
Partially Fixed Point Multipli
ation

Majid Khabbazian

�

, T. Aaron Gulliver

y

, and Vijay K. Bhargava

z

Abstra
t

A new te
hnique is proposed in whi
h bandwidth and memory are together used to

redu
e both the number of point additions and doublings required in
omputing random

point multipli
ation. Using the proposed te
hnique, we show that a signi�
ant speed-up

an be obtained at the
ost of slightly in
reased bandwidth. In addition, we show that the

proposed te
hnique is well-suited for parallel pro
essing.

Keywords:
ryptography, ellipti

urves, point multipli
ation, fast
omputation, parallel

pro
essing.

1 Introdu
tion

Point multipli
ation, kP , is a fundamental operation whi
h dominates the exe
ution time of el-

lipti

urve
ryptosystems. Therefore, signi�
ant study has been done to redu
e the time needed

to perform this operation. There are several approa
hes to speed up this operation, su
h as:

(1) redu
ing the number of ellipti

urve operations required in
omputing point multipli
ation,

(2) speeding up ellipti

urve operations su
h as point doubling, and (3) using faster operations

available in
ertain spe
ial ellipti

urves su
h as Koblitz
urves [1℄. Our
ontribution deals

with the �rst approa
h. In this approa
h, memory is typi
ally used by point multipli
ation

algorithms to redu
e the required number of ellipti

urve operations. For example, when the

point P is �xed, the number of point additions and doublings required in
omputing kP
an

be signi�
antly redu
ed using a lookup table [2℄, leading to a fast implementation of the opera-

tion. However, lookup tables
annot be used to speed up random point multipli
ation be
ause

the point P is variable. In this
ase, a typi
al te
hnique is to use low average Hamming weight

integer representations su
h as w-NAF (see [3℄) to redu
e the required number of point additions.

In this paper, we propose a new te
hnique whi
h uses memory and bandwidth together to

redu
e both the number of point additions and point doublings required in
omputing random

point multipli
ation. In the proposed te
hnique, we add redundant information to the publi

key. This information
an then be used by any entity, parti
ularly those with
onstrained

omputational power or servers overloaded with EC-DSA veri�
ation requests, to speed up the

operation. We also show that a substantial performan
e improvement
an be obtained when

multiple pro
essors are available.

The rest of this paper is organized as follows. In Se
tion 2, we brie
y summarize ellipti

urve operations. In Se
tion 3, we explain random point multipli
ation. We then propose our

new te
hnique and explain its impa
t on
omputing random point multipli
ation in Se
tions 4

and 5, respe
tively. In Se
tion 6, we show that the proposed te
hnique is appropriate for parallel

pro
essing. Finally, we present some
on
lusions in Se
tion 7.

�

Dept. of Ele
tri
al and Computer Engