d, θ)← b = d

The adversary is split up in two parts A1 and A2, A1 outputs two patterns pat0 and pat1. Pattern
patb is computed (l is the number of nonces used by the pattern and n is the maximal number of
keys that a pattern can use), it is given to A2 which has to answer the value of b. It is also possible
to consider a single adversary A that access a left-right oracle F , giving it the two patterns. In
this case, oracle F only answer its first call.

In the experiment of n-RPAT-CPA, it is mandated that 〈pat0, pat1〉 is well-formed.
We show that algorithms secure w.r.t. IND-CPA are secure w.r.t. n-RPAT-CPA and as, there

are algorithms strongly believed to verify IND-CPA, these algorithms also verify n-RPAT-CPA.

Proposition 4. If an asymmetric encryption scheme is secure against IND-CPA, then it is secure

against n-RPAT-CPA for any number of keys n.

The proof is detailed in appendix A.4.This proposition can be generalized to a polynomial number
of keys and nonces using the technique introduced in [16].

6.2 Composition Result

Our main result states that given a specification, the advantage of an adversary against the concrete
system is lower than the advantage of the abstract system and the advantage of another adversary
against n-RPAT-CPA.

Theorem 2. For each adversary A, there exist two adversaries Ao and B such that

|Advobsc×obsa

A
| ≤ |Advobsa

Ao |+ 2.|Advn−RPAT−CPA
B |

The proof of the main theorem is given in appendix A.5
Using proposition 4, it is clear that if an encryption scheme is secure against IND-CPA, then

it is secure against n-RPAT-CPA for any integer n. Therefor, we have

Corollary 1. If the encryption scheme AE used in v is IND-CPA and obsa brings negligible

advantage to any adversary then obsc brings negligible advantage to any adversary.

Conclusion

Probabilistic opacity is far more realistic than classical opacity. However, our main result makes
it simple to prove cryptographic opacity for systems involving cryptographic primitives by first
proving opacity for the related abstract system and then using an IND-CPA cryptographic scheme.
This composition result seems very general as it can be applied to get the classical Abadi-Rogaway
result. Another interesting result is the implication from IND-CPA to the new criterion n-RPAT-
CPA. This criterion allows us to consider systems where the random information used for public-
key encryption is exchanged (usually, to allow checking of this encryption). This is necessary to
deal with complex systems such as Chaum’s vote protocol. Hence, our last result is the first (to
our knowledge) proof of this voting scheme in a computational setting.

11

A natural extension of this work is to consider the case of active adversaries as in [3]. To do
this, we need to consider simulation but modular proofs seems quite harder to obtain when using
this relation. We also intend to extend our result to other cryptographic primitives such as digital
signature, symmetric encryption or hashing as in [16]. Finally, it would be of interest to extend
the computational security results for Chaum’s voting scheme to properties given in [13].

References

1. M. Abadi and J. Jürgens. Formal eavesdropping and its computational interpretation. In 4th Intern.
Symp. on Theoretical Aspects of Computer Software, volume 2215 of lncs. springer, 2001.

2. Mart́ın Abadi and Phillip Rogaway. Reconciling two views of cryptography (the computational sound-
ness o f formal encryption). In IFIP International Conference on Theoretical Computer Science (IFIP
TCS2000), Sendai, Japan, 2000. Springer-Verlag, Berlin Germany.

3. M. Backes and B. Pfitzmann. Computational probabilistic non-interference, 2002.

4. Michael Backes, Birgit Pfitzmann, and Michael Waidner. A composable cryptographic library with
nested operations. In Proceedings of the 10th ACM conference on Computer and communication
security, pages 220–230. ACM Press, 2003.

5. M. Bellare, A. Boldyreva, and J. Staddon. Randomness re-use in multi-recipient encryption schemes.
In Y. Desmedt, editor, Public Key Cryptography – PKC 2003, volume 2567 of lncs. springer, 2003.

6. E. Bresson, D. Catalano, and D. Pointcheval. A simple public-key cryptosystem with a double trapdoor
decryption mechanism and its applications. In C. S. Laih, editor, Proc. of Asiacrypt’03, volume 2894
of LNCS, pages 37–54, Taipei, TW, November-December 2003. IACR, Springer-Verlag.

7. Jeremy W. Bryans, Maciej Koutny, Laurent Mazaré, and Peter Y.A. Ryan. Opacity generalised to
transition systems. Technical Report TR-2004-25, Verimag, Centre Équation, 38610 Gières, December
2004.

