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Abstract

Several identity based and authenticated key agreemetuiote have been proposed in
recent years and all of them have been shown to be non-sdtoeeains an open guestion
to design secure identity based and authenticated key ragraeprotocols. In this paper,
we propose an efficient identity-based and authenticatgdgreement protocol IDAK using
Weil/Tate pairing. A security model for identity based keyr@ement protocol is established
and the security properties of IDAK are proved in this modighwandom oracle. In particular,
it is shown that the IDAK protocol possesses all charadiesishat a secure key agreement
should have.

1 Introduction

Key establishment protocols are one of the most importaypitegraphic primitives that have
been used in our society. The first unauthenticated key agneteprotocol based on asymmetric
cryptographic technigues were proposed by Diffie and Hellfdd]. Since this seminal result,
many authenticated key agreement protocols have beengwo@nd the security properties of
key agreement protocols have been extensively studieddbr to implement these authenticated
key agreement protocols, one needs to get the correspopdibgs authenticated public key. For
example, in order for Alice and Bob to execute the NIST recemded MQV key agreement
protocol [16, 22], Alice needs to get an authenticated pukdy ¢” for Bob and Bob needs to
get an authenticated public key for Alice first, wherea andb are Alice and Bob’s private keys
respectively. One potential approach for implementingehschemes is to deploy a public key
infrastructure (PKI) system, which has proven to be difficlilhus it is preferred to design easy
to deploy authenticated key agreement systems. Identiigcdokey agreement system is such an
example.

In 1984, Shamir [28] proposed identity based cryptosystetmsre user’s identities (such as
email address, phone numbers, office locations, etc.) doeildsed as the public keys. Several
identity based key agreement protocols (see, e.g., [7,8,323, 26, 27, 29, 32, 34]) have been
proposed since then. Most of them are not practical or doan bll required security properties.
Joux [14] proposed a one-round tripartite non-identityelollkey agreement protocol using Weil
pairing. Then a feasible identity based encryption scheBie[6] based on Weil or Tate paring
was designed.

Based on Weil and Tate pairing techniques, Smart [32], Ghafia [7], Scott [27], Shim [29],
and McCullagh-Barreto [18] designed identity based antdeniticated key agreement protocols.
However, none of these protocols is secure (details coufdlned in Sectior§10 of this paper).



For example, all these protocols are insecure against k@gliag attacks and some of them do
not have perfect forward secrecy property for session Kelysth parties long term private keys
are corrupted. Indeed, several of these protocols weneedto be secure in the Bellare-Rogaway
security model for key agreement protocols and the proofi® @und to be flawed later. For
example, Chen and Kudla [7] proved that their protocol isusedn the Bellare-Rogaway [3]
secure key agreement model. However, Cheng et al. [9] mbimiethat the proof in [7] is flawed
and their protocol is not secure against the key revealitagld (the fundamental component in
Bellare-Rogaway model).

Thus it remains to be an open problem to design efficient sddentity based and authenti-
cated key agreement protocols. In this paper, we propos#icier identity based and authenti-
cated key agreement protocol achieving all security ptasethat an authenticated key agreement
protocol should have. In addition, our protocol is desigf@defficient implementation with pre-
computations. Without pre-computation, our protocol isfiicient as (or more efficient than)
existing identity based key agreement protocols.

The advantage of identity based key agreement is that ndrsy&tem is required. The only
prerequisite for executing identity based key agreementbpols is the deployment of authenti-
cated system-wide parameters. Thus, it is easy to implethesé protocols in relatively closed
environments such as government organizations and coriahentities.

There is an extensive literature on the security of key agess protocols. Bellare and Ro-
gaway [3] provided formalizations for certain symmetrieykcases. They introduced the model
of an adversary in control over all communications, modetiession key revealing attacks, and
suggested that the session key should be strongly secune sehse of semantic security. Fiat
and Shamir [12] introduced the random oracle model to aralyz security of cryptographic pro-
tocols. The random oracle model has been further enhanc&tlgre and Rogaway [2]. We
will show that in random oracle model, our IDAK is a securehauticated key agreement pro-
tocol in a security model based on Bellare-Rogaway modellf8h summary, our contributions
of this paper include: (1) An efficient identity based andhauticated key agreement protocol.
Without pre-computation, our protocol is at least as efficas existing (including the non-secure
ones) identity based key agreement protocols. With prepcation, our protocol is very efficient
and is suitable for resource constraint devices. (2) A sigconodel for identity based key agree-
ment protocols which is used to prove security propertiesofo IDAK protocol. (3) Practical
considerations and application domain discussions ofitydrased key agreement protocols.

The remainder of this paper is organized as followsgamnwe briefly describe bilinear maps,
bilinear Diffie-Hellman problem, and its variants. 48, we describe our identity based and au-
thenticated key agreement protocol IDA# describes a security model for identity based key
agreement. In sectiogb, we prove the security of IDAK key agreement protocol. lotiems 56
and§7, we discuss key compromise impersonation resilience anfeéqi forward secrecy prop-
erties of IDAK key agreement protocol, and in sectif) we describe IDAK key agreement
protocol with key confirmation and we prove its security. &ttong9, we discuss implementa-
tion issues (including efficiency) and applications. Weduode our paper with a discussion on
related protocols and their insecurity§h0.



2 Bilinear maps and the bilinear Diffie-Hellman assumptions

2.1 Bilinear maps

In the following, we briefly describe the bilinear maps anthkar map groups. The details could
be found in Joux [14] and Boneh and Franklin [6].

1. G andG; are two (multiplicative) cyclic groups of prime order
2. gis a generator of;.
3. é: G x G — Gy is abilinear map.
A bilinear mapisamap : G x G — G with the following properties:
1. bilinear: for allg, g2 € G, andz,y € Z, we haveé(g, g5) = é(g1, 92)™Y.
2. non-degeneraté(g, g) # 1.

We say thatG is a bilinear group if the group action i@ can be computed efficiently and there
exists a grougs; and an efficiently computable bilinear map G x G — (G as above. Concrete
examples of bilinear groups are given in [14, 6]. For examplg= be a subgroup of the additive
group of the points of an elliptic curvg, ;/F,, andG; be a subgroup of the multiplicative group
of a finite fieIdF;2. Then the Weil pairing (respectively, Tate pairing) coudused to construct
bilinear maps between these two groups. For convenienmajghout the paper, we view both
G and G as multiplicative groups though the concrete implemeotatif G could be additive
elliptic curve groups.

2.2 Complexity assumptions

Throughout the papeafficientmeans probabilistic polynomial-timaggligiblerefers to a function
e which is smaller thari /k€ for all ¢ > 0 and sufficiently largé:, andoverwhelmingefers to
a function1 — ¢, for some negligiblez;,. Consequently, a functiofy. is non-negligibleif there
exists a constant and there are infinitely mank such thaty, > 1/k¢. We first formally define
the notion of a bilinear group family and computational stutiguishable distributions (some of
our terminologies are adapted from Boneh [5]).
Bilinear group families A bilinear group familyG is a setG = {G,} of bilinear groupsG/, =
(G, G1, ) wherep ranges over an infinite index s&t,andG, are two groups of prime ordey,,
andé : G x G — G is a bilinear map. We denote liy| the length of the binary representation
of p. We assume that group and bilinear operationS in= (G, G1, ¢) are efficient in|p|. Unless
specified otherwise, we will abuse our notations by usiag the group order instead @f in the
remaining part of this paper.
Instance generatorAn Instance GeneratorZg, for a bilinear group familyg is a randomized
algorithm that given an integér (in unary, that is1*), runs in polynomial-time irk and outputs
some random indey for G, = (G, G1, é), and a generatay of G, whereG andG, are groups
of prime orderq. Note that for eaclt, the Instance Generator induces a distribution on the set of
indicesp.

The following Bilinear Diffie-Hellman Assumption (BDH) h&®en used by Boneh and Franklin
[6] to show security of their identity-based encryption escle.



Bilinear Diffie-Hellman Problem LetG = {G,} be a bilinear group family anglbe a generator
for G, whereG, = (G,G1,¢é). The BDH problem ing is as follows: given(g, g*, ¢¥, g*) for
somer,y,z € Z;, computeé(g,g)** € G;. A CBDH algorithmC for G is a probabilistic
polynomial-time algorithm that can compute the functi®bH,(¢", ¢V, %) = é(g,9)"¥* in G,
with a non-negligible probability. That is, for some fixetve have

Pr(C(p,9,9",9Y,9%) = e(g,9)"*] > — (1)

where the probability is over the random choices 0§, z in Z, the indexp, the random choice
of g € GG, and the random bits oA.

CBDH Assumption. The bilinear group familyg = {G,} satisfiesthe CBDH-Assumption
if there is no CBDH algorithm foiG. A perfect-CBDH algorithmC for G is a probabilistic
polynomial-time algorithm that can compute the functi®bH,(¢", ¢V, ¢*) = é(g,9)"¥* in G,
with overwhelming probability.G satisfiesthe perfect-CBDH-Assumption if there is no perfect-
CBDH algorithm forg.

Theorem 2.1 A bilinear group familyG satisfies the CBDH-Assumption if and only if it satisfies
the perfect-CBDH-Assumption.

