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Abstra
t. In this paper, we investigate the relationship between the squared Weil/Tate pairing

and the plain Weil/Tate pairing. Along these lines, we �rst show that the squared pairing for

arbitrary 
hosen point 
an be transformed into a plain pairing for the tra
e zero point whi
h has

a spe
ial form to 
ompute them more eÆ
iently. This transformation requires only a 
ost of some

Frobenius a
tions. Additionally, we show that the squared Weil pairing 
an be 
omputed more

eÆ
iently for tra
e zero point and derive an expli
it formula for the 4th powered Weil pairing

as an optimized version of the Weil pairing.

Keywords: Weil/Tate pairing, Squared pairing, Pairing-based 
ryptosystems

1 Introdu
tion

After Boneh and Franklin [6℄ proposed an identity-based en
ryption s
heme using the Weil

pairing, many 
ryptographi
 s
hemes based on the Weil or Tate pairing have been introdu
ed.

Although these pairings both provide good fun
tionality for use in 
ryptosystems, pairing


omputations are often the bottlene
k to realize 
ryptographi
 appli
ations pra
ti
ally. So,

fast implementations of these pairings have be
ome a subje
t of a
tive resear
h areas in ellipti



urve 
ryptography.

The 
omputation of the Weil/Tate pairing 
an be performed using an algorithm �rst pre-

sented by Miller [14℄. Re
ently proposed improvements [11, 2, 8, 1℄ are based in some manner

on it. Spe
i�
ally, they make a use of elimination of irrelevant fa
tors and denominators dur-

ing the 
omputation of Tate pairings on supersingular 
urves whi
h were originally proposed

as a suitable setting for pairing-based s
hemes. However, re
ent works have additionally fo-


used on optimizing pairing 
omputations of 
ertain ordinary 
urves su
h as MNT 
urves [15,

4, 17, 16, 3℄. Although there are a number of advantages in using supersingular 
urves su
h

?

This work was done while the �rst author was studying in the University of Maryland, USA.
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as distortion maps, a small number of usable 
urve or doubt of their long term se
urity has

led one to investigate the use of ordinary 
urves. Espe
ially, Barreto et al. [4℄ showed how

to sele
t groups in MNT 
urves where many optimization te
hniques proposed for supersin-

gular 
urves [11, 2℄ have a 
ounterpart. Independently, the notion of the squared pairing was

introdu
ed by Eisentr�ager et al. [9℄. The obje
tive of this notion is to generalize 
onse
utive


omputation of plain pairing and squaring on it by uni�ed approa
h. The authors show that,

when 
omputing the squared pairing, partial fa
tors 
an be dis
arded in ea
h step. Addition-

ally, their algorithm is deterministi
 and does not depend on a random 
hoi
e of points for

evaluation of the pairing. However, by reason of se
urity, they only 
onsidered a general 
ase

where there is no 
an
elation of denominators.

Our main 
ontribution in this paper is to 
onne
t the squared pairing to the plain one. We

show that for a very small 
ost, the squared pairing for a randomly 
hosen point R on E(F

q

2d

)


an be transformed into the plain pairing for a tra
e zero point Q whi
h has x-
oordinate

over a smaller �eld F

q

d

. From a pra
ti
al point of view, our result seems to show that there is

no real advantage in 
omputing the squared pairing dire
tly. At the same time, our result 
an

be regarded as showing how to 
ompute the squared pairing in a mu
h more eÆ
ient fashion

using several optimization te
hniques in [4℄. Espe
ially, we applied these te
hniques for the

Tate pairing to the squared Weil pairing using the fa
t that (1 � p

d

)th power of the Weil

pairing is the same as the squared one.

3

Taking a step forward, we 
an derive an interesting

expli
it formula for the 4th powered Weil pairing by adapting several optimization te
hniques

to 
ompute the squared Weil pairing. This squared or 4th powered Weil pairing is mu
h faster

than the plain one, so it be
omes more meaningful with respe
t to the 
laim in [13℄: the proper

powered Weil pairing (a
tually it is the squared Weil pairing) 
an be 
omputed faster than

the Tate pairing at high se
urity levels. Throughout this paper, our main 
on
ern is pairings

de�ned over ordinary 
urves with suitable embedding degree su
h as MNT 
urves. However,

the prin
iples 
an of 
ourse be easily adapted to the 
ases of supersingular 
urves.

