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Abstract. This report explicitly refutes the analysis behind a recent
claim that NTRUEncrypt has a bit security of at most 74 bits. We also
sum up some existing literature on NTRU and lattices, in order to help
explain what should and what should not be classed as an improved at-
tack against the hard problem underlying NTRUEncrypt. We also show a
connection between Schnorr’s RSR technique and exhaustively searching
the NTRU lattice.

1 Introduction

There have been a number of papers and technical notes [11, 3, 6, 12, 21, 10] ex-
plaining the NTRU cryptosystem, and analyzing possible avenues of attack. How-
ever there is no all-encompassing paper which allows easy access to this material.
It is hoped that this report will help make the material more accessible1.

As a by-product of this it will hopefully be clearer whether a new lattice idea
has the power to impact the security of NTRU, and to what degree. A motivation
for this document is the recent posting of [2], in which it is speculated that NTRU
has 74 bits of security, rather than the 80 claimed in [12]. In section 4 we explain
several ways in which we consider the analysis behind [2] to be flawed.

This report is concerned with the underlying hard problem behind NTRU,
and not with the padding scheme or the proof of security, which have been
addressed in [22, 7, 9].

In the remainder of this report we first discuss how the practical security of
cryptosystems is arrived at (Section 2), we then discuss some recent advances
in lattice reduction (Section 3), and in Section 4 we address our issues with
the analysis in [2]. In Section 5 we give a preliminary analysis about the use
of Random Sampling Reduction [18] (the technique underlying the techniques
of [2]) when applied to NTRU lattices.

2 Estimating the practical security of cryptosystems

The supposed hardness of the problem underlying any public key cryptosystem
can only be judged by the most effective known attack against it. Moreover, what
this attack is may be highly dependent on the parameter generation algorithm
of the cryptosystem. For example RSA is weak if (p, q, e) are chosen such that

1 The reader may also want to refer to the peer review section at www.ntru.com



d = e−1 mod (p − 1)(q − 1) is particularly small, or if p, q are too close together
(see [23, 5]).

Theoretically we normally judge the security of a cryptosystem by the asymp-
totic behaviour of the most effective known attack as the security parameter
tends to infinity.

For example, for most sensible choices of parameter generation algorithm,
the most effective known attack against RSA is to factor N = pq using the
number field sieve [13, 4]. In an asymptotic sense this makes RSA susceptible to
a sub-exponential attack.

For elliptic curve cryptography (ECC) the most effective known attack against
a reasonable parameter choice2 is Pollard’s rho method, applied to the elliptic
curve group. If this is indeed the best attack against ECC then, since Pollard’s
rho method essentially square roots the time of an exhaustive search, the time
to break ECC remains fully exponential.

In NTRU, with the parameter generation algorithm given in [10], the most
effective known attack is a meet-in-the-middle method due to Odlyzko [6]. As
with ECC, if this is indeed the best attack against NTRU, then the time to
break NTRU remains fully exponential.

In practical cryptography there is a slight deviation from theoretical cryptog-
raphy in that the asymptotics are not quite as important as the time it takes to
break a particular parameter set. For example one may wish to use a parameter
set in which the most effective known attack takes approximately 280 operations,
or 2128 operations.

Of course the most effective known attack, for any of the cryptosystems
mentioned above, is subject to change if an inspirational new idea is found.
And of course such a new attack may also change the complexity class the
cryptosystem is considered to live in.

2.1 Attacking NTRU via lattice reduction

Although the most effective known attack against the standard NTRU parame-
ters [10] is the meet-in-the-middle attack [6], there are other avenues of attack,
e.g. it was shown in [11, 3] how a suitably good lattice reduction algorithm could
recover the private key.

In the case of the standard NTRU parameters [10], it is estimated that attacks
based on lattice reduction [12] are not that far behind the strength implied by
the meet-in-the-middle attack [6], so one could imagine a new idea in lattice
reduction becoming the most effective known attack against NTRU.

A problem with estimating the running times of lattice reduction algorithms,
is that they often behave far better than one can prove. In order to combat this,
and try to get a feel for how quickly they work in practice, NTRU have run a
series of tests, and extrapolated the data in a conservative manner.

2 There are known bad parameter choices for ECC too, e.g. using anomalous elliptic
curves, or using finite fields which allow Weil descent-type methods.



The exact details of the data set and extrapolation technique can be found
in [12], but the general principal is summed up below. The phenomenon observed
was that taking logarithms of the running times still gave a graph with a slight
upward concavity. In order to get a conservative straight line fit, the slope of the
graph was estimated at the high end, and security was calculated by projecting
this tangent line.