Proof. The fact that the CBDH-Assumption implies the perfect-CBBssumption is trivial.
The converse is proved by the self-random-reduction teglen{see [4, 20]). Le®) be a CBDH
oracle. That is, there existsca> 0 such that (1) holds witld replaced with®. We construct a
perfect-CBDH algorithn which makes use of the oradi2 Giveng, ¢*, ¢¥, g* € G, algorithmC
must computeé(g, g)*¥* with overwhelming probability. Consider the following alithm: select
a,b,c €g Z, and output

Loy zabe = O(g, 9", gV, g77) - é(g, g)~ (b= tabetrayztayetubatabetaye)

One can easily verify that D(p, g, g"+?, g¥*°, g*7¢) = é(g, g) @+ WHIEFE) thenl, , . ope =
é(g,9)*¥*. Consequently, standard amplification techniques candxbtosconstruct the algorithm
C. The details are omitted. O

Consider Joux’s tripartite key agreement protocol [14]ic&) Bob, and Carol fix a bilinear
group (G, Gy, ¢é). They selectr,y,z €r Z; and exchangg®, ¢¥, andg®. Their shared secret
is é(g, g)*¥*. Tototally breakthe protocol a passive eavesdropper, Eve, must computeDke B
function: BDH,(¢", ¢¥, 9%) = é(g, 9)""*.

CBDH-Assumption by itself is not sufficient to prove that dsiprotocol is useful for practical
cryptographic purposes. Even though Eve may be unable twveethe entire secret, she may still
be able to predict quite a few bits (less thalog & bits for some constant, Otherwise, CBDH
assumption is violated) of information féf g, g)*¥* with some confidence. H(g, g)*¥* is to be
the basis of a shared secret key, one must bound the amounfoohation Eve is able to deduce
about it, givery®, ¢¥, andg®. This is formally captured by the, much stronger, Decisi&@ilnear
Diffie-Hellman assumption (DBDH-Assumption)

Definition 2.2 Let{X,} and{)),} be two ensembles of probability distributions, where fartea
p both X, and ), are defined over the same domain. We say that the two ensesnbtasnputa-
tionally indistinguishabléf for any probabilistic polynomial-time algorithr®, and anyc > 0 we
have

[Pr[D(X,) = 1] = Pr[D (V) = 1]| < =

kc
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for all sufficiently largek, where the probability is taken over all,, )J,,, and internal coin tosses
of D.

In the remainder of the paper, we will say in short that the tligributions X, and),, are com-
putationally indistinguishable.

Let G = {G,} be a bilinear group family. We consider the following two embles of
distributions:

e {X,} ofrandom tuplesp, g, 9*, ¢¥, g*. €(g, 9)*), whereg is a random generator 6f (G, =
(G,G1,é))andz,y, z,t are randomly chosen froi,.

o {V,} oftuples(p, g,9", 9, 9%, (g, 9)*¥*), whereg is a random generator 6f andx, y, 2
are randomly chosen froif,.

An algorithm that solves the Bilinear Diffie-Hellman deoisiproblem is a polynomial time
probabilistic algorithm that can effectively distinguitiiiese two distributions. That is, given a
tuple coming from one of the two distributions, it should mutt O or 1, and there should be a
non-negligible difference between (a) the probabilityt ihautputs a 1 given an input frofit, },
and (b) the probability that it outputs a 1 given an input frfd), }. The bilinear group family
satisfies the DBDH-Assumptidfrthe two distributions are computationally indistingdble.
Remark. The DBDH-Assumption is implied by a slightly weaker assuiomt perfecteDBDH-
Assumption. A perfect-DBDH statistical test fgrdistinguishes the inputs from the abol&), }
and{), } with overwhelming probability. The bilinear group famiysatisfies the perfect-DBDH-
Assumptionf there is no such probabilistic polynomial-time statisfitest.

3 The scheme IDAK

In this section, we describe our identity-based and auitert key agreement scheme IDAK.
Let k£ be the security parameter given to the setup algorithmZghtbe a bilinear group param-
eter generator. We present the scheme by describing the algerithms: Setup, Extract, and
Exchange

Setup For the inputk € Z T, the algorithm proceeds as follows:

1. RunZg onk to generate a bilinear group, = {G, G, ¢} and the prime ordey of the two
groupsG and(@;. Let h be the co-factor of the group ordefor G (that is, the order of the
basing elliptic curve group fo& is ¢h). If G is not an elliptic curve group, thelncould be
defined similarly. Choose a random generatar G.

2. Pick a random master secretc Z;.

3. Choose cryptographic hash functiofis: {0,1}* — G andw : G x G — Z;. In the
security analysis, we vied andz as random oracles.

The system parameter g, h, g, G, G1, é, H, ) and the master secret keycds

Extract: For a given identification stringD € {0, 1}*, the algorithm computes a generatgs =
H(ID) € G, and sets the private kelin = ¢{}, wherea is the master secret key.

Exchange For two participants Alice and Bob whose identificationirgs areID4 andIDp
respectively, the algorithm proceeds as follows.
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1. Alice selects € Z*, computesR 4 = g%DA, and sends it to Bob.
2. Bob selecty € Z;, computesis = g, ,, and sends it to Alice.
3. Alice computes 4 = n(R4, Rp), sp = 7(Rp, Ra), and the shared secret 45 as

)(@+sa)w+sp)ha <m+sA>ha) '

é(g1D 45 91D 5 =e <9fSB “Rp,g1p ,

4. Bob computesy = 7(Ra, Rp), sg = m(Rp, Ra), and the shared secrétp 4 as

2 5 +sp)h
e(gIDA7gIDB)(x+SA)(y+SB)ha =€ (ngA ’ RAngéBSB) a) .

In the following sections, we describe a security model fmmtity based and authenticated
key agreement protocol. Our model is based on Bellare andwRmg[3] secure key agreement
model. We then show that our IDAK protocol is secure in thisdelowith random oracle plus
DBDH-Assumption. In particular, our protocol achievesfper forward secrecy property and
security against key revealing attacks. In a summary, auopol is more efficient compared with
existing protocols and has better security properties.

We conclude this section with a theorem which says that tlaeeshsecret established by
the IDAK key agreement protocol is computationally indigtiishable from a random value. In
another word, if we assume that the adversary is passivecawaifd all messages exactly in the
way it receives, then the agreed keys by entities achievasirrsecurity.

Theorem3.1LetG = {G,} be a bilinear group familyG, = (G,G1,¢€), and gy, g2 be ran-
dom generators off. Assume that DBDH-Assumption holds ébrThen the distributiongg, , g,
gt. g8, é(gr, go)@HT 9 w9591y and(gy, g2, g7, 64, é(g1, 92)*") are computationally in-
distinguishable, where, x, y, ~ are selected fronk; uniformly.

Before we give a proof for Theorem 3.1, we first prove two lerartieat will be used in the
proof of the Theorem.

Lemma 3.2 (Naor and Reingold [20]) Le§ = {G,} be abilinear group family(x, = (G, G1, €),
m be a constantg be a random generator aff, and g = é(g,g). Assume that the DBDH-
Assumption holds fof7,. Then the two distribution$R, (§*%/* : ¢, 7,1 < m)) and (R, (g :
i,7,1 < m)) are computationally indistinguishable. Hefe denotes the tuplég, (¢*¢, g¥7, g* :
i,J,1 <m))andx;, y;, 2, uz;; are randomly chosen frorf,,.

Proof. Using a random reduction, Naor and Reingold [20, Lemma 4é#¢ (also Shoup [31,
§5.3.2] showed that the two distributiof®, (¢"i% : i,j < m)) and(R, (¢“ : i,7 < m)) are
computationally indistinguishable. The proof can be diyemodified to obtain a proof for this
Lemma. The details are omitted. O

Lemma 3.3 LetG = {G,} be a bilinear group family(~, = (G, G1, €), g be a random generator
of G, g = é(g, g), and f1 and f» be two polynomial-time computable functions. If the twéritis-
tionsX; = (R, §/1), g2y andy, = (R, §*, §**) are computationally indistinguishable, then
the two distributionsY, = (R, /1)) and ), = (R,, §*) are computationally indistin-
guishable, wherR = (g, (¢" : 1 <i <m)),x = (x1,...,2Zy), andx;, 21, 22, z are randomly
chosen fron¥,,.



Proof. For a contradiction, assume that there is a probabilistignoonial-time algorithmD that
distinguishes the two distribution®, and), with non-negligible probability;. In the following
we construct a probabilistic polynomial-time algoritli to distinguish the two distribution&’
and));. D’ is defined by lettingd’ (R, X,Y) = D(R,X -Y) forall R, andX,Y € G;. By
this definition, we hav®r [D).(X,) = 1|R,r| = Pr [D,(X2) = 1|R, r], for any fixed internal coin
tosses of D andD'.

LetDE  ={X:D,(R,X) =1} andDE, = {(X,Y): D, (R, X,Y) = 1}. By definition
of D/, we haveDE' = {(X,Y) : X -Y € DR }. Itfollows that|DE’ | = ¢|D | and
Pr [D,(01) = 1|R,r] = DR |/¢* = |DR ,|/q = Pr[D,()2) = 1|R,r]. Thus we have

[Pr[D" (A1) = 1] = Pr[D'(O1) = 1]
= | S, PrIR, 1]+ (Pr[D4(X1) = 1[R, 7] = Pr[Di(1) = 1IR,1])|

= | S, PrIR, 1]+ (Pr[Dy(X2) = 1[R,1] = Pr[D(32) = 1IR,1])|
= [Pr[D(Xy) = 1] = Pr[D(2) = 1]
> 0.