The paper is organized as follows. After introdu
ing the squared pairing and Eisentr�ager

et al.'s algorithm brie
y in Se
tion 2, we present the 
onne
tion between the squared Tate

pairing and the plain pairing in Se
tion 3. In Se
tion 4, we show that a similar property holds

for the squared or 4th powered Weil pairing. Finally, we draw our 
on
lusions in Se
tion 5.

3

Our work had almost been done independently before Koblitz and Menezes's paper [13℄ 
ame out in publi
.

They used the method of properly powering the Weil pairing to drop o� some redundant fa
tors, whi
h has

turned out to be just the squared Weil pairing through our work.
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2 Preliminaries

In this se
tion, we give a brief summary of several mathemati
al ba
kgrounds and de�nitions

of Tate and squared pairings. Additionally, we review Miller's algorithm for the Tate pairing


omputation and Eisentr�ager et al.'s algorithm for the squared pairing.

2.1 Ellipti
 Curves

Let q be a prime or prime power and let F

q

denote the �nite �eld with q elements and let p

be a 
hara
teristi
 of F

q

. An ellipti
 
urve E de�ned over F

q


an be des
ribed as the set of

points (x; y) satisfying the Weierstrass equation

y

2

+ a

1

xy + a

3

y = x

3

+ a

2

x

2

+ a

4

x+ a

6

;

where a

i

2 F

q

. Let x(P ) and y(P ) denote the rational fun
tions mapping P 2 E to its aÆne

x- and y-
oordinates, respe
tively. If K is an extension of the �eld F

q

, the set of K-rational

points of E, whi
h we denote by E(K), is the set of points P su
h that x(P ); y(P ) 2 K,

together with a spe
ial element O, 
alled by point at in�nity.

For P;Q 2 E(K), we 
an de�ne the sum P + Q a

ording to some simple rule. Expli
it

formulas for 
omputing the 
oordinates of a point P

3

= P

1

+ P

2

from the 
oordinates of P

1

and P

2

are well known [5℄. E(K) is an abelian group under this operation with the identity

element O. It is easy to show that E(F

q

) is a subgroup of E(K). The number of points of

E(K) is 
alled its order. The Hasse bound states that #E(F

q

) = q + 1� t, where jtj � 2

p

q.

Here t is 
alled the tra
e of the Frobenius endomorphism stated below. Curves whose tra
e

t is a multiple of the 
hara
teristi
 p are 
alled supersingular. The order of a point P 2 E

is the smallest integer r > 0 su
h that [r℄P = O. The set of r-torsion points of E, denoted

E(K)[r℄, is the set fP 2 E(K) j [r℄P = Og.

Let K = F

q

k

. Then the q-th power Frobenius endomorphism of E is the mapping

� : E(F

q

k

)! E(F

q

k

); where (x; y) 7! (x

q

; y

q

):

Thus a point P 2 E(F

q

k

) is de�ned over F

q

i
if and only if �

i

(P ) = P . Using the Frobenius

map, we 
an de�ne the tra
e map

Tr : E(F

q

k

)! E(F

q

) as Tr(R) =

k�1

X

i=0

�

i

(R);

for any point R 2 E(F

q

k

). The 
hara
teristi
 polynomial of the Frobenius map � is

�(u) = u

2

� tu+ q:
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Sin
e �(u) = (u � 1)(u � q) mod r, the eigenvalues are 1 and q. The 1-eigenspa
e of � on

E[r℄ is E(F

q

)[r℄ and the q-eigenspa
e of � on E[r℄ 
onsists of all points R 2 E[r℄ satisfying

Tr(R) = O [4, 10℄. In fa
t, it is well known that if rj#E(F

q

), there is a basis P;Q for E[r℄

su
h that �(P ) = P and �(Q) = [q℄Q.

A subgroup G of an ellipti
 
urve E(F

q

) is said to have se
urity multiplier k if its order r

divides q

k

� 1, but does not divide q

i

� 1 for all 0 < i < k. If E is supersingular, the value of

k is bounded by k � 6. The group E[r℄

�

=

Z

r

�Z

r

lies in E(F

q

k

). Let P 2 E(F

q

) be a point of

order r su
h that hP i has se
urity multiplier k. Then E(F

q

k

) 
ontains a point Q of the same

order r but linearly independent of P .