8. D. Chaum, P. Ryan, and S. Schneider. A practical, voter-verifiable election scheme. Technical Report
880, University of Newcastle upon Tyne, School of Computing Science, Dec 2004.

9. David Chaum. E-voting: Secret-ballot receipts: True voter-verifiable elections. IEEE Security &
Privacy, 2(1):38–47, January/February 2004.

10. V. Cortier and B. Warinschi. Computationally sound, automated proofs for security protocols. In
Proceedings of the 14th European Symposium on Programming (ESOP’05), Lecture Notes in Computer
Science, Edinburgh, U.K., April 2005. Springer. To Appear.

11. D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transactions on Information
Theory, 29(2):198–208, 1983.

12. Riccardo Focardi and Roberto Gorrieri. A taxonomy of trace-based security properties for CCS. In
Proceedings of the Computer Security Foundations Workshop VII (CSFW ’94), pages 126–137. IEEE,
1994.

13. Marcin Gomukiewicz, Marek Klonowski, and Mirosaw Kutyowski. Rapid mixing and security of
chaum’s visual electronic voting. In Proceedings of ESORICS 2003, October 2003.

14. J. W. Gray. Probabilistic interference. In Proceedings of the IEEE Symposium on Research in Security
and Privacy, pages 180–187, 1990.

15. Romain Janvier, Yassine Lakhnech, and Laurent Mazaré. Completing the picture: Soundness of formal
encryption in the presence of active adversaries. In Proceedings of the 14th European Symposium on
Programming (ESOP’05), Lecture Notes in Computer Science, Edinburgh, U.K., April 2005. Springer.
To Appear.

16. Romain Janvier, Yassine Lakhnech, and Laurent Mazaré. (de)compositions of cryptographic schemes
and their applications to protocols. Technical report, Verimag, Centre Équation, 38610 Gières, To
Appear 2005.

17. Peeter Laud. Semantics and program analysis of computationally secure information flow. Lecture
Notes in Computer Science, 2028:77+, 2001.

18. Peeter Laud. Symmetric encryption in automatic analyses for confidentiality against active adversaries.
In IEEE Symposium on Security and Privacy, pages 71–85, 2004.

19. Steve Schneider and Abraham Sidiropoulos. CSP and anonymity. In ESORICS, pages 198–218, 1996.

20. Peter Y.A.Ryan. Mathematical models of computer security. In Foundations of Security Analysis and
Design, number 2171 in LNCS, 2000.

12

A Appendix

A.1 Basic Properties

Using the definition of advantage given above, some rather obvious properties can be stated. They
prove relations between different kind of advantages except the first one that details the value of
PrRand. This proposition relates the value of PrRand to the probability for an element of s to
be in S.

Proposition 5. Let pr(ψ) be the probability for a random element of S to verify ψ. Then the

greatest possible advantage is obtained by answering 1 if pr(ψ) > 1
2 and 0 otherwise. Hence, the

best probability is: PrRandψ = 1
2 + |pr(ψ) − 1

2 |

Proof. Let A be an adversary that can only use the ǫ observation function. As A does not have
access to any oracle. Its behavior can be represented by its probability p to answer 1. Of course,
A also has probability 1− p to answer 0. The probability that A answers correctly is:

pr(ExpǫA → true) = pr(ψ).p + (1− pr(ψ)).(1 − p)

= 1− pr(ψ) + p.(2.pr(ψ)− 1)

Then, if pr(ψ) ≥ 1
2 ,

pr(ExpǫA → true) ≤ pr(ψ)

In the other case,
pr(ExpǫA → true) ≤ 1− pr(ψ)

These two inequalities allow us to deduce the following.

pr(ExpǫA → true) ≤ max(pr(ψ), 1 − pr(ψ))

≤
∣

∣pr(ψ)−
1

2

∣

∣ +
1

2

By looking at the PrRand definition, an adversary cannot get a better probability to succeed with
no observations. Thus it is clear that an adversary cannot get a positive advantage.

Proposition 6. For any adversary A, AdvǫA ≤ 0.

If an adversary gets a negative advantage, it is possible to inverse its behavior (by inversing its
output) and this may create a greater advantage.

Proposition 7. For any adversary A, there exists an adversary B of similar complexity such that

AdvobsB + 4.P rRandψ = 2−AdvobsA .

The following properties state that some observation functions can bring no advantage compared
to other observation functions. Basically, if an observation obs2 has a ”finer resolution” than obs1,
then the advantage related to obs2 is greater than the one related to obs1.