Hence, D’ distinguishes the distributiond’} and ), with non-negligible probabilitys,. This
contradicts the assumption of the Lemma. O

Proof of Theorem 3.1Let g = é(g, g).By Lemma 3.2, the two distributions

X = <g7gCt’g:v’gy7gha:vy7gha:vﬂ(gy,g“')7ghay7r(g”” ,gy)7ghaﬂ(g””7g”)7r(g-”7g’”)> and
Y =1{9,9% g% ¢, gh% 7 ghzgw(,gy ,g“')7 th§7r(g”” ,gY) 7 ghzaﬂ(g“’7g-”)ﬂ(g”,g”c>>

are computationally indistinguishable assuming that DBBssumption holds fog, whereg is
a random generator @k, ando, z, y, 24, 25, 25,2y €r Z,. Sincer is a fixed function from
G to Z} andq is a prime, it is straightforward to verify that for amy z,y € Z,, §"*29"9"),

A~

ghza’f(g 9") | and gh#1m(9".9")7(9".9") are uniformly (and independently of each other) distrilute
overG. It follows that the distribution

Z =g, 9%, 9%, 9", 9", 9", 3"))
is computationally indistinguishable from the distrilaurt), wherez, 29, 23, 24 €r Z,. ThusX
and Z are computationally indistinguishable. The Theorem ndiefes from Lemma 3.3. O

4 The security model

Our security model is based on Bellare and Rogaway [3] sgcumodels for key agreement pro-
tocols with several modifications. In our model, we assuna¢ We have at most: < poly(k)
protocol participants (principals)YDy,...,ID,,, wherek is the security parameter. The proto-
col determines how principles behave in response to inguiass from their environment. Each
principle may execute the protocol multiple times with theng or different partners. This is mod-
elled by allowing each principle to have different instastieat execute the protocol. An oracle
I3 ; models the behavior of the principl®; carrying out a protocol session in the belief that it is
commumcatmg with the principléD; for the sth time. One given instance is used only for one
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time. Eachll; ; maintains a variableiew (or transcrip) consisting of the protocol run transcripts
so far.

The adversary is modelled by a probabilistic polynomiaktifuring machine that is assumed
to have complete control over all communication links in tietwork and to interact with the
principles via oracle accesseslig ;. The adversary is allowed to execute any of the following
queries:

e Extract(ID). This allows the adversary to get the long term private kewfoew principle
whose identity string i$D.

° Send(Hfﬁj, X). This sends messadé to the oracIdIf,j. The output oﬂf,j is given to the
adversary. The adversary can ask the principlgto initiate a session withD; by a query

Send(II ., \) where)\ is the empty string.

Zh]’

e Reveal(II} ;). This asks the oracle to reveal whatever session key itrtlyreolds.
e Corrupt(i). This askdD; to reveal the long term private keyp. .

The difference between the queriestract andCorrupt is that the adversary can uBgtract to
get the private key for an identity string of her choice witilerrupt can only be used to get the
private key of existing principles.

LetII;; be an initiator oracle (that is, it has received message at the beginning) aﬁ@ be

a responder oracle. If every message iiigtsends out is subsequently deIivered‘Jl;é, with the
response to this message being returnedtoas the next message on its transcript, then we say
the oracIeH;?; matcheng’j. Similarly, if every message thﬁlt;.; receives was previously generated
by II?;, and each message trﬁjl sends out is subsequently delivered, with the response

to this message being returnedH@Q as the next message on its transcript, then we say the oracle
IT3; matchesl‘[j?;. The details for an exact definition of matching oracles ddnd found in [2].

For the definition of matching oracles, the reader shouldvk&rea the following scenarios:
Even though the oracl; thinks that its matching oracle Ej’; the real matching oracle for
IT;; could bell’,. For example, ifil; sends a messag€ to II3; and1II:; replies withY". The
adversary decides not to forward the messege IT7,. Instead, the adversary sends the message
X to initiate another oraclﬁ[g-; andID; does not know the existence of this new ordﬁgfg. The
oracIeH?Z- replies withY’ and the adversary forwards thi§ to IT;; as the responding message
for X. In this case, the transcript ¢f;; matches the transcript 6[3’1 Thus we considefT};
andl‘[?i as matching oracles. In another word, the matching oracemainly based the message
transcripts.

In order to define the notion of a secure session key exchahgeadversary is given an
additional experiment. That is, in addition to the abovautagqueries, the adversary can choose,
at any time during its run, &‘est(l‘[;j) query to a completed oracle; ; with the following
properties:

e The adversary has never issued, at any time during its renqtiery Extract(ID;) or
Extract(ID;).

e The adversary has never issued, at any time during its rungtiery Corrupt(i) or
Corrupt(j).



e The adversary has never issued, at any time during its rarqularyReveal(nyj).

e The adversary has never issued, at any time during its rerqttleryReveal( ) if the
matching oracleﬂs for IT7 ; exists (note that such an oracle may not exist if the adweisar
|mpersonat|ng théD to the oracldl; ;). The value ofs may be different from the value of
s’ since the adversary may run fake sessions to impersonatariaciples without victims’
knowledge.

Let sk} ; be the value of the session key held by the orﬁtﬂethat has been established between
ID; andID The oraclell; ; tosses a coih <p {0,1}. If b = 1, the adversary is givesk; ;.
Otherwise, the adversary |s given a valueandomly chosen from the probability drstrrbutron of
keys generated by the protocol. In the end, the attackeututpbitt’. The advantage that the
adversary has for the above guess is defined as

AdvA(k) =

Pr[b:b’]—%‘.

Now we are ready to give the exact definition for a secure kegeagent protocol.

Definition 4.1 A key agreement protocdl is secure if the following properties are satisfied for
any adversary:

1. If two uncorrupted oracleﬂg‘j and Hj; have matching conversations (e.g., the adversary
is passive) and both of them are complete according to theeobIl, then both oracles
will always accept and hold the same session key which iemanliy distributed over the key
space.

2. Adv*(k) is negligible.

In the following, we briefly discuss the attributes that ausedkey agreement protocol in the
above model achieves.

e Known session keysThe adversary may u%evea(ﬂ / ) query before or after the query
Tes{(II7 ;). Thus in a secure key agreement model, the adversary learosrdormation
about a fresh key for sessiareven if she has learnt keys for other sessigns

e Impersonation attack. If the adversary impersonatéd; to ID;, then she still learns zero
information about the session key that the ordﬁjeholds for this impersonatelD; since
there is no matching oracle foF; in this scenario. Thusl can useTestquery to test this
session key thafl;; holds.

e Unknown key share If ID; establishes a session key wif; though he believes that he
is talking toID;, then there is an oraclg}; that holds this session key;;. At the same
time, there is an orac/H;, that holds thls session key;;, for somei’ (normally i’ = ).
During an unknown key share attack, the usey may not know this session key. Sinﬂej
andIlf, are not matching oracles, the adversary can make the duevgal (115, ) to learn
this session key before the qumst(ﬂfj). Thus the adversary will succeed for thisst
query challenge if the unknown key share attack is possible.



e Key compromise impersonation resiliencelf the entity A’s long term private key is com-
promised, then the adversary could impersonate others, but it should not be able to
impersonate others td. Similar to other security models [3] for key agreement pcots,
our model does not capture this property. However, we Wik @ separate proof that the
IDAK key agreement protocol indeed has this property.

e Perfect forward secrecy This property requires that previously agreed sessios &bguld
remain secret, even if both parties’ long-term private keyerials are compromised. Sim-
ilar to other security models [3] for key agreement protecaur model does not capture
this property. However, we will give a separate proof thatibAK key agreement protocol
indeed has this property.

5 The security of IDAK

Before we present the security proof for the IDAK key agreenprotocol, we first prove some
preliminary results that will be used in the security proof.

Lemma5.1 LetG = {G,} be a bilinear group family(x, = (G, G1, €), g be a random generator
of G, andrw : G x G — Z, be arandom oracle. Assume DBDH-Assumption holdg;fand let
X and) be two distributions defined as

X = <R,gﬁx0,g7y0,é(g,g)($0+7f(95”079"’-”0))(yo+ﬂ(g"’-”0795“'0))0467’é(g )aB7)

)

and Y = (R, gk, g0, &(g, g)@0tme’ 0.g70) wotm(g70.970))E 5(g oty

Then we have

1. The two distributionst’ and )’ are computationally indistinguishable ® is defined as

R = (97907957977935797"79.,47 é <g$+ﬁ7r(gz,gA)7gA . grﬂ—(gA’gz)>Oé) 7

a, B,7,,t,zo are chosen fron; uniformly, g" = g7 or r is either chosen fron&; uni-
formly, g 4 and g% are chosen fronds according to any probabilistic polynomial time com-
putable ensembles of distributisi{¢®, g", ¢*, ¢°, g7, ¢°*°). Note that the distributions for
g4 and g”¥ could be different.