A divisor on E is a formal sum D =

P

P2E(F

q

k

)

n

P

(P ) where n

P

2 Z. The set of points

P 2 E(F

q

k

) su
h that n

P

6= 0 is 
alled the support of D. The degree of D is the value

deg(D) =

P

P

n

P

. The zero divisor has all n

P

= 0. The sum of two divisors D =

P

P

n

P

(P )

and D

0

=

P

P

n

0

P

(P ) is the divisor D + D

0

=

P

P

(n

P

+ n

0

P

)(P ). Given a nonzero rational

fun
tion f : E(F

q

k

) ! F

q

k

, the divisor of f is the divisor (f) =

P

P

ord

P

(f)(P ) where

ord

P

(f) is the multipli
ity of f at P . It follows from this de�nition that (fg) = (f) + (g)

and (f=g) = (f)� (g) for any two nonzero rational fun
tions f and g de�ned on E; moreover

(f) = 0 if and only if f is a nonzero 
onstant. We say two divisors D and D

0

are equivalent,

D

0

� D if there exists a fun
tion g su
h that D

0

= D+(g). For any fun
tion f and any divisor

D =

P

P

n

P

(P ) of degree zero, we de�ne f(D) =

Q

P

f(P )

n

P

.

2.2 Squared Pairings

Let G

1

; G

2

and G

T

denote �nite abelian groups in whi
h the dis
rete logarithm problem is

hard. By a pairing we shall mean a non-degenerate bilinear map e : G

1

� G

2

! G

T

: The

Weil or Tate pairing is one of examples de�ned on an ellipti
 
urve. Let P;Q 2 E[r℄ and

pi
k two divisors A

P

and A

Q

whi
h are equivalent to (P )� (O) and (Q)� (O), respe
tively,

and su
h that A

P

and A

Q

have disjoint supports. Let f

P

be the rational fun
tion with

divisor (f

P

) = r(P ) � r(O) = r � A

P

. Analogously, let f

Q

be a fun
tion on E whose divisor

(f

Q

) = r � A

Q

. Then the Weil pairing ! : E[r℄�E[r℄! F

q

k

is de�ned as

!(P;Q) :=

f

P

(A

Q

)

f

Q

(A

P

)

:

The Tate pairing is also de�ned based on f

P

(A

Q

). Let P 2 E(F

q

)[r℄ and Q 2 E(F

q

k

) be

linearly independent points. Then the (redu
ed) Tate pairing �(P;Q) 2 F

q

k

on E(F

q

)[r℄ �

E(F

q

k

) is de�ned as

�(P;Q) := f

P

(A

Q

)

q

k

�1

r

:
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But it 
an be easily 
omputed by

�(P;Q) = f

P

(Q)

q

k

�1

r

;

as proven in [4℄. It means that the fun
tion f

P

is now evaluated on a point rather than on

a divisor. Furthermore, it makes the Miller's algorithm deterministi
. If E is supersingular,

this de�nition 
an be modi�ed via a distorsion map � : E(F

q

) ! E(F

q

k

). It means that the

group G

2


an be sele
ted in E(F

q

) instead of a non-optimal 
hoi
e E(F

q

k

).

The squared Weil pairing is de�ned by

 (P;Q) = (�1)

r

f

P

(Q) � f

Q

(�P )

f

P

(�Q) � f

Q

(P )

;

for r-torsion points P; Q on E with neither being the identity and P 6= �Q. Additionally, the

squared Tate pairing v is de�ned by

v(P;Q) :=

 

f

P

(Q)

f

P

(�Q)

!

(q

k

�1)=r

:

Then it was shown in [9℄ that  (P;Q) = !(P;Q)

2

and v(P;Q) = �(P;Q)

2

:

2.3 Miller's algorithm

An essential part in 
omputing the Weil/Tate pairing is the evaluation of f

P

. Miller showed

how to 
ompute f

P

iteratively, using the divisors of the lines drawn by the se
ant-and-tangent

addition rule [14℄. Throughout this paper, we de�ne g

U;V

: E(F

q

k

)! F

q

k

to be the line through

points U; V 2 E. The shorthand g

U

stands for g

U;�U

whi
h is the verti
al line passing through

U . If U = (u; v) and Q = (x; y), then g

U

(Q) = x� u.

It is well known that there exists a rational fun
tion f


;P

on E with divisor (f


;P

) = 
(P )�

([
℄P ) � (
 � 1)(O), 
 2 Z [9℄. Sin
e rP = O, Miller's algorithm 
omputes f

P

(Q) = f

r;P

(Q),

Q 6= O by 
oupling the above formulas with the double-and-add method to 
al
ulate rP .