Proposition 8. Let obs1 and obs2 be two observation functions such that for any pair of trace

t, t′ in ∆(S), obs2(t) = obs2(t
′) implies obs1(t) = obs1(t

′). Then, for any adversary A, there exists

an adversary B of similar complexity such that Advobs2
B

= Advobs1
A

.

If obs1 and obs2 are two observation functions, obs1× obs2 gives access to both simultaneously.
Formally, let obs1 and obs2 be two observation functions from Σ to Σ ∪ {ǫ}. Then obs1 × obs2
is an observation function from Σ to Σ ∪ {ǫ} × Σ ∪ {ǫ} such that the result on action a is
(obs1(a), obs2(a)). It is clear that the sum of two observation functions gives a better advantage
than the advantages related to one of the two functions.

Proposition 9. Let obs1 and obs2 be two observation functions. For any adversary A, there exists

an adversary B of similar complexity such that Adv
obs1×obs2
B

= Adv
obs1
A

.

13

Relation with Classical Opacity

Probabilistic opacity is closely linked to the opacity notion introduced in [7]. We consider plausible
deniability for probabilistic opacity and initial opacity with a static observation function.

Let ∆ be a deterministic system and S be the set of initial states. Let Π be a labeled transition
system whose set of initial states is S and that has the same behavior as ∆. Let obs be an
observation function.

Proposition 10. A predicate ψ over S is opaque with respect to obs iff for any adversary A,

AdvobsA < 2.
(

1− PrRandψ
)

Classical opacity can be linked to anonymity [19] and non-interference [12, 20] and the same
thing can be done with probabilistic opacity.

A.2 Proof of proposition 1

Proposition For any adversary A and observation function obs,

|AdvobsA | ≤ Iobs

Moreover, there exists an adversary Aobs which advantage is exactly Iobs.

Proof. This proof is achieved in three steps:
Step 1 First, consider the case where there is only one possible observation, |O| = 1. Then,

the calculus defining PrRand can be applied. Adversary A has a probability p (resp. 1 − p) to
answer 1 (resp. 0).

pr(ExpobsA → true) = pr(ExpobsA → true|s ∈ ψ).pr(ψ) + pr(ExpobsA → true|s /∈ ψ).pr(¬ψ)

= p.pr(ψ) + (1− p).(1 − pr(ψ))

= (1 − pr(ψ)) + p.(2.pr(ψ)− 1)

Then, if pr(ψ) ≥ 1
2 ,

pr(ExpobsA → true) ≤ pr(ψ)

In the other case,

pr(ExpobsA → true) ≤ 1− pr(ψ)

These two inequalities allow us to deduce the following.

pr(ExpobsA → true) ≤ max(pr(ψ), 1 − pr(ψ))

pr(ExpobsA → true) ≤
∣

∣pr(ψ)−
1

2

∣

∣ +
1

2

pr(ExpobsA → true) ≤ PrRandψ

Hence, the advantage is negative.
Step 2 Now, it is possible to generalize the above result for any set O.

pr(ExpobsA → true) =
∑

o∈O

pr(o).pr(ExpobsA → true|o)

≤
∑

o∈O

pr(o).
(∣

∣pr(ψ|o) −
1

2

∣

∣−
1

2

)

≤
1

2
+

∑

o∈O

pr(o).
∣

∣pr(ψ|o) −
1

2

∣

∣

14

We introduce PrRandψ in the former equation using its form |pr(ψ) − 1
2 |+

1
2 . Hence,

AdvobsA ≤
∑

o∈O

pr(o).
(∣

∣pr(ψ|o) −
1

2

∣

∣−
∣

∣pr(ψ)−
1

2

∣

∣

)

|AdvobsA | ≤
∑

o∈O

pr(o).
∣

∣

∣

∣pr(ψ|o) −
1

2

∣

∣−
∣

∣pr(ψ) −
1

2

∣

∣

∣

∣

≤
∑

o∈O

pr(o).
∣

∣pr(ψ|o) − pr(ψ)
∣

∣

≤ Iobs

Step 3 The machine Aobs which advantage is exactly Iobs is very simple:

Adversary Aobs(o):
p← pr(ψ|o)
if p ≥ 0.5, return true
else return false

Probability for the different obs equivalence classes are hardwired in the machine. As there are
only a finite number of classes, Aobs works in polynomial time (w.r.t. the size of o). The advantage
of this adversary can be computed in a similar way as step 1 and 2. ⊓⊔

A.3 Opacity of Chaum Voting Scheme

There are two cases to consider. First case, the link starting from v1
1 is revealed.