2. For any constantn < poly(k), the two distributionsY and)’ are computationally indistin-
guishable ifR is defined as:

(gv gav 957 977 (9127 gTj ; g.A,l)i,j,lva (é(g:er,BTr(gzi,gA’l)’ gA,l - grjﬂ(gA’hgzi))a : i7j7 l < m))

wherea, 3,~,z; are uniformly chosen fronx;, r; are either chosen fron; uniformly
or g"i = g7, and g4, is chosen according to a polynomial time computable ensemibl
distribution G(g™, ¢'7, g%, ¢°, g7, g% :4,5,1 < m).

3. For any constantn < poly(k), the two distributionst’ and)’ are computationally indistin-
guishable ifR = (R1,R2), whereR; is defined as th& in the item 2, andR;, is defined
as:

(946,97 GAL)ija<ms (E(ga - gFTOABIAY g ). griT@aLIAd)e 4 5 | < m))
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wherer; are either chosen frora,; uniformly org™ = g7, g4; andg 4, are chosen accord-
ing to polynomial time computable ensembles of distrilougity®:, g™, g%, ¢°, g7, g%, g7v0 -
i, 5,1 < m) with the condition that 4, # ¢°° or g4; # g7¥°”. Note thatg; and g
could have different distributions.

Proof. The Lemma could be proved using complicated version of ttigi8g lemma by Pointcheval-
Stern [24] (see the proof of Theorem 7). In the following, vee the random reduction to prove
the lemma.

1. For a contradiction, assume that there is a polynomia nobabilistic algorithmD that
distinguishest and). We construct a polynomial time probabilistic algorithithat distin-
guishes(g, g“, ", g%, é(g,9)*) and(g, g*, 9", g%, é(g, g)"**) with Jx, whereu, v, w, a are uni-
formly at random inZ,,.

Let the input of A be (g, g%, g°, g%, é(g, 9)*), wherea is eitheruvw or uniformly at random
in Z,. A chooses uniformly at random, 2, c3, z, 20 € Z,, Setsg® = garutez, gf = gvtes,

g’ = g*“*¢, chooses uniformly at random € Z, or letsg" = ¢®, choosesy™0, g4 € G
according to the distribution§(¢®, ¢", ¢, ¢°, g7, ¢°%) (the distributions forg4 € G and g%
could be different). Since® andg”*0 are uniformly chosen front;, we may assume that the
values ofr(¢®, g4) and (g%, g7*0) are unknown yet. Without loss of generality, we may as-
sume thatr + Bn(g%, g4) andyy + m(g7%°, g%°) take values:; andcg respectively, wheres
andcg are uniformly chosen fron¥,. In a summary, the value 6® could be computed from
g*, g%, g%, c1, o, c3, cyq, ¢, efficiently. A then sets

é(g,g)f _ é(.%g)cl5L+C4(clu+cz)(v+03)+w(clu03+clv+0203).
A can computé(g, g)@0+m(70.970) (o +7(g770.9°0) ysing the values af(g, g)t, zo, m(g?%0, g7¥0),
c. LetA (g, g%, g%, 9", é(g,9)%) = D(X), whereX is obtained from)’ by replacingt with # and
taking the remaining values as defined above.

Note that ifi = wvw, theni = a8, and X is distributed according to the distributioti.
That is,a, 3,7, x, zo are uniform inZ, and independent of each other and(ofv, w), (r, g4,
¢"%°) is chosen according to the specified distributions. Otk is distributed according to
the distributionX’, and¢ is uniform in Z, and independent of, 3, ~, z, xo, 7, u, v, w, g4, g%°.
Therefore, by definitions,

Pr[A(g,9", 9",

and Pr[A(g,9%, 9",
Thus A distinguishes(g, g%, ¢, 9", é(g, 9)*) and (g, g*, ¢*, g, é(g, g)*“*™) with &, wherea is
uniform at random irZ,,. This is a contradiction.

2. This part of the Lemma could be proved in the same way. Ttalslare omitted.

3. Since ‘Ga; # g°™ or g1 # 97¥°", we may assume that the valuesmfy 4, 9.4,) and
m(g4,,94,) are unknown yet. By the random oracle propertyrpthis part of the Lemma could
be proved in the same way as in item 1. The details are omitted. O

Theorem 5.2 Suppose that the function$ and = are random oracles and the bilinear group
family G satisfies DBDH-Assumption. Then the IDAK scheme is a seeyragteement protocol.

Proof. By Theorem 3.1, the condition 1 in the Definition 4.1 is sadidfior the IDAK key agree-
ment protocol. In the following, we show that the conditiois 2lso satisfied.

11



For a contradiction, assume that the adverséhas non-negligible advantagg = Adv““(k)
in guessing the value éfafter theTestquery. We show how to construct a simulatthat uses
A as an oracle to distinguish the distributioAsand )’ in the item 3 of Lemma 5.1 with non-
negligible advantaged, (¢ — 2)?/q%, whereqr denotes the number of distinéf-queries that
the algorithm.A has made. The game between the challenger and the simSlatarts with the
challenger first generating bilinear grougs = (G, G, é) by running the algorithninstance
Generator. The challenger then randomly seleats3, v,t € Z, andb € {0,1}. The challenger
gives the tuplep, g, g%, g°, g7, é(g, g)) to the algorithmS wheref = a8y if b = 1 andi = ¢
otherwise. During the simulation, the algorithfhcan ask the challenger to provide randomly
choserng®™. S may then choose (with the help df perhaps) 4; according to a polynomial time
computable distributio@ (g%, g"7, g%, ¢°, g7, g*® : 4, j,1 < m) and sendg 4 to the challenger.
The challenger responds withg® (97940 g 4 ;. g7im(94.09") ) At the end of the simulation,
the algorithmsS is supposed to output its guess= {0, 1} for b.

The algorithmsS selects two integers, J < g randomly and works by interacting with as
follows:

Setup: Algorithm S gives.A the IDAK system parametels, h, G, G1, é, H, ) whereq, G, G1, é
are parameters from the challengBrandn are random oracles controlled Byas follows.
H-queries Atany time algorithmA can query the random oradi using the querieExtract(ID;)
or GetID(ID;) = H(ID;). To respond to these queries algoritthmaintains anf'*s* that con-
tains a list of tuplesID;, gip,). The list is initially empty. When4 queries the oraclé at a point
ID;, S responds as follows:

1. If the queryID; appears on thél'* in a tuple(ID;, gip, ), thenS responds with (ID;) =
91D, -

2. Otherwise, if this is thé-th new query of the random oraclé, S responds withyp, =
H(ID;) = ¢°, and adds the tupl@D;, ¢°) to the H'*s. If this is the.J-th new query of the
random oracleS responds witlyip, = H(ID;) = ¢7, and adds the tupldD;, ¢7) to the
Hlist_

3. In the remaining cas& selects a random; € Z,, responds witly;p, = H(ID;) = ¢,
and adds the tupldD;, ¢™) to the H'*st,

m-queries At any time the challenger, the algorithdy and the algorithnd& can query the random
oraclerr. To respond to these queries algoritdmaintains ar'“s* that contains a list of tuples
(91,92,7(g1,92)). The listis initially empty. WhenA queries the oracle at a point(g1, g2), S
responds as follows: If the quety;, g») appears on the* in a tuple((g1, g2), (g1, g2)), then
S responds withr (g1, g2). Otherwise S selects a randomy, € Z,, responds withr (g1, g2) = v;,
and adds the tupl&gs, g2), v;) to ther*st. Technically, the random oractecould be held by an
independent third party to avoid the confusion that thelehgker also needs to access this random
oracle also.
Query phase: S responds tod’s queries as follows.

For aGetID(ID;) query,S runs theH-queriesto obtain agip, such thatd (ID;) = gip,,
and responds withp, .

For anExtract(ID;) query for the long term private key, if= I ori = J, thenS reports
failure and terminates. Otherwis§,runs theH-queriesto obtaingip, = H(ID;) = ¢", and
respondsiip, = (9*)" = gp, -
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For aSend(II7 ;, X) query, we distinguish the following three cases:

1. X = X\ Ifi =T orJ, S asks the challenger for a randaR) € G (note thatS does not
know the discrete logarithm a®; with basegip,), otherwiseS chooses a random; ¢ Zy
and setsRk; = gﬁgi. S letsIli ; reply with ;. That is, we assume thalb; is carrying out
an IDAK key agreement protocol wittD; andID; sends the first messagg to ID;.

2. X # A and the transcript of the oraclg; ; is empty. In this casd]} ; is the responder to
the protocol and has not sent out any message yet=If or J, S asks the challenger for
arandomR; € G, otherwiseS chooses a randomy; € Z; and sets?; = gy . S letsII;
reply with R; and marks the oraclH; ;as completed.

3. X # )\ and the transcript of the oracPéS is not empty. In this casd]; ; is the protocol
initiator and should have sent out the flrst message alredtiys I17 ; does not need to
respond anything. After processing the quend (I} ., X), S marks the oraclél; ; as
completed.

Z]’

For aReveal(Hﬁ ;) query, ifi # I andi # J, S computes the session ke;; = é(g HngR 2

R;, d(“””(R“ ))h) and responds witkk;;, hereR; is the message received Blgj Note that

the messagE may not necessarily be sent by the ord&;e for somes’ since it could have been
a bogus message fromh. Otherwise; = I ori = J. Without loss of generality, we assume that
i = I. Inthis case, the oraclH; ; dose not know its private key’®. Thus it needs help from
the challenger to compute the shared session keyRletnd R; be the messages thHl; has

sent out and received respectlvdljg gives these two values to the challenger and the chaIIenger

computes the shared session key; = ¢é (gféf‘”R i) R;, R¢gm(F1, Rj)aﬁh). 117 ; then responds

with k‘]j.

For aCorrupt (i) query, ifi = I ori = J, thenS reports failure and terminates. Otherwise,
S responds withiip, = (9%)" = gfp. -

For theTest(I17 ;) query, ifi # [ or j # J, thenS reports failure and terminates. Other-
wise, assume that= 7 andj = J. Let R; = g;g be the message thal; ; sends out (note
that the challenger generated this message)]and: g3, be the message thal; ; receives
(note thatR; could be the message that the chaIIenger generated or cewgérerated by the
algorithm A). S gives the messageR; and R; to the challenger. The challenger computes
X = é(g, g)wrtm@Br.R))(us+m(Ry.R)ih and givesX to S. S responds withX. Note that if
t = afv, thenX is the session key. Otherwis, is a uniformly distributed group element.
Guess: After the Test(Hg"j) query, the algorithmA outputs its guess’ € {0,1}. Algorithm S
outputsb’ as its guess to the challenger.

Claim: If S does not abort during the simulation thdrs view is identical to its view in the real
attack. Furthermore, § does not abort, theh)r b=1"b]— | > d;, where the probability is over
all random coins used h§ and A.

Proof of Claim: The responses tél-queries and r-queries are the same as in the real attack
since the response is uniformly distributed. All resportegbe getlD queries, private key extract
gueries, message delivery queries, reveal queries, aruptoueries are valid. It remains to show
that the response to the test query is valid also. Whisnuniformly distributed ovelZ,, then
Theorem 3.1 shows that = ¢é(g, g)(w (BB (ws+n(Rs.RD)ih js yniformly distributed over
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G and is computationally indistinguishable from a randonueabeforeA’s view. Therefore, by
definition of the algorithmA, we have|Pr [b=10]— \ > 0. a

Supposed makes a total ofjy H-queries. We next calculate the probability ti#atdoes
not abort during the simulation. The probability th&itdoes not abort foExtract queries is
(qg — 2)/qr. The probability thatS does not abort foCorrupt queries is(¢qz — 2)/qg. The
probability thatS does not abort fofest queries i2/¢%. Therefore, the probability tha does
not abort during the simulation ¥ ¢z — 2)?/q%. This shows thas’s advantage in distinguishing
the distributions¥ andy in Lemma 5.1 is at lea9x (¢ — 2)? /¢, which is non-negligible.

To complete the proof of Theorem 5.2, it remains to show thatdommunications between
S and the challenger are carried out according to the distoibsi X and)’ of Lemma 5.1. For
aReveal(II7 ;) query, the challenger outpu&S(gIéRJ’RI) Rj7R?hg7T(Rlij)aﬁh) to the algo-
rithm S. Let Ry = g%, R; = g4, andgip; = g". Thenz is chosen uniform at random from
Zq, v is chosen uniform at random frod; whenj # J orr = v whenj = J, and the value
of g4 is chosen by the algorithm or by the algorithmS or by the challenger in probabilistic
polynomial time according to the current views. For examilg 4 is chosen by the algorithm
A, thenA may generateg 4 as the combination (e.g., multiplication) of some previpabserved
messages/values or generate it randomly. Thus, ignorgdkfactorh, the communication be-
tween the challenger and the algorittimduring Reveal(Hf,]) queries is carried out according
to the distributionst and)’ of Lemma 5.1. The case f@eveal(Il} ;) queries is the same.

For theTest(117 ;) query, the challenger outpufs = e(g,g)(ul+7T(RI7RJ))(uJ+7r(RJ7Rz))th to
the algorithmsS, whereR; = ¢”* andR; = ¢?"’. Letzy = u; andyy = u;. Thenzg is chosen
uniform at random fron¥, and the value o§”*° is chosen by the algorithtd or by the challenger
in probabilistic polynomial time according to the curreigws. Similarly,.A may choose "% as
the combination (e.g., multiplication) of some previoushserved messages/values. Ignoring the
co-factorh, the communication between the challenger and the algostiluring theTest (117 ;)
query is carried out according to the distributiotisand) of Lemma 5.1. 7

It should be noted that after thiest(II; ;) query, the adversary may create bogus oracles for
the participantdD; andID; and send boéus messages that may depend on all existing eommu
nicated messages (including messages held by the dﬁaglkand then reveal session keys from
these oracles. In particular, the adversary may play a méreimiddle attack by modifying the
messages sent froiih; 7.0 10 Hf,’ ; and modifying the messages sent fra“)[ﬁ o1y ;. Then the

oraclesﬂjl andHiJ are not matching oracles. Thutcan reveal the session key held by the
oracIer]’I before the guess. In thR, part in the distributionst’ and) of Lemma 5.1, we have
the condition Y # g°% or g, # g"¥°” (this condition holds since the algorithtt has not
revealed the matching oracles fdf ;). If both g4, # g?*0 andg A1 # g7, then the oracle
HSJ:I is a matching oracle fdil; ; and.A is not allowed to reveal the session key held by the oracle
Hf',:I. Thus, Ignoring the co-factdr, the communication between the challenger and the algorith
S during thesa‘est(Hj‘,,J) query is carried out according to the distributiokisand)’ of Lemma
5.1.

In the summary, all communications between the challengé«Saare carried out according
to the distributionst and) of Lemma 5.1. This completes the proof of the Theorem. a
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6 Perfect forward secrecy

In this section, we show that the protocol IDAK has the addii perfect forward secrecy prop-
erty when both parties long term private keys are corrupidtht is, even if Alice and Bob lose
their private keysiy = ¢fp, anddp = gi;, ., the session keys established by Alice and Bob
in the previous sessions are still secure. In order to shasy ithis sufficient to show that the

two distributions (R (g1 4, gip )T ’glyDB”(y*”(egDB’g?bA”0‘) and (R, é(gip 4, 910y )?)

are computationally indistinguishable f& = (gf‘DA, 9D g+ 9D 40 g%DB) and uniform at random
choseryp ,, 9ip5, %, ¥, 2, . Consequently, it is sufficient to prove the following thewr.

Theorem 6.1 LetG = {G,} be a bilinear group family(z, = (G, G1,¢é). Assume that DBDH-
Assumption holds fag. Then the two distributions

X = (91’9279%’93,9%793’é(glaQQ)J:ya)
and Y= (91,9297, 95, 91,95, €(91,92)°)

are computationally indistinguishable for random chogengs, x, v, z, a.

Proof. We use a random reduction. For a contradiction, assume tiea¢ is a polynomial
time probabilistic algorithmD that distinguishest’ and)’ with a non-negligible probability,..
We construct a polynomial time probabilistic algorith# that distinguishegR, é(g, g)!) and
(R,é(g,9)""™) with 6, whereR = (g, 9", ¢",¢") andu, v, w, t are uniformly at random itZ,.
Let the input of A be (R, é(g,9)"), wheret is eitheruvw or uniformly at random inz,. We
constructA as follows. A chooses random, c2, c3,c4,c5 € Z, and setgy; = ¢!, go = g2,
g% — guclce,’ 9(21 — gucgcg’ g%‘ — gvclc4’ g?2J — gwcgcg)’ andé(gl,QQ)g — é(g’g)tcwg%cws. Let
A <R, é(g,g)£> =D (gl, 92, 9%, 95, 9%, 95, é(g1, gg)g) . Note that ift = uvw, thency, ca, o, .,y
are uniform inZ, (and independent of each other andwb,w) andzya = Z. Otherwise,
c1,c2, o, v,y are uniform inZ, and independent of each other anduot, w. Therefore, by the
definitions,
Pr[A(R,é(g,9)"") = 1] = Pr[D(X) = 1]
and Pr[A(R,é(g,9)") =1] =Pr[D(Y) =1]

Thus A distinguishes(g, g%, g%, g, é(g, 9)!) and (g, g*, g°, g, é(g, g)“**) with d;. This is a
contradiction. O
Though Theorem 6.1 shows that the protocol IDAK achieve$epeforward secrecy even
if both participating parties’ long term private keys wergrapted, IDAK does not have perfect
forward secrecy when the master secreivere leaked. The perfect forward secrecy against the
corruption ofa could be achieved by requiring Bob (the responder in the IDpiétocol) to send
g%’DA in addition to the valueRp = gi”DB and by requiring both parties to compute the shared
secret adl (g7p , ||skap) whereskap is the shared secret established by the IDAK protocol.

7 Key compromise impersonation resilience
In this section, we show that the protocol IDAK has the key poomise impersonation resilience

property. That is, if Alice loses her private kéyy = gfp, ,, then the adversary still could not
impersonate Bob to Alice. In order to show this, it is suffittieo show that the two distributions
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(97 R w(Rp,gh a i
(R,é (gi”DA 'glég:DA B),RB : gngBB gIDA)) ) and (R, é(gip,, g0 )?) are computationally
indistinguishable forR = (g}, ,, 91p ,» 2B), Wheregp ,, gip,, 7, 2, are chosen uniform at
random, andR g is chosen according to some probabilistic polynomial tirngtritbution. Since
. 79, RB) m(Re.gfp )\ . o . ,
the valueé { g, BB 9ip, is known, it is sufficient to prove the following

theorem.