Theorem 1. Let P be a point on E(F

q

) and f


;P

be a rational fun
tion with divisor (f


;P

) =


(P )� ([
℄P ) � (
� 1)(O), 
 2 Z. For all i; j 2 Z,

f

i+j;P

(Q) = f

i;P

(Q) � f

j;P

(Q) � g

[i℄P;[j℄P

(Q)=g

[i+j℄P

(Q):

2.4 Eisentr�ager et al.'s algorithm

In [9℄, Eisentr�ager et al. proposed an algorithm to 
ompute the squared Weil/Tate pairing. At

�rst, we introdu
e the algorithm for  (P;Q) where P and Q are r-torsion points on E. This
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algorithm is based on Miller's formula with an addition-subtra
tion 
hain for r. For ea
h j in

the 
hain, form a tuple t

j

=

h

[j℄P; [j℄Q;n

j

; d

j

i

su
h that

n

j

d

j

=

f

j;P

(Q) � f

j;Q

(�P )

f

j;P

(�Q) � f

j;Q

(P )

:

The squared pairing needs n

r

=d

r

. The re
urren
e formula is

n

i+j

d

i+j

=

n

i

d

i

�

n

j

d

j

�

g

[i℄P;[j℄P

(Q)

g

[i℄P;[j℄P

(�Q)

�

g

[i+j℄P

(�Q)

g

[i+j℄P

(Q)

�

g

[i℄Q;[j℄Q

(�P )

g

[i℄Q;[j℄Q

(P )

�

g

[i+j℄Q

(P )

g

[i+j℄Q

(�P )

; (1)

and begins with t

1

= [P;Q; 1; 1℄. But there is no need to 
ompute all value in the re
urren
e

formula. The verti
al lines through [i + j℄P and [i + j℄Q do not appear in the formulae for

n

i+j

and d

i+j

, be
ause the 
ontributions from Q and �Q (or from P and �P ) are equal.

For the squared Tate pairing 
omputation v(P;Q) with P 2 E(F

q

)[r℄ and Q 2 E(F

q

k

),

above algorithm 
an be simpli�ed be
ause

n

j

d

j

=

f

j;P

(Q)

f

j;P

(�Q)

:

So the re
urren
e formula is

n

i+j

d

i+j

=

n

i

d

i

�

n

j

d

j

�

g

[i℄P;[j℄P

(Q)

g

[i℄P;[j℄P

(�Q)

(2)

and begins with t

1

= [P; 1; 1℄. Given t

i

and t

j

, t

i+j

or t

i�j


an be obtained as the 
ase of the

squared Weil pairing without 
hanging Q.

3 Squared Tate pairing

Suppose the se
urity multiplier k to be even, and let d = k=2. As stated above, the obje
tive

of [4℄ is to generate the group G

2

in MNT 
urves that makes 
omputation of the Tate pairing

more eÆ
ient, and so they use the twist of the 
urve E(F

q

d

) to generate G

2

. It allows the

denominator elimination optimization established for 
ertain supersingular 
urves [2℄. But

in our 
ase, we �x G

2

as E(F

q

k

) in advan
e, and suppose that an arbitrary base points in

G

2

is given. Hen
e we use an alternative way to pi
k a generator on the 
y that makes

the same optimization possible. For any R 2 E(F

q

k

), the point Q := R � �

d

(R) satis�es

�

d

(Q) = �

d

(R)�R = �Q. This means x(Q)

q

d

�1

= 1 and y(Q)

q

d

�1

= �1.

Theorem 2. For any R 2 E(F

q

k

), let Q = R� �

d

(R). Then we have �(P;R)

1�q

d

= �(P;Q)

where P 2 E(F

q

). Furthermore, v(P;R) = �(P;Q).
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Proof. By Galois invarian
e of [10, Chap.I, Thm.1.7℄, we have �(�(P ); �(Q)) = �(P;Q)

q

.

