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Abstrat. In this paper, we investigate the relationship between the squared Weil/Tate pairing

and the plain Weil/Tate pairing. Along these lines, we �rst show that the squared pairing for

arbitrary hosen point an be transformed into a plain pairing for the trae zero point whih has

a speial form to ompute them more eÆiently. This transformation requires only a ost of some

Frobenius ations. Additionally, we show that the squared Weil pairing an be omputed more

eÆiently for trae zero point and derive an expliit formula for the 4th powered Weil pairing

as an optimized version of the Weil pairing.
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1 Introdution

After Boneh and Franklin [6℄ proposed an identity-based enryption sheme using the Weil

pairing, many ryptographi shemes based on the Weil or Tate pairing have been introdued.

Although these pairings both provide good funtionality for use in ryptosystems, pairing

omputations are often the bottlenek to realize ryptographi appliations pratially. So,

fast implementations of these pairings have beome a subjet of ative researh areas in ellipti

urve ryptography.

The omputation of the Weil/Tate pairing an be performed using an algorithm �rst pre-

sented by Miller [14℄. Reently proposed improvements [11, 2, 8, 1℄ are based in some manner

on it. Spei�ally, they make a use of elimination of irrelevant fators and denominators dur-

ing the omputation of Tate pairings on supersingular urves whih were originally proposed

as a suitable setting for pairing-based shemes. However, reent works have additionally fo-

used on optimizing pairing omputations of ertain ordinary urves suh as MNT urves [15,

4, 17, 16, 3℄. Although there are a number of advantages in using supersingular urves suh

?
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as distortion maps, a small number of usable urve or doubt of their long term seurity has

led one to investigate the use of ordinary urves. Espeially, Barreto et al. [4℄ showed how

to selet groups in MNT urves where many optimization tehniques proposed for supersin-

gular urves [11, 2℄ have a ounterpart. Independently, the notion of the squared pairing was

introdued by Eisentr�ager et al. [9℄. The objetive of this notion is to generalize onseutive

omputation of plain pairing and squaring on it by uni�ed approah. The authors show that,

when omputing the squared pairing, partial fators an be disarded in eah step. Addition-

ally, their algorithm is deterministi and does not depend on a random hoie of points for

evaluation of the pairing. However, by reason of seurity, they only onsidered a general ase

where there is no anelation of denominators.

Our main ontribution in this paper is to onnet the squared pairing to the plain one. We

show that for a very small ost, the squared pairing for a randomly hosen point R on E(F

q

2d

)

an be transformed into the plain pairing for a trae zero point Q whih has x-oordinate

over a smaller �eld F

q

d

. From a pratial point of view, our result seems to show that there is

no real advantage in omputing the squared pairing diretly. At the same time, our result an

be regarded as showing how to ompute the squared pairing in a muh more eÆient fashion

using several optimization tehniques in [4℄. Espeially, we applied these tehniques for the

Tate pairing to the squared Weil pairing using the fat that (1 � p

d

)th power of the Weil

pairing is the same as the squared one.

3

Taking a step forward, we an derive an interesting

expliit formula for the 4th powered Weil pairing by adapting several optimization tehniques

to ompute the squared Weil pairing. This squared or 4th powered Weil pairing is muh faster

than the plain one, so it beomes more meaningful with respet to the laim in [13℄: the proper

powered Weil pairing (atually it is the squared Weil pairing) an be omputed faster than

the Tate pairing at high seurity levels. Throughout this paper, our main onern is pairings

de�ned over ordinary urves with suitable embedding degree suh as MNT urves. However,

the priniples an of ourse be easily adapted to the ases of supersingular urves.

The paper is organized as follows. After introduing the squared pairing and Eisentr�ager

et al.'s algorithm briey in Setion 2, we present the onnetion between the squared Tate

pairing and the plain pairing in Setion 3. In Setion 4, we show that a similar property holds

for the squared or 4th powered Weil pairing. Finally, we draw our onlusions in Setion 5.

3

Our work had almost been done independently before Koblitz and Menezes's paper [13℄ ame out in publi.