Theorem 7.1 LetG = {G,} be a bilinear group family, = (G, G1,¢é). Assume that DBDH-
Assumption holds fai. Then the two distributions

~ Rp.,0%)\ ¢
X = (9179279(1179%>RB,6 (9%>RB gg( B 91)) )

and y: (9179279?79%7RBaé(gl>g2)Z)

are computationally indistinguishable for random choggngs, x, z, o, where R is chosen ac-
cording to some probabilistic polynomial time distributio

Proof. Sincegf is chosen uniform at random, andis a random oracle, we may assume that

Rp - g;r(RB’gf) is uniformly distributed overs when R g is chosen according to any probabilis-
tic polynomial time distribution. Thus the proof is similar the proof of Theorem 6.1 and the
details are omitted. The theorem could also be proved us$iagSplitting lemma [24] which
was used to prove the fork lemma. Briefly, the Splitting leminzenslates the fact that when
a subsetd is “large” in a product spac& x Y, it has many large sections. Using the Split-
ting lemma, one can show that## can distinguishX and ), then by replayingD with differ-
ent random oracle, one can get sufficient many tuplég, g2, g%, 97, R, m1, m2) such that (1)
m1(Rp,97) /m2(Rp,g7); (2) D distinguishesY; and) (respectivelyX> and)) whenz is uni-
formly chosen but other values takes the values from theeabagsle withx; (respectivelyrs).
since ¢ (g, R - 95" ") " je (g1, R - 632 0)" = & (g1, o) m ool ma(Roa),
Thus, for the above tuple, we can distinguisty;, g2)* from é (g, g)* for random chosen.
This is a contradiction with the DBDH-Assumption. O

8 IDAK with key confirmation

The security Definition 4.1 in Sectiogd for key agreement protocols does not provide the fol-
lowing assurance to a usHD; during a key agreement protocol: one ordﬂ@ has been engaged
in a conversation and has successfully finished the proteitbla session key output. However,
there may be no matching orad]Ej; existing at all (though according to the definition, the ad-
versary learns zero information about the session key held;D. In order to provide assurance
against the above scenario, we study secure key agreensémt@s with key confirmation in this
section. First we slightly modify our matching oracle ddfom from Sectiont4. The definition

of matching oracles in Sectidi# does require all messages thg} sends out should reach its

matching oracIeHj-; and vice versa. In this section, when we talk about matchragles, we do
not require the last message of the protocol to reach iténaéisin. Indeed, in any protocol, the
party who sends the last message flow cannot “know” whetheotdts last message was received
by its partner (see [3]).

Let No-Matching” (k) denote the event that, during the protocol execution agtiesadver-
sary, there exists an oradE; with the following properties:
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1. IT;; has been engaged in a conversation and has successfulletirtise protocol with a
session key output.

2. There is no matching oracléj.; for IT7; existing.
3. The adversary has not compromised the long term keyidXoandID;.

Definition 8.1 A protocolII is a secure key agreement protocol with key confirmatidm i$ a
secure key agreement protocol and the probabilitilofMatching” (k) is negligible.

It is straightforward to observe that IDAK is not a securelig sense of Definition 8.1. In this
section, we design a secure key agreement scheme with kigneation. We first briefly describe
message authentication code.Message Authentication Codsee, e.g., [1]) is a deterministic
polynomial time algorithmMAC . (-). To authenticate a messagewith a key K, one computes
the authenticated message pait,a) = (m, MACg(m)), wherea = MACg(m) is called the
tag onm. A MAC scheme is secure if the probability for an adversarfage a taga for a
(not authenticated yet) messageof the adversary’s choice under a randomly chosenKeg
negligible. The adversary is allowed to make adaptive-agsaittacks. That is, the adversary can
choose messages’ (different from the target message) and ask the MAC oractget®rate the
authentication tag om’ under the target ke¥x . In the following, we describe the IDAK protocol
with key confirmation and show that it is secure according efifition 8.1.

TheSetupalgorithm is the same as that in IDAK protocol, in additiore also need to choose
two additional random oracleq; andH, (both will be used as key derivation functions), and a
secure message authentication funciéAC .(-) (see, e.g., [1]).

TheExtract algorithm for IDAKC is the same as that in IDAK protocol.

The Exchangealgorithm for IDAKC proceeds as follows:

ExchangeFor two participants Alice and Bob whose identificationrggs arelD 4 andID g re-
spectively, the algorithm proceeds as follows.

1. Alice selectse € Z;, computesi 4 = gjp, ,, and sends it to Bob.
2. (a) Bobselecty €r Z;, computesip = gpp, -
(b) Bob computesy = n(Ra, Rp), sg = m(Rp, Ra), and the shared secrétpak as
5 T+s s o ~ s sB)ha
e(ngB7ngA)( tea)utaphe = g (QISA 'RA,Q%E 7 > ’
(C) Bob computed(; = Hl(SkIDAK) andK, = H2(5kIDAK)-
(d) Bob computedACk, (IDg,ID4, R, R4) and sends this together wift; to Alice.
3. (a) Alice computesy = (R4, Rp), sp = 7(Rp, Ra), and the shared secrgtiprx as

)(@+sa)w+sp)ha <m+sA>ha) '

(91D 91D 4 =e <9181533 “Rp,g1p,

(b) Alice computesKl = Hl(SkIDAK) anng = HQ(S]{?IDAK).
(c) Alice computesMACk,(ID4,IDg, R4, Rp) and sends this to Bob.

Theorem 8.2 Assume thatd, =, H; and H, are independent random oracles, MAC is a se-
cure message authentication function, and the group faghiatisfies DBDH-Assumption. Then
IDAKC is a secure key agreement protocol with key confirmatio
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Proof. By Theorem 5.2, IDAKC is a secure key agreement protocol.s\e only need to show
that the probability oNo-Matching” (k) = ¢, is negligible.

For a contradiction, assume that the adversary has a ndigibky advantage:;, such that
there exists an oracl8lj; that has been engaged in a conversation and has succedsfully
ished the protocol with a session key output, but there is atcihing oracld'[f’,} existing. We
show how to construct a simulatét that uses4 as an oracle to forge an authentication tag on
an un-authenticated messageunder an unknown random key with non-negligible advantage
ex (2% — 1)(1 — 01)(gr — 2)(¢2qn — 2)?/q5q32%, whereq is the number off-queriesthat
the simulation makes;y is the maximum number of IDAKC key agreement sessions ttet th
algorithm A initiates for each participant,, is the probability that the adversary can compute the
session key of an un-revealed oracle. The game betweendherayer and the simulatd¥ starts
with the challenger first choose a random Kéyfor the MAC scheme. During the simulation,
S can present messagesto the challenger to get the MAC tag am under this keyC (but the
adversaryA is not allowed to ask the challenger for MAC tags). At the efithe simulation, the
algorithm S is supposed to output a messageand its guess for the MAC tag onm under the
key K. The algorithmS works by interacting withA4 as follows:

Setup: Algorithm S selects uniformly at random system parameters, G, G1,é, H, H1, Ha, )
and gives it ta4, whereH, H1, H2, andw are random oracles controlled Byas follows. These
random oracles could be queried 8r A during the simulation. Meanwhile; keeps the master
secret keyy in secret.

H-queries w-queries, H;-queries andHy-queries They are the same as thequeriesin the
proof of Theorem 5.2. That iy answers all distinct queries independently and randombteN
that H-queriesdefined here is different from that in the proof of Theorem 5.2

Query phase (MAC forgery phase): S chooses three integefisJ < n andsy < g¢n, and
responds tod’s queries as follows.

For anExtract(ID;) query,S runs theH-queriesto obtaingp, = H(ID;) and responds
with dIDi = gf‘Di.

For aSend (1T}

; ;»X) query, we distinguish the following three cases:

1. X = A Inthis casell; ; is the protocol initiator.S chooses a random; € Z, and sets
R; = gﬁgi. S letsII? ; reply with ;. That is, we assume thHD; is carrying out an IDAKC
key agreement protocol witth; andID; sends the first messagg to ID;.

2. X # X and the transcript of the oracléfvj is empty. In this casell? ; is the protocol
responder and has not sent out any message§ethooses a random; € Z, and sets
R; = gflgi. S then distinguishes the following two cases:

() i = I andj = J ands = sq. Instead of running th&{,-queriesto obtainK’’, S asks
the challenger to generate the MAC tag; for the messager = (ID;, ID;, R;, R;)
whereR; is the random component received from the other oragleetsII7 ; reply
with (Ru ai])

(b) i # Iorj# Jors # so. S computes the session keying matesiagd Ak and runs the
Ho-queriesto obtainky? = Hi(skipak). S computes:? ; = MACKé,j (ID;,ID;, R;, R;)
and letslI; ; reply with (Ri,aij), whereR; is the random component received from

the other oracle.
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3. X # A and the transcript of the oraclé’ ; is not empty. In this casel; ; is the protocol
initiator or responder and should have sent out the first agesslreadyS then distinguishes
the following two cases:

(@i =Tandj = J ands = sqg. If there is a matching oracIHSO for H?OJ, thenS
aborts the simulation with failure. Otherwise, hei be the recelved MAC tag for
the messagen = (ID;,1ID;, R, R;). S outputSa as the guessed MAC tag for
the messager = (ID;,ID;, R;, R;) (S can termlnate the simulation now. However,
for easy analysis of the probability, we continue the sirmoitg. S then asks the
challenger whether this MAC tag is valid. If the challengeahswer is yes$ marks
IT7 ; as completed/accepted and terminate the simulation. Bltenger's answer is
no S markslI ; completed/rejected. Note that, according to the IDAKC qeot, if
the oraclell? ; is the protocol initiator, then it should send the messagjeetication
tag to the responder as the last message. However, by the efanitidn matching
oracles, this message does not matter.