Admittedly this is not a particularly rigorous way to estimate security, but
accurate mathematical models for lattice reduction times are not presently in
existence, and this does seem to be conservative. To add credence to this claim,
this analysis has not been contradicted by the cryptographic community in the
years since its inception.

The particular lattice reduction strategy that was used to get the data points,
was one of continually increasing the block size of Schnorr’s BKZ technique [16,
17] until the private key was recovered. This was done using the implementation
of BKZ in the NTL Library [20].

3 Recent advances in lattice reduction

There have been several new ideas in lattice reduction algorithms recently [1, 18,
15, 19]. The result in [1] was particularly well received since it introduces a ran-
domized sieving algorithm which solves SVP in time 2O(n) in an n-dimensional
rational lattice; a large improvement, in asymptotic terms, over the previously
best known result of 2O(n log n).

Another new and interesting idea is suggested in [18], which mixes BKZ
reduction, and an exhaustive search. By a suitable choice of parameters the
paper claims to 4’th root the provable reduction times necessary to solve SVP
within a given approximation factor, where this is compared to Koy’s primal-
dual3 strategy [14].

More recently, faster versions of LLL reduction [8] have been proposed in [15,
19].

As acknowledged in Section 2, any new idea has the potential to become the
best known algorithm against a given cryptosystem. To show that a new lattice
approach is indeed the best known attack against NTRU, as specified in [10], the
idea would have to beat the meet-in-the-middle approach [6] by some margin. To
show this, the would-be authors might be able to rigorously prove the running
time (perhaps under some realistic heuristics), or they might have to resort to
an extrapolation technique, similar to that which NTRU uses to derive security.

Either way could be convincing, but it is thought that to make a convincing
argument as to the (in)security of NTRU, one (or both) of these approaches
should be followed.

One point to note, when using the practical extrapolation technique, is that
if the data set has an upward concavity, as witnessed by the NTRU analysis,
then it is prudent to test examples which are as large as is reasonably possible to

3 This result is in fact unpublished, though the citation holds some slides describing
the technique.



obtain. This is because by testing only small examples, and using the end data
points to extrapolate a line, one would be in danger of underestimating the true
security.

4 On practical lattice basis sampling reduction

Recently in [2] the authors applied ideas similar to that of Schnorr in [18] to
NTRU. However they do not use either of the techniques recommended in Sec-
tion 3 to estimate the strength of their attack. Instead they seem to use the
following argument:

1. NTRU have estimated4 the running time for a particular parameter set,
dependent on N , to be 100.1095N−12.6401.

2. NTRU used a strategy of increasing the BKZ blocksize until a success was
found.

3. Schnorr’s RSR technique [18] predicts asymptotics that 4’th root the running
times, compared to this approach of increasing the BKZ blocksize.

4. RSR does not seem to work well with NTRU lattices, but it is claimed the
new modification, SR, does work reasonably well.

5. It is not clear what the asymptotic improvement of SR is though, so a guess
of a factor of 3/4 in the exponent is made, as opposed to the 1/4 predicted
by RSR.

6. Thus SR probably has an asymptotic running time of

10(3/4)(0.1095N−12.6401)+c = 100.082N+c′

for some constants c, c′.

This is the reasoning that gives the figure of 74 bit security, when N = 251,
as opposed to the 80-bit security predicted in [12].

There are several fallacies in this argument. The first (at step 3) is to assert
that Schnorr’s algorithm asymptotically 4’th roots the BKZ reduction times,
for a given approximation factor. Schnorr does not make this claim in [18], and
the only comparison involves a table between Schnorr’s 2k-reduction and Koy’s
primal-dual reduction. Indeed since the asymptotics that Schnorr predicts are
super-exponential, yet the asymptotics NTRU states are purely exponential,
there is clearly no advantage in an asymptotic sense to using RSR5. We show
the impact of naively applying Schnorr’s RSR technique to NTRU in Section 5.1.

If RSR were to 4’th root the practical times achieved by BKZ then the above
argument might be plausible, but there is no evidence of this.

The second problem with [2] is that there is no justification for using the
factor of 3/4 at step 5, other than it lies between 1/4 and 1. If indeed such a

4 In fact, these figures are based on [11]; more up-to-date figures can be found in [12,
10].

5 Both [1] and a naive exhaustive search are merely exponential, and therefore beat
RSR in an asymptotic sense.



constant exists for average case running time, it should either be justified in a
mathematical sense, or it should be worked out experimentally.