They used the method of properly powering the Weil pairing to drop o� some redundant fators, whih has

turned out to be just the squared Weil pairing through our work.
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2 Preliminaries

In this setion, we give a brief summary of several mathematial bakgrounds and de�nitions

of Tate and squared pairings. Additionally, we review Miller's algorithm for the Tate pairing

omputation and Eisentr�ager et al.'s algorithm for the squared pairing.

2.1 Ellipti Curves

Let q be a prime or prime power and let F

q

denote the �nite �eld with q elements and let p

be a harateristi of F

q

. An ellipti urve E de�ned over F

q

an be desribed as the set of

points (x; y) satisfying the Weierstrass equation

y

2

+ a

1

xy + a

3

y = x

3

+ a

2

x

2

+ a

4

x+ a

6

;

where a

i

2 F

q

. Let x(P ) and y(P ) denote the rational funtions mapping P 2 E to its aÆne

x- and y-oordinates, respetively. If K is an extension of the �eld F

q

, the set of K-rational

points of E, whih we denote by E(K), is the set of points P suh that x(P ); y(P ) 2 K,

together with a speial element O, alled by point at in�nity.

For P;Q 2 E(K), we an de�ne the sum P + Q aording to some simple rule. Expliit

formulas for omputing the oordinates of a point P

3

= P

1

+ P

2

from the oordinates of P

1

and P

2

are well known [5℄. E(K) is an abelian group under this operation with the identity

element O. It is easy to show that E(F

q

) is a subgroup of E(K). The number of points of

E(K) is alled its order. The Hasse bound states that #E(F

q

) = q + 1� t, where jtj � 2

p

q.

Here t is alled the trae of the Frobenius endomorphism stated below. Curves whose trae

t is a multiple of the harateristi p are alled supersingular. The order of a point P 2 E

is the smallest integer r > 0 suh that [r℄P = O. The set of r-torsion points of E, denoted

E(K)[r℄, is the set fP 2 E(K) j [r℄P = Og.

Let K = F

q

k

. Then the q-th power Frobenius endomorphism of E is the mapping

� : E(F

q

k

)! E(F

q

k

); where (x; y) 7! (x

q

; y

q

):

Thus a point P 2 E(F

q

k

) is de�ned over F

q

i
if and only if �

i

(P ) = P . Using the Frobenius

map, we an de�ne the trae map

Tr : E(F

q

k

)! E(F

q

) as Tr(R) =

k�1

X

i=0

�

i

(R);

for any point R 2 E(F

q

k

). The harateristi polynomial of the Frobenius map � is

�(u) = u

2

� tu+ q:
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Sine �(u) = (u � 1)(u � q) mod r, the eigenvalues are 1 and q. The 1-eigenspae of � on

E[r℄ is E(F

q

)[r℄ and the q-eigenspae of � on E[r℄ onsists of all points R 2 E[r℄ satisfying

Tr(R) = O [4, 10℄. In fat, it is well known that if rj#E(F

q

), there is a basis P;Q for E[r℄

suh that �(P ) = P and �(Q) = [q℄Q.

A subgroup G of an ellipti urve E(F

q

) is said to have seurity multiplier k if its order r

divides q

k

� 1, but does not divide q

i

� 1 for all 0 < i < k. If E is supersingular, the value of

k is bounded by k � 6. The group E[r℄

�

=

Z

r

�Z

r

lies in E(F

q

k

). Let P 2 E(F

q

) be a point of

order r suh that hP i has seurity multiplier k. Then E(F

q

k

) ontains a point Q of the same

order r but linearly independent of P .