(b) © # Iorj# Jors # so. If II7 ; is the protocol responder, thehshould have com-
puted the shared secht;J aIreadyS computes the MAC tag;, = MAC Kb 5 (ID

ID;, R;, R;) where R; is the random component received from the other oracle and
compares this tag W|th the received ta§.marksII; . ;;as completed/accepted if the
two tags are the same, and marks it completed/rejected ifintbdags are different.

For the case thdfl; ; is the protocol initiator,S computes the session keying mate-

rial skppax and runs thet{,-queries to obtain K;’j = Hi(skipak). S computes

a;i j = MAC ., (ID;, 1Dy, R;, R;) and letsl ; reply with a? ;, whereR; is the ran-
2 2 i 2

dom component received from the other oracle.

For aReveal(Hij) query, if % = I andj = J ands = s¢” or “11 ; is the matching oracle for
I1°,” then S aborts the simulation. Otherwis§,computes the session keying matesigipaxk,

runs theH;-queries to get K/ = H;(skipak), and responds withi!/. For aCorrupt (i)
query, ifi = I ori = .J, thenS aborts the simulation. Otherwis&,responds withiip, = gfp, -

Claim: If S does not abort the simulation, thetis view is identical to its view in the real attack.
Proof of Claim: It is straightforward. O

Suppose that the simulation process makes at mosii-queries and gy be the maximum
number of IDAKC key agreement sessions that the algorithrinitiates for each participant.
We next calculate the probability th&t succeeds in forging an MAC tag on a message that the
challenger has not authenticated.

We first calculate the probability th&t does not abort the simulation. The probability that
S does not abort foSendqueries is(¢%gn — 2)/q%qn. The probability thatS does not abort
for Reveal queries is(¢%qn — 2)/q%qn. The probability thatS does not abort foCorrupt
queries iS(gg — 2)/qE Therefore, the probability tha does not abort during the simulation is
(a8 — 2)(agan — 2)*/apai-

If the algorithm.A is successful during that simulation (the probability ikasts;), then there
is a completed/accepted oradl ; that has no matching oracle. Since there are at Mgl
oracles during the simulation, the probability for thisaleato be the oraclHii’J is1/q%qn. Thus
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the probability that the oraclH}’, is marked as completed/accepted is at least

((ae — 2)(apan — 2)*/d5ay) - ex - (1 apan) = exlae — 2)(ahan — 2)*/apay-

If the oracIer,? ; is marked as completed/accepted, tifeautput a guessed valid MAC tag
a’ ; for the messagen = (ID;,IDy, Ry, Rr). We next calculate the probability that the chal-
Ieﬁger has never been asked for the MAC tag on this messagbepdobability thatd does not
guess correctly about the keying materials held by the erﬁt}‘lJ (that is, the probability that
the MAC tag is generated without knowing the secret key orr@sme challenger to generate
it). Since there is no matching oracle adds not allowed to ask the challenger for MAC tags,
generates this tagj; ; by one of the following three approaches: ($)asked the challenger to gen-
erate the MAC tag for the message= (ID;,ID;, R, Ry) for another oracIéIjI. Sinceﬂjl is
not the matching oracle fdi;°;, the event in this case happens only with probabilitg?*. Here
we assume that the messag‘ﬁsand R; are allk bits long. (2)..A guessed correctly about the
session keying materiakpak for the oracldI}®;, and computed the MAC tagf; ; by herself. By
Theorem 5.2, this probability is bounded by some negligialeedy. (3). A generated the MAC
taga? ; by random choice or by using other techniques (e.g., by utamg in the MAC scheme).
Accofding to the security definition of MAC schemes, the &ggon the MAC tag is successful
when the events in case (3) happens. Thus, by excluding tmlbpitities for the cases (1) and
(2), the probability that MAC forgery experiment is sucdakander the condition that the oracle
I17°; is marked as completed/accepted is at l¢ast (1/22%))(1 — 6;,) = (225 — 1)(1 — &;) /22"

In a summary, the probability th&t successfully forged the MAC code on the un-authenticated
messagen = (ID;,ID;, Ry, Ry) is at least

ex(2 = 1)(1 = 6)(qe — 2)(qhan — 2)*/qpai2®

which is non-negligible sincey is non-negligible andy, is negligible. This completes the proof
of the Theorem. O

9 Practical considerations and applications

9.1 The functionn

Though in the security proof of IDAK key agreement protoeois considered as a random oracle.
In practice, we can use following simplifiedfunctions.

e 7is arandom oracle (secure hash function) frlénx G to Z3,,, 1. (€.9.,c = 2).

o If g1 = (24,,9q,), 92 = (24,,Y4,) € G are points on an elliptic curve, then tetg:, g2) =
z, mod2/®sl/2 wherez, = x4, ® z,4,. Thatis,m(g1,g2) is the exclusive-or of the second
half parts of the first coordinates of the elliptic curve s andgs.

e 7is arandom oracle that the output only depends on the théniingt variable or any of the
above function restricted in such a way that the output oelyethds on the the first input
variable. In another words : G — Z;‘.

It should be noted any function, for which Lemma 5.1 holds, can be used in the IDAKtpcol.
Though we do not know whether Lemma 5.1 holdssfdunctions that we have listed above, we
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have strong evidence that this is true. First, if we assuratthlie groups is a generic group in

the sense of Nechaev [21] and Shoup [30]. Then we can provee¢hama 5.1 holds for the above
7 functions. Secondly, if the distributio@(¢®, ¢", ¢, ¢°, g7, ¢°¥°) in Lemma 5.1 is restricted to
the distribution:

{gl@reByBroy) . fis alinear functiony is a tuple of uniformly random values frog, }.

Then we can prove that Lemma 5.1 holds for the abofenctions. We may conjecture that the
adversary algorithrd can only generatg 4 and g"¥° according to the above distribution unless
CDH-Assumption fails forG. Thus, under this conjecture (without the condition thatis a
generic group), the above list affunctions can be used in IDAK protocol securely.

9.2 Performance

Our analysis in this section will be based on the assumpltiatwtis a random oracle (secure hash
function) fromG x G to Z,,,, .- Since the computational cost for Alice is the same as that fo
Bob. In the following, we will only analyze Alice’s compuian.

First, Alice needs to choose a random numbemd computeyyy, , in the groupG. In order

for Alice to computesk = é (QFSB - Rp, g\ "), she needs to db.5 exponentiation irG,

one multiplication inz, and one pairing. Thus in total, she needs t@doexponentiation inG,

one multiplication inGG, and one pairing.

. . (z+sa)h
Alternatively, Alice can compute the shared secretfas- ¢ (gng -Rp, gf‘DA> 7 Thus

for the entire IDAK protocol, Alice needs to do5 exponentiation ir (one forgy, , and0.5 for
gng), one multiplication inz, one pairing, and one exponentiationGf.

The IDAK protocol could be sped up by letting each particigdmsome pre-computation. For
example, Alice can compute the valuesgf |, gﬁg‘A, gﬁgj before the protocol session. During

the IDAK session, Alice can compute the shared secretkas- é (gf’gB - Rp, gih> -gfﬁ"ja)

which needsl exponentiation irG (0.5 for g7 - and0.5 for gfﬁ‘fo‘), 2 multiplications inG, and

]
one pairing. Alternatively, Alice can compute the sharestesteassk = ¢ (gng -Rp, gﬁng) !

which need$.5 exponentiation iz, one multiplication in7, one pairing, and one exponentiation
in G1. In a summary, Figure 1 lists the computational cost for élic

without pre-computatior] with pre-computation
choice 1 choice 2 choice 1| choice 2
pairing 1 1 1 1
exponentiation ir; 2.5 1.5 1 0.5
multiplication inG 1 1 2 1
exponentiation irG 0 1 0 1

Figure 1: IDAK Computational Cost for Alice
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9.3 Escrow

In the IDAK key agreement protocol, one has to trust the édistuthority TA since TA has suf-
ficient capability to impersonate any participants and tmjgote the agreed secrets for any key
agreement sessions unless the shared secret is compute@ds ||skap) as described in sec-
tion §6. As mentioned in [6], identity-based systems have therabpuoperty to be escrowed. For
example, we assume that there atelAs in the systems, each of them holding a partial master
secretw;, and the master secretdsg + ... + «a,,. Each participant could get her partial private
key gy from TA; and compute her private key a3, - - - g3

9.4 Applications

IDAK key agreement protocol could be used in all these emwirents that identity-based public
parameters are deployed (e.g., these environments distirs§6]). One of the most promising
applications could be the VoIP environments. VoIP systerashbacome more and more popular.
However, Internet environment is generally not as secutleeasaditional phone networks. Eaves-
dropping is dramatically easy in Internet environments tharaditional phone networks. Though
VPN could be one of the potential tools that could be useddtept the VoIP systems, recent ex-
periments show that there are many disadvantages for VRdBEP (the most important one is
the delays in several routers which could worsen VoIP ggaldn the other hand, we really do not
expect each VolP phone will get a public key certificate arahédizme when we make a phone call,
we need to import the certificate for the target phone firsgntily based key agreement protocol
provides a promising solution for VoIP systems. The pubdig for each phone could be based on
its identity (e.g., the phone number). Each time, when weawaghone call, the two phones will
use the IDAK protocol to establish a session key for contensaencryption/authentication. The
public key for each phone could be “permanent” (e.g., basetth® phone number) or temporary
(e.g., based on the identity consisting of phone numberiaratstamps).