A third problem with [2] is in the whole idea of applying an asymptotic
result to a formula gotten by testing data. If one had strong confidence that the
formula of 100.1095N−12.6401 was exact, i.e. with no conservatism, then it might
be realistic to assume the asymptotics had kicked in by N = 251, and make
the above argument. However the data gotten by NTRU has a definite upward
concavity. If this upward concavity continues6 it could counteract any constant
like 3/4 in the exponent, or even the 1/4 predicted by Schnorr in [18].

The conclusion is that in the absence of a more rigorous mathematical model,
there is no substitute for running the experiments for the technique suggested
in [2], and extrapolating the data. As stated numerous times before, we cannot
apriori say that such ideas will not yield an improved attack against NTRU; we
can only say that the argument given in [2] is not rigorous.

5 RSR and the NTRU lattice

5.1 A naive use of RSR

It is instructive to see what happens if one simply takes the asymptotic bounds
for sampling reduction given in [18] and applies them directly to obtain estimates
of the running times for sampling reduction of the parameter sets given in [10].

The performance of a lattice reduction algorithm is expressed in terms of its
running time to achieve a given approximation factor, or α. where

α =
Length of shortest vector found

Length of shortest vector in lattice
.

The α obtained in [18] is αRSR(n, k) = (k/6)n/(2k), where n is the dimension of
the lattice and k is a freely chosen parameter. The corresponding (fourth rooted)
running time is then given as n3(k/6)k/4, which is superexponential in k as noted
above. The required α to solve an NTRU lattice would be α = q/

√

2||f || · ||g||.
Here we are making the assumption that an attacker has broken a parameter set
simply by finding a vector shorter than a q vector, in line with the assumptions
of [2].

The parameters q, df, N are those provided in [10] for a given bit security level
s. Also dg = N/2 and the dimension n is n = 2N . The column k gives the least k
necessary to achieve the appropriate α and the column T gives the corresponding
log running time as read off from the formula T = log2(n

3(k/6)k/4. This log
running time T needs to be shifted by a constant factor translating running
time to bits, but even the most conservative choice for the constant factor puts
it far in excess of the meet in the middle security level s.

6 NTRU acknowledges that if the upward concavity continues, then it is merely an
indication that this particular BKZ-based attack is less effective asymptotically.



s N df q α k T

80 251 48 197 19.8 339 520

112 347 66 269 23.1 485 797

128 397 74 307 24.7 562 949

160 491 91 367 26.6 715 1263

192 587 108 439 29.1 865 1581

256 787 140 587 33.8 1180 2280
Table 1. Estimated log

2
running time based on asymptotic formula.

5.2 A connection with exhaustively searching the NTRU lattice

We briefly explain that although the analysis in Section 5.1 is what one gets when
naively applying the asymptotics predicted by Schnorr to the NTRU lattice, one
can achieve far better asymptotics with RSR when one does no BKZ reduction
whatsoever.

Consider the NTRU lattice as
(

q 0
h 1

)

where h = g/f mod q, and with small vectors equal to all the N rotations of
a binary vector (g, f). If one misses out on the BKZ step of RSR, and then
applies the exhaustive search part of RSR to the last N vectors, then essentially
one is exhaustively searching through the space of all possible 2N binary vectors
f . When any rotation of the f vector is tried, the technique will find the cor-
responding g (which will be surprisingly small), and hence recover the private
key.

Thus it can be argued that RSR applied to NTRU lattices has complexity
at most 2N . It is easy to see that Schnorr’s technique can in fact be speeded up
for the NTRU lattice, if f only has df ones. However even with this observation,
the approach is still slower7 than the meet-in-the-middle attack on the NTRU
lattice.

Intuitively it is hard to believe that the BKZ part of RSR does not help at
all. Indeed NTRU is performing an internal analysis to assess the impact of such
approaches. We do not include the results of such an analysis here.

6 Conclusions

We have explained how the NTRU estimates for lattice security were gotten,
and suggest that, barring a nice mathematical model, this is a reasonable way to
do it. Having said this, we still hope that the mathematical modelling of lattice
reduction techniques will improve.

7 It takes roughly the square of the time.



We have discussed the potential impact of RSR to NTRU lattices, and have
shown that one must take considerable care when stating the impact of asymp-
totic results. We are also analyzing the impact of RSR internally.

We do not agree with the principle of mixing worst case asymptotic results
and experimental data, as done in [2].
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