A divisor on E is a formal sum D =

P

P2E(F

q

k

)

n

P

(P ) where n

P

2 Z. The set of points

P 2 E(F

q

k

) suh that n

P

6= 0 is alled the support of D. The degree of D is the value

deg(D) =

P

P

n

P

. The zero divisor has all n

P

= 0. The sum of two divisors D =

P

P

n

P

(P )

and D

0

=

P

P

n

0

P

(P ) is the divisor D + D

0

=

P

P

(n

P

+ n

0

P

)(P ). Given a nonzero rational

funtion f : E(F

q

k

) ! F

q

k

, the divisor of f is the divisor (f) =

P

P

ord

P

(f)(P ) where

ord

P

(f) is the multipliity of f at P . It follows from this de�nition that (fg) = (f) + (g)

and (f=g) = (f)� (g) for any two nonzero rational funtions f and g de�ned on E; moreover

(f) = 0 if and only if f is a nonzero onstant. We say two divisors D and D

0

are equivalent,

D

0

� D if there exists a funtion g suh that D

0

= D+(g). For any funtion f and any divisor

D =

P

P

n

P

(P ) of degree zero, we de�ne f(D) =

Q

P

f(P )

n

P

.

2.2 Squared Pairings

Let G

1

; G

2

and G

T

denote �nite abelian groups in whih the disrete logarithm problem is

hard. By a pairing we shall mean a non-degenerate bilinear map e : G

1

� G

2

! G

T

: The

Weil or Tate pairing is one of examples de�ned on an ellipti urve. Let P;Q 2 E[r℄ and

pik two divisors A

P

and A

Q

whih are equivalent to (P )� (O) and (Q)� (O), respetively,

and suh that A

P

and A

Q

have disjoint supports. Let f

P

be the rational funtion with

divisor (f

P

) = r(P ) � r(O) = r � A

P

. Analogously, let f

Q

be a funtion on E whose divisor

(f

Q

) = r � A

Q

. Then the Weil pairing ! : E[r℄�E[r℄! F

q

k

is de�ned as

!(P;Q) :=

f

P

(A

Q

)

f

Q

(A

P

)

:

The Tate pairing is also de�ned based on f

P

(A

Q

). Let P 2 E(F

q

)[r℄ and Q 2 E(F

q

k

) be

linearly independent points. Then the (redued) Tate pairing �(P;Q) 2 F

q

k

on E(F

q

)[r℄ �

E(F

q

k

) is de�ned as

�(P;Q) := f

P

(A

Q

)

q

k

�1

r

:
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But it an be easily omputed by

�(P;Q) = f

P

(Q)

q

k

�1

r

;

as proven in [4℄. It means that the funtion f

P

is now evaluated on a point rather than on

a divisor. Furthermore, it makes the Miller's algorithm deterministi. If E is supersingular,

this de�nition an be modi�ed via a distorsion map � : E(F

q

) ! E(F

q

k

). It means that the

group G

2

an be seleted in E(F

q

) instead of a non-optimal hoie E(F

q

k

).

The squared Weil pairing is de�ned by

 (P;Q) = (�1)

r

f

P

(Q) � f

Q

(�P )

f

P

(�Q) � f

Q

(P )

;

for r-torsion points P; Q on E with neither being the identity and P 6= �Q. Additionally, the

squared Tate pairing v is de�ned by

v(P;Q) :=

 

f

P

(Q)

f

P

(�Q)

!

(q

k

�1)=r

:

Then it was shown in [9℄ that  (P;Q) = !(P;Q)

2

and v(P;Q) = �(P;Q)

2

:

2.3 Miller's algorithm

An essential part in omputing the Weil/Tate pairing is the evaluation of f

P

. Miller showed

how to ompute f

P

iteratively, using the divisors of the lines drawn by the seant-and-tangent

addition rule [14℄. Throughout this paper, we de�ne g

U;V

: E(F

q

k

)! F

q

k

to be the line through

points U; V 2 E. The shorthand g

U

stands for g

U;�U

whih is the vertial line passing through

U . If U = (u; v) and Q = (x; y), then g

U

(Q) = x� u.

It is well known that there exists a rational funtion f

;P

on E with divisor (f

;P

) = (P )�

([℄P ) � ( � 1)(O),  2 Z [9℄. Sine rP = O, Miller's algorithm omputes f

P

(Q) = f

r;P

(Q),

Q 6= O by oupling the above formulas with the double-and-add method to alulate rP .