9.5 One-pass IDAK and comparison with signcryption

In some case, one may heed an off-line version for the IDAKqa@l. For example, when Bob is
not on-line or Bob has extremely limited computational teses. One-pass IDAK protocol could
be used for these scenarios. For the one-pass IDAK prottie§etup and Extract algorithms
are the same as the IDAK protocol. TEgchangealgorithm proceeds as follows.

Exchange For two participants Alice and Bob whose identificationrgs areID4 andIDp
respectively, the algorithm proceeds as follows.

1. Alice selectst € Z,, computesika = gip , and set?p = gip,. Alice then computes
sa =7(Ra,Rp), sp = m(Rp, R4), and the shared secret 5 as

~ ~ h
e(gIDA7gIDB)(m+SA)(1+SB)ha - (gfgg ’ RB’ggx)—:SA) a) ’

2. Alice sendsRi 4 to Bob.

3. Bob setskp = gip,, computessy = 7(Ra, Rp), s = m(Rp, Ra), and the shared secret
skpa as

)(x+sA>(1+sB)ha 5 (gf}S‘A ‘R (1+sB)ha) '

é(gIDA>gIDB AagIDB
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If 7 takes values fromi, 2log q/Z]]’ then in the one-pass IDAK protocol, Alice needs to do two
exponentiations and one pairing. While Bob only needs tordoexponentiation and one pairing.

The one-pass IDAK protocol could be used for off-line cominations as follows. Alice
chooses randomk 4 and computes the shared secret. Alice can then encrypt theage it wants
to send to Bob and sendg, and the ciphertext to Bob at the same time. After Bob recdives
message, it can compute the shared secret and decrypt teagaesince IDAK is a secure key
agreement protocol, when Bob decrypts the message whichuffadent redundancy, Bob has
confidence that the message is really from Alice. In anotr@dyone-pass IDAK with message
encryption could be regarded as a variant of signcryptitreses. Note that the difference here
is that the signature could only be verified by Bob but not gthin recent years, several identity
based signcryption schemes have been proposed. All of sebeenes requires the recipient to do
two or more pairing computation (while the sender may notirteado any pairing computation).
In the one-pass IDAK scheme, the recipient only needs to @égoairing. This property could be
useful in several applications.

10 Related protocols

10.1 Smart protocol

Smart [32] proposed an identity-based and authenticatgadieement protocol without security
proofs. Briefly, Smart’s protocol works as follows: The ted authority needs to publish the
public keyg® first (note that our protocol does not require a public key) distributes the private
keysgip , andgiy, . to Alice and Bob respectively. During the key agreementisesalice selects
r €r Z,; and sendg” to Bob, Bob selecty €r Z; and sendg? to Alice. Then both parties
compute the shared seceétvs = é(g{p, " 9ip ,» 9%) = €(9ip - 9%) - €(91p ,» 9%) = €(gip 55 9%)-
(9 ,,9%) = €(9mp,, 9%) é(g%’DA,g“). A simple analysis shows that Smart’s protocol requires
the computation of two exponentiations and two pairingsstwh party. Meanwhile, the only pre-
computation that each party could do is to select the randaoey (respectivelyy) and compute
the value ofg” (respectivelyg?). Thus with pre-computation, Smart’'s protocol still regsi one
exponentiation and two pairings for each party. It is stifiyward to show that Smart’s protocol
is not secure against key revealing attacks and does nopleaieet forward secrecy if both parties’
private keys were leaked.

10.2 Chen and Kudla protocol

Chen and Kudla [7] proposed an efficient identity-based atitesticated key agreement protocol.
Briefly, Chen-Kudla'’s protocol works as follows: The trudtuthority distributes the private keys
9tp,, andgfh, . to Alice and Bob respectively (similar to our protocol, ndpic key is required).
Alice selectsr € Z; and sendgyj, , to Bob, Bob selects €z Z; and sendg%’DB to Alice. Then
both parties compute the shared seefgix = é(gips, gip,) "™ = é(gfy, - 9ib,+95,) =
é(gﬁDB,g%DA . g%DA). Analysis shows that this protocol requires the computadiotwo exponen-
tiations and one pairing for each party. Meanwhile, the @nércomputation that each party could
do is to select the random value(respectivelyy) and compute the value aff, | (respectively,
g%’DB). Thus with pre-computation, this protocol still requise exponentiation and one pairing
for each party.
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One disadvantage of Chen-Kudla protocol is that this patdoes not have the perfect for-
ward secrecy property. That is, if the private keys of Alicel 8ob are corrupted at some time,
then the adversary can compute all past session keys useddreflice and Bob. Another seri-
ous disadvantage of Chen-Kudla protocol is that its secigitndeed unproved. Chen and Kudla
[7] proved that their protocol is secure in the Bellare-Regga [3] secure key agreement model.
However, Cheng et al. [9] pointed out that the proof in [7] snféd and their protocol is not
secure against key revealing attacks. Since the key regeatiiack is the fundamental property in
Bellare-Rogaway model [3], a security model for key agresnpeotocol without modelling key
revealing attacks has limited value. For example, in sudmigeld model, it is impossible to infer
whether the key agreement protocol is secure against iantaxttacks such as known session key
attacks and unknown key share attacks.

10.3 Scott protocol

Scott [27] proposed a key exchange protocol with passwotideatications for the private key.
Briefly, Scott’'s protocol works as follows: The trusted aarity needs to choose a master secret
« and distributes the private keyg, , andgiy, , to Alice and Bob respectively. Alice may choose
a password: to store her private key agj, . In the following discussion, we will omit the
password protection part. During the key agreement sgs8iae selectsz €r Z; and sends
é(g1p 4, 91D 5 )™ to Bob. Bob selecty € Zy and send€(gp ,, gip; )Y to Alice. The shared
secret i$(gp ,, 9105 ) **Y. This protocol is not secure according to Definition 4.1. @deersary
may choose a random numbeand change the message from Alice to Boltap ,, gip )¢
and change the message from Bob to Alicé&tgp , , gip,)*Y¢. Both Alice and Bob will then
compute the shared sec@&lyp ,, gip, ). Since the oracle at Alice side is not a matching
oracle for at Bob’s oracle, the adversary could reveal Bab'ssion key before testing Alice’s
session key. Thus the adversary will succeed in the testiegyq

10.4 Shim protocol

Shim [29] proposed an ID-based key agreement protocol &svel During the key agreement
session, Alice selects €z Z; and sendg” to Bob. Bob selecty € Z; and sendgy to
Alice. The shared secret is computed &g/, g1, - g%’DA -g™)é(gmp 4, 91D ), Whereg® is the
system-wide public key. Sun and Hsieh [33] showed that Shprotocol is insecure against key
compromise impersonation attacks or man in the middle kegtac

10.5 McCullagh and Barreto protocol and its variants

McCullagh and Barreto [18] proposed an ID-based key agraepretocol as follows. Assume
that the system wide master secretisAlice’s identity is mapped to an integery € 7, and
Bob's identity is mapped to an integer € Z;. Then Alice and Bob’s public keys apgtea and
gtaes respectively. Their secret keys ay@+a4)™" andg(@tas)™" respectively. During the key
agreement session, Alice selects p Z; and sendg®(@+25) to Bob. Bob selecty cp Zy and
sendsg(®“*t24) to Alice. The shared secret is computedéég ¢)*Y. Xie [35] showed that this
protocol is insecure against key compromise attacks. Atthahis protocol igprovedto be secure
[18] in Bellare-Rogaway model, Choo [15] pointed out that@ddlagh and Barreto’s protocol
is insecure against key revealing attacks. Thus the pro@f8h must be invalid. McCullagh
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and Barreto [19] revised their protocol to resist Xie’s kétaek by letting the shared secret as
é(g,9)* Y. But this modified protocol obviously does not achieve petrferward secrecy.

In order to avoid the key compromise attacks on McCullaghBateto’s protocol, Xie [36]
modified McCullagh and Barreto’s protocol by letting the rgthsecret bé(g, g)*¥+**¥. Unfor-
tunately, this modification is unsuccessful. Li, Yuan, andi7] showed that Xie’s protocol in
insecure against key compromise attacks.

Li, Yuan, and Li [17] then proposed a further modification of@ullagh and Barreto’s proto-
col by letting the shared secret bgy, g)*¥ + é(g, g)**¥. Currently, there is no security proof for
this modified protocol.
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