Sin
e P 2 E(F

q

), �(P;R)

q

d

= �(�

d

(P ); �

d

(R)) = �(P; �

d

(R)): This implies

�(P;Q) = �(P;R� �

d

(R)) = �(P;R)�(P; �

d

(R))

�1

= �(P;R)�(P;R)

�q

d

= �(P;R)

1�q

d

:

Sin
e q

d

� �1 (mod r), 1� q

d

� 2 (mod r) holds, and so we obtain �(P;R)

2

= �(P;Q),

whi
h implies v(P;R) = �(P;Q): ut

Theorem 2 shows that 
omputation of the squared pairing for a random point R 2 E(F

q

k

)


an be redu
ed to evaluate the Tate pairing for the tra
e zero point Q = R� �

d

(R).

Lemma 1. For P 2 E(F

q

)[r℄ and Q 2 E(F

q

k

) with x(Q) 2 F

q

d

. Let g

[a℄P

(X) be the verti
al

line through [a℄P . Then g

[a℄P

(Q)

q

d

�1

= 1.

Proof. Sin
e [a℄P has 
oordinate in F

q

, g

[a℄P

(X) = x(X) � x([a℄P ) 2 F

q

[x℄. Be
ause of

x(Q) 2 F

q

d

, g

[a℄P

(Q) = x(Q)�x([a℄P ) is 
ontained in F

q

d

. This implies g

[a℄P

(Q)

q

d

�1

= 1. ut

From Lemma 1, the denominators in the Tate pairing evaluation 
an disappear. This makes

our method for general base points to have 
ompetitive eÆ
ien
y with spe
i�
 point whi
h

lies in a proper sub�eld F

q

d

at the 
ost of a few Frobenius a
tions.

4 Squared and 4th Powered Weil pairings

In this se
tion we �rst show that the observations of the previous se
tion about the relation

between the squared and plain Tate pairings hold in the Weil pairing.

Theorem 3. Let P;R 2 E[r℄ be linearly independent and furthermore, P 2 E(F

q

) and R 2

E(F

q

k

). Let Q := R� �

d

(R), then we have

 (P;R) = !(P;Q):

Proof. Sin
e [r℄Q = [r℄(R � �

d

(R)) = [r℄R � �

d

([r℄R) = O by [18℄, Q 2 E[r℄. Further-

more, it is 
lear that !(P;Q) = !(P;R � �

d

(R)) = !(P;R) � !(P; �

d

(R))

�1

. By [14, Def.1℄,

!(�(P ); �(R)) = !(P;R)

q

, and sin
e P 2 E(F

q

), !(P; �

d

(R)) = !(�

d

(P ); �

d

(R)) = !(P;R)

q

d

.

So !(P;Q) = !(P;R)

1�q

d

= !(P;R)

2

=  (P;R) due to the fa
t 1� q

d

� 2 (mod r). ut

Theorem 3 shows that 
omputation of the squared Weil pairing for arbitrary random point is

transformed into that of the original Weil pairing for tra
e zero point. But the squared Weil

pairing 
an be 
omputed more eÆ
iently for tra
e zero points as opposed to the original one.
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Assume that P;Q 2 E[r℄ be linearly independent and furthermore, P 2 E(F

q

) and Q 2

E(F

q

k

). Let S and T be points on E su
h that the divisor A

P

:= (P + S) � (S) and A

Q

:=

(Q+ T )� (T ) have disjoint support. Then it is shown in [9℄ that

!(P;Q) =

f

P

((Q+ T )� (T ))

f

Q

((P + S)� (S))

=

f

P

(Q+ T � S)

f

P

(T � S)

�

f

Q

(S � T )

f

Q

(P + S � T )

:

If any 2-torsion point U 6= O is 
ontained in E(F

q

d

), we 
an pi
k T and S su
h that

T � S = U . Suppose E(F

q

) does not 
ontain a 2-torsion point (6= O). It implies t odd, where

#E(F

q

) = q+1� t. Sin
e #E(F

q

3
) = q

3

+1� t

3

+3qt by using Weil's Theorem, it is even and

so a 2-torsion point U exists in E(F

q

3
). Hen
e this 
ondition is quite a

eptable under the


ir
umstan
es where se
urity multiplier k divisible by 3 is 
hosen.

4

In addition sin
e orders

of Q+ U and P � U are 2r, the fun
tions f

P

, f

Q

do not have zeros and poles at Q+ U and

P � U . Thus it is unne
essary to be 
on
erned about the 
ase where !(P;Q) is not de�ned.