Theorem 1. Let P be a point on E(F

q

) and f

;P

be a rational funtion with divisor (f

;P

) =

(P )� ([℄P ) � (� 1)(O),  2 Z. For all i; j 2 Z,

f

i+j;P

(Q) = f

i;P

(Q) � f

j;P

(Q) � g

[i℄P;[j℄P

(Q)=g

[i+j℄P

(Q):

2.4 Eisentr�ager et al.'s algorithm

In [9℄, Eisentr�ager et al. proposed an algorithm to ompute the squared Weil/Tate pairing. At

�rst, we introdue the algorithm for  (P;Q) where P and Q are r-torsion points on E. This
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algorithm is based on Miller's formula with an addition-subtration hain for r. For eah j in

the hain, form a tuple t

j

=

h

[j℄P; [j℄Q;n

j

; d

j

i

suh that

n

j

d

j

=

f

j;P

(Q) � f

j;Q

(�P )

f

j;P

(�Q) � f

j;Q

(P )

:

The squared pairing needs n

r

=d

r

. The reurrene formula is

n

i+j

d

i+j

=

n

i

d

i

�

n

j

d

j

�

g

[i℄P;[j℄P

(Q)

g

[i℄P;[j℄P

(�Q)

�

g

[i+j℄P

(�Q)

g

[i+j℄P

(Q)

�

g

[i℄Q;[j℄Q

(�P )

g

[i℄Q;[j℄Q

(P )

�

g

[i+j℄Q

(P )

g

[i+j℄Q

(�P )

; (1)

and begins with t

1

= [P;Q; 1; 1℄. But there is no need to ompute all value in the reurrene

formula. The vertial lines through [i + j℄P and [i + j℄Q do not appear in the formulae for

n

i+j

and d

i+j

, beause the ontributions from Q and �Q (or from P and �P ) are equal.

For the squared Tate pairing omputation v(P;Q) with P 2 E(F

q

)[r℄ and Q 2 E(F

q

k

),

above algorithm an be simpli�ed beause

n

j

d

j

=

f

j;P

(Q)

f

j;P

(�Q)

:

So the reurrene formula is

n

i+j

d

i+j

=

n

i

d

i

�

n

j

d

j

�

g

[i℄P;[j℄P

(Q)

g

[i℄P;[j℄P

(�Q)

(2)

and begins with t

1

= [P; 1; 1℄. Given t

i

and t

j

, t

i+j

or t

i�j

an be obtained as the ase of the

squared Weil pairing without hanging Q.

3 Squared Tate pairing

Suppose the seurity multiplier k to be even, and let d = k=2. As stated above, the objetive

of [4℄ is to generate the group G

2

in MNT urves that makes omputation of the Tate pairing

more eÆient, and so they use the twist of the urve E(F

q

d

) to generate G

2

. It allows the

denominator elimination optimization established for ertain supersingular urves [2℄. But

in our ase, we �x G

2

as E(F

q

k

) in advane, and suppose that an arbitrary base points in

G

2

is given. Hene we use an alternative way to pik a generator on the y that makes

the same optimization possible. For any R 2 E(F

q

k

), the point Q := R � �

d

(R) satis�es

�

d

(Q) = �

d

(R)�R = �Q. This means x(Q)

q

d

�1

= 1 and y(Q)

q

d

�1

= �1.

Theorem 2. For any R 2 E(F

q

k

), let Q = R� �

d

(R). Then we have �(P;R)

1�q

d

= �(P;Q)

where P 2 E(F

q

). Furthermore, v(P;R) = �(P;Q).
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Proof. By Galois invariane of [10, Chap.I, Thm.1.7℄, we have �(�(P ); �(Q)) = �(P;Q)

q

.

Sine P 2 E(F

q

), �(P;R)

q

d

= �(�

d

(P ); �

d

(R)) = �(P; �

d

(R)): This implies

�(P;Q) = �(P;R� �

d

(R)) = �(P;R)�(P; �

d

(R))

�1

= �(P;R)�(P;R)

�q

d

= �(P;R)

1�q

d

:

Sine q

d

� �1 (mod r), 1� q

d

� 2 (mod r) holds, and so we obtain �(P;R)

2

= �(P;Q),

whih implies v(P;R) = �(P;Q): ut

Theorem 2 shows that omputation of the squared pairing for a random point R 2 E(F

q

k

)

an be redued to evaluate the Tate pairing for the trae zero point Q = R� �

d

(R).