pr(v1
1 = y|o) = pr(v2

1σ1
= y|o)

=
2

n

∑

i/∈I3

pr(v3
i = y|o)

=
1

n

n
∑

i=1

pr(v4
i = y|o)

= py

In the second case, a similar calculus can be done.

pr(v1
1 = y|o) =

2

n

∑

i/∈I2

pr(v2
i = y|o)

=
2

n

∑

i∈I3

pr(v3
i = y|o)

=
1

n

n
∑

i=1

pr(v4
i = y|o)

= py

A.4 Proof of proposition 4

In this section, we prove that IND-CPA implies n-RPAT-CPA. Henceforth, letAE be an encryption
scheme. We proceed in three steps.

Let n-RPATc-CPA be the same criterion as n-RPAT-CPA except that adversaries can only
output clean patterns, i.e. 〈pat0, pat1〉 such that dec(pat0, pat1) does not contain any nonce nor
private key. Our first step consists in proving that IND-CPA implies 1-RPATc-CPA.

15

Lemma 1. If AE is secure w.r.t. IND-CPA then it is secure w.r.t. 1-RPATc-CPA.

Proof. Let us consider an adversary A = (A1,A2) against 1-RPATc-CPA. We construct an adver-
sary B against IND-CPA whose advantage the same as the advantage of A.

Let k be the unique challenge key. As there are no cycles among keys, there does not exist any
pair of nonces N,N ′ such that (k,N) < (k,N ′). Hence relation < is empty. For any nonce N such
that (k,N) ∈ E<, N appears in exactly one encoding (but this encoding can be used several times
as in 〈{m;N}k, {m;N}k〉) and in this case it appears as a random coin.

The adversary B uses A1 and A2 as sub-machines. However, as A1 outputs patterns while B
has to output messages, B has to simulate the evaluation function v using the IND-CPA left-right
oracle. This is done using the function vsim in the description of B :

pat0, pat1, σ ← A1;
y ← vsim(pat0, pat1);
d← A2(y, σ);
return d

We now have to describe the function vsim. First notice that nonces N that do not appear in E<
appear encrypted in the patterns. Therefor, vsim generates some random values for these nonces
and creates the corresponding environment θsim. The context θsim is extended with public key k.
Next, as pat0 and pat1 have the same obsa (modulo renaming), the following recursive function
vrecθsim

is applied to pat0, pat1:

vrecθsim
(bs, bs) = bs

vrecθsim
(m1.m2,m

′
1.m

′
2) = vrecθsim

(m1,m
′
1).vrecθsim

(m2,m
′
2)

vrecθsim
({m;N}k, {m

′;N}k) = F
(

v(m, θsim), v(m′, θsim)
)

Note that for the last line, if vrecθsim
is called twice on the exact same patterns, then the same

value has to be returned (so it is necessary to store the value although this is not done here to
preserve simplicity). Finally, vsim(pat0, pat1) returns vrecθsim

(pat0, pat1).
The experiments involving B and A are the same and as PrRand is equal to 1/2 for both

criteria, the advantages of B and A are equal. �

The second step is to show that 1-RPATc-CPA implies n-RPATc-CPA for any n.

Lemma 2. If AE is secure w.r.t. 1-RPATc-CPA then it is secure w.r.t. n-RPATc-CPA.

Proof. Let us consider an adversary A = (A1,A2) against n-RPATc-CPA.
Using the reduction Theorem 1, we split up the advantage between an advantage against (n−1)-

RPATc-CPA and an advantage against 1-RPATc-CPA. We assume that adversary A accesses the
left-right oracle F exactly once. Let k be a maximal key for <. The partition of θ is defined as
follows: θ1 contains key pairs k, k−1, any nonce N such that (k,N) ∈ E<. On the other hand,
θ2 contains the other informations from θ including the challenge bit. Oracle F2 generates the
encodings related to keys in θ2 and F1 those related to k.

As k is maximal, there are no keys k′ different from k such that for a nonce N in θ1 and
any nonce N ′, (k,N) < (k′, N ′). This is why nonce N is only used as the random coins of an
encryption using k.