Theorem 4. Let U 2 E(F

q

d

)[2℄, P 2 E(F

q

)[r℄. Given r torsion point Q 2 E(F

q

k

) whose

tra
e is zero, then

 (P;Q) = (�1)

r

 

f

Q

(P � U)

f

P

(Q+ U)

!

q

d

�1

: (3)

Furthermore, x(Q); x(P ); x(Q+U) and x(P �U) are 
ontained in F

q

d

. As a result, denomi-

nator elimination te
hnique 
an be appli
able to 
ompute both of f

Q

(P � U) and f

P

(Q+ U).

Proof. Suppose the 
hara
teristi
 of F

q

is larger than 3 and let E have the Weierstass equation

y

2

= x

3

+ ax+ b. The Weil pairing is de�ned as follows:

!(P;Q) =

f

P

(Q+ U)

f

P

(U)

�

f

Q

(�U)

f

Q

(P � U)

=

 

f

P

(U)

f

P

(Q+ U)

�

f

Q

(P � U)

f

Q

(�U)

!

�1

:

Raise both sides to (1� q

d

)-th power. The left hand side is

!(P;Q)

1�q

d

= !(P;Q)

2

;

sin
e !(P;Q) is a r-th root of unity and sin
e 1� q

d

� 2 (mod r).

For the right side, it is 
lear that f

P

(U)

q

d

�1

= 1 be
ause of P;U 2 E(F

q

d

). Let V;W be

elements of the group hQi in E(F

q

k

). Then

�

d

(V ) = �V and �

d

(W ) = �W

hold, be
ause Q generates q-eigenspa
e of �. Sin
e �V = (x(V );�y(V )), it follows that

x(V )

q

d

= x(V ); y(V )

q

d

= �y(V ) and

x(W )

q

d

= x(W ); y(W )

q

d

= �y(W ):

4

In [13℄ a 2-torsion point U 2 E(F

q

) is taken by assuming the order of E(F

q

) to be even. We 
an just adapt

their assumption without mu
h loss of 
ases.
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Let


 :=

8

<

:

3x(V )

2

+a

2y(V )

if V=W;

y(V )�y(W )

x(V )�x(W )

otherwise.

Then we have

g

V;W

(�U) = y(V )� y(�U) + 
(x(V )� x(�U))

g

V;W

(�U)

q

d

= �y(V )� y(�U)� 
(x(V )� x(�U)):

Sin
e y-
oordinate of 2-torsion point U is zero, we have g

V;W

(�U)

q

d

�1

= �1. In addition,

g

V

(�U)

q

d

�1

= (x(V ) � x(�U))

q

d

�1

= 1 be
ause x(V ); x(�U) lie in F

q

d

. Sin
e f

Q

(�U) is

written as proper 
ompositions of g

V;W

and g

V

, we 
an easily redu
e f

Q

(�U)

q

d

�1

= (�1)

r

.

Hen
e the right side of (3) is obtained.

It is obvious that x(Q); x(P ) and x(P � U) lie in F

q

d

. In addition, sin
e y(U) = 0 and

sin
e

x(Q+ U) =

 

y(Q)� y(U)

x(Q)� x(U)

!

2

� x(Q)� x(U);

we have x(Q+ U)

q

d

�1

= 1 whi
h implies x(Q+ U) 2 F

q

d

. This 
ompletes the proof. ut

Remark 1. Although we proved Theorem 4 only for p > 3, this result 
an be extended to

other 
ases ex
ept supersingular 
urves in binary �elds.

Combining these two results, additionally, we 
an derive an expli
it formula for the 4th

powered Weil pairing.

Corollary 1. For randomly 
hosen R 2 E(F

q

k

)[r℄ and a 2-torsion point U 2 E(F

q

d

), we

have

!(P;R)

4

=  (P;R)

2

= !(P;Q)

2

=  (P;Q) = (�1)

r

 

f

Q

(P � U)

f

P

(Q+ U)

!

q

d

�1

;

where Q := R� �

d

(R).

Proof. It is 
lear by 
ombining Theorem 3 with Theorem 4. ut

5 Con
lusion

In this paper, we investigated the relationship between squared pairings and plain pairings.

First, we showed that the squared Weil/Tate pairing for arbitrary 
hosen point is equal to the

plain Weil/Tate pairing for the tra
e zero point whi
h has a spe
ial form to 
ompute them

more eÆ
iently. Using this relation for the Weil pairing, we derived an expli
it formula for the

4th powered Weil pairings represented as the optimized Weil pairing. Our observations 
an

bring more meaningful insight into the possibility of swit
hing to the proper powered Weil

pairing at high se
urity levels.
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