Lemma 1. For P 2 E(F

q

)[r℄ and Q 2 E(F

q

k

) with x(Q) 2 F

q

d

. Let g

[a℄P

(X) be the vertial

line through [a℄P . Then g

[a℄P

(Q)

q

d

�1

= 1.

Proof. Sine [a℄P has oordinate in F

q

, g

[a℄P

(X) = x(X) � x([a℄P ) 2 F

q

[x℄. Beause of

x(Q) 2 F

q

d

, g

[a℄P

(Q) = x(Q)�x([a℄P ) is ontained in F

q

d

. This implies g

[a℄P

(Q)

q

d

�1

= 1. ut

From Lemma 1, the denominators in the Tate pairing evaluation an disappear. This makes

our method for general base points to have ompetitive eÆieny with spei� point whih

lies in a proper sub�eld F

q

d

at the ost of a few Frobenius ations.

4 Squared and 4th Powered Weil pairings

In this setion we �rst show that the observations of the previous setion about the relation

between the squared and plain Tate pairings hold in the Weil pairing.

Theorem 3. Let P;R 2 E[r℄ be linearly independent and furthermore, P 2 E(F

q

) and R 2

E(F

q

k

). Let Q := R� �

d

(R), then we have

 (P;R) = !(P;Q):

Proof. Sine [r℄Q = [r℄(R � �

d

(R)) = [r℄R � �

d

([r℄R) = O by [18℄, Q 2 E[r℄. Further-

more, it is lear that !(P;Q) = !(P;R � �

d

(R)) = !(P;R) � !(P; �

d

(R))

�1

. By [14, Def.1℄,

!(�(P ); �(R)) = !(P;R)

q

, and sine P 2 E(F

q

), !(P; �

d

(R)) = !(�

d

(P ); �

d

(R)) = !(P;R)

q

d

.

So !(P;Q) = !(P;R)

1�q

d

= !(P;R)

2

=  (P;R) due to the fat 1� q

d

� 2 (mod r). ut

Theorem 3 shows that omputation of the squared Weil pairing for arbitrary random point is

transformed into that of the original Weil pairing for trae zero point. But the squared Weil

pairing an be omputed more eÆiently for trae zero points as opposed to the original one.
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Assume that P;Q 2 E[r℄ be linearly independent and furthermore, P 2 E(F

q

) and Q 2

E(F

q

k

). Let S and T be points on E suh that the divisor A

P

:= (P + S) � (S) and A

Q

:=

(Q+ T )� (T ) have disjoint support. Then it is shown in [9℄ that

!(P;Q) =

f

P

((Q+ T )� (T ))

f

Q

((P + S)� (S))

=

f

P

(Q+ T � S)

f

P

(T � S)

�

f

Q

(S � T )

f

Q

(P + S � T )

:

If any 2-torsion point U 6= O is ontained in E(F

q

d

), we an pik T and S suh that

T � S = U . Suppose E(F

q

) does not ontain a 2-torsion point (6= O). It implies t odd, where

#E(F

q

) = q+1� t. Sine #E(F

q

3
) = q

3

+1� t

3

+3qt by using Weil's Theorem, it is even and

so a 2-torsion point U exists in E(F

q

3
). Hene this ondition is quite aeptable under the

irumstanes where seurity multiplier k divisible by 3 is hosen.

4

In addition sine orders

of Q+ U and P � U are 2r, the funtions f

P

, f

Q

do not have zeros and poles at Q+ U and

P � U . Thus it is unneessary to be onerned about the ase where !(P;Q) is not de�ned.

Theorem 4. Let U 2 E(F

q

d

)[2℄, P 2 E(F

q

)[r℄. Given r torsion point Q 2 E(F

q

k

) whose

trae is zero, then

 (P;Q) = (�1)

r

 

f

Q

(P � U)

f

P

(Q+ U)

!

q

d

�1

: (3)

Furthermore, x(Q); x(P ); x(Q+U) and x(P �U) are ontained in F

q

d

. As a result, denomi-

nator elimination tehnique an be appliable to ompute both of f

Q

(P � U) and f

P

(Q+ U).