F1 can be separated into two layers G and H defined by:

H(〈pat0, pat1〉, θ2, θ
′
2) =

〈

v(patb2 , θ2), v(patb′2 , θ
′
2)

〉

G(〈pat0, pat1〉, b, θ1) = v(patb, θ1)

Where b2 and b′2 are the challenge bits contained respectively in θ2 and θ′2.
Let pat0 and pat1 be two R-patterns such that obsa(pat0) = obsa(pat1). Then both patterns

are the concatenation of encodings and similar bit-strings. The call to F has to be simulated using
F1 and F2. For that purpose, the valuation of their encodings is performed in a similar way as

16

in vrec except that F1 and F2 should only be called once. To achieve this, requests to F1 and F2

are stored in a single pattern as described for F1 by function vrec2 which outputs a list of pair of
patterns:

vrec2(bs, bs) = []

vrec2(m1.m2,m
′
1.m

′
2) = vrec2(m1,m

′
1).vrec2(m2,m

′
2)

vrec2({m;N}k, {m
′;N}k) = 〈{m;N}k, {m

′;N}k〉

Then this list of pair (〈p1, p
′
1〉; ...; 〈pn, p

′
n〉) is transformed into the pair of list 〈p1; ...; pn, p

′
1; ...; p

′
n〉

which is the argument given to F1. Another function should perform the same operation for keys
different from k. After submitting the results to oracle F1 and F2, it it easy to rebuild the output
of F .

Note that patterns submitted to F1 and F2 are pairs of encodings. F2 receives two well-formed
patterns that have the same obsa and this is the same thing for G (both receives a concatenation
of some ♦N).

As F2 only depends on θ2, our partition is valid, criterion (θ2;F2;V2) is (n − 1)-RPAT-CPA
and (θ1, b;G;Vb) is 1-RPAT-CPA. The reduction theorem applies and gives that there exist two
PRTM Ao and B such that

|Advn−RPATA (η)| ≤ 2.|Adv1−RPAT
B (η)| + |Adv

(n−1)−RPAT
Ao (η)|

A simple induction proves that as AE is secure against 1-RPATc-CPA, it is secure against n-
RPATc-CPA for any integer n. �

Finally, we show that n-RPATc-CPA implies n-RPAT-CPA.

Lemma 3. If AE is secure w.r.t. n-RPATc-CPA then it is secure w.r.t. n-RPAT-CPA.

Proof. Let us consider an adversaryA = (A1,A2) against n-RPAT-CPA. As in step 1, an adversary
B = (B1,B2) is built such that B1 returns clean patterns. For that purpose, B2 is similar to A2. B1

executes A1 and computes dec(pat0, pat1). Then it generates some keys and nonces and uses them
for elements of dec on the answer of pat0 and pat1. The patterns remain well-formed and still have
the same obsa. B and A have the same advantage but B is an adversary against n-RPATc-CPA.
As AE is secure against n-RPATc-CPA, it is also secure against n-RPAT-CPA. �

Proposition 4 is a simple consequence of the three above lemma.

Proposition If an asymmetric encryption scheme is secure against IND-CPA, then it is secure

against n-RPAT-CPA for any number of keys n.

A.5 Proof of the Main Theorem

This theorem is an application of the reduction theorem 1. Let ∆s be a specification. Let n be
the maximal number of keys used by ∆s. Then the experiment related to obsc × obsa can be
reformulated as the following experiment:

– Θ is split up on two parts: Θ1 generates the n pairs of keys (pki, ski) and l nonces ni; Θ2

generates the initial state s in S and the pattern p = ∆s(s).
– We have two oracles: F2 gives access to obsa(p), F1 gives access to v(p, θ1) which is obsc(p).
– V2 verifies that the output b made by the adversary is equivalent to s ∈ φ.

F1 can be be cut in two layers. G corresponds to the left-right encryption algorithm for n-RPAT-
CPA, H(x, θ2, θ

′
2) takes any argument as input x and outputs the pair 〈p′, p〉 where p and p′ are

the patterns respectively contained in θ2 and θ′2.
It is now possible to apply the reduction theorem 1 to obtain that for each adversary A, there

exist two adversaries Ao and B such that

|Adv
γ
A
| ≤ |Adv

γ2
Ao |+ 2.|Adv

γ1
B
|

17

Moreover, γ is equivalent to the criterion related to obsc× obsa, γ2 is equivalent to the one related
to obsa. Finally, γ1 = (b, θ1;G;λx.x = b), G is only the left-right oracle, hence this criterion is the
n-RPAT-CPA criterion except that there is no oracle to view the public keys. As this criterion is
weaker than n-RPAT-CPA, it is possible to conclude that with a different machine B (but still of
comparable complexity),

|Advobsc×obsa

A
| ≤ |Advobsa

Ao |+ 2.|Advn−RPAT−CPA
B |

18