Proof. Suppose the harateristi of F

q

is larger than 3 and let E have the Weierstass equation

y

2

= x

3

+ ax+ b. The Weil pairing is de�ned as follows:

!(P;Q) =

f

P

(Q+ U)

f

P

(U)

�

f

Q

(�U)

f

Q

(P � U)

=

 

f

P

(U)

f

P

(Q+ U)

�

f

Q

(P � U)

f

Q

(�U)

!

�1

:

Raise both sides to (1� q

d

)-th power. The left hand side is

!(P;Q)

1�q

d

= !(P;Q)

2

;

sine !(P;Q) is a r-th root of unity and sine 1� q

d

� 2 (mod r).

For the right side, it is lear that f

P

(U)

q

d

�1

= 1 beause of P;U 2 E(F

q

d

). Let V;W be

elements of the group hQi in E(F

q

k

). Then

�

d

(V ) = �V and �

d

(W ) = �W

hold, beause Q generates q-eigenspae of �. Sine �V = (x(V );�y(V )), it follows that

x(V )

q

d

= x(V ); y(V )

q

d

= �y(V ) and

x(W )

q

d

= x(W ); y(W )

q

d

= �y(W ):

4

In [13℄ a 2-torsion point U 2 E(F

q

) is taken by assuming the order of E(F

q

) to be even. We an just adapt

their assumption without muh loss of ases.
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Let

 :=

8

<

:

3x(V )

2

+a

2y(V )

if V=W;

y(V )�y(W )

x(V )�x(W )

otherwise.

Then we have

g

V;W

(�U) = y(V )� y(�U) + (x(V )� x(�U))

g

V;W

(�U)

q

d

= �y(V )� y(�U)� (x(V )� x(�U)):

Sine y-oordinate of 2-torsion point U is zero, we have g

V;W

(�U)

q

d

�1

= �1. In addition,

g

V

(�U)

q

d

�1

= (x(V ) � x(�U))

q

d

�1

= 1 beause x(V ); x(�U) lie in F

q

d

. Sine f

Q

(�U) is

written as proper ompositions of g

V;W

and g

V

, we an easily redue f

Q

(�U)

q

d

�1

= (�1)

r

.

Hene the right side of (3) is obtained.

It is obvious that x(Q); x(P ) and x(P � U) lie in F

q

d

. In addition, sine y(U) = 0 and

sine

x(Q+ U) =

 

y(Q)� y(U)

x(Q)� x(U)

!

2

� x(Q)� x(U);

we have x(Q+ U)

q

d

�1

= 1 whih implies x(Q+ U) 2 F

q

d

. This ompletes the proof. ut

Remark 1. Although we proved Theorem 4 only for p > 3, this result an be extended to

other ases exept supersingular urves in binary �elds.

Combining these two results, additionally, we an derive an expliit formula for the 4th

powered Weil pairing.

Corollary 1. For randomly hosen R 2 E(F

q

k

)[r℄ and a 2-torsion point U 2 E(F

q

d

), we

have

!(P;R)

4

=  (P;R)

2

= !(P;Q)

2

=  (P;Q) = (�1)

r

 

f

Q

(P � U)

f

P

(Q+ U)

!

q

d

�1

;

where Q := R� �

d

(R).

Proof. It is lear by ombining Theorem 3 with Theorem 4. ut

5 Conlusion

In this paper, we investigated the relationship between squared pairings and plain pairings.

First, we showed that the squared Weil/Tate pairing for arbitrary hosen point is equal to the

plain Weil/Tate pairing for the trae zero point whih has a speial form to ompute them

more eÆiently. Using this relation for the Weil pairing, we derived an expliit formula for the

4th powered Weil pairings represented as the optimized Weil pairing. Our observations an

bring more meaningful insight into the possibility of swithing to the proper powered Weil

pairing at high seurity levels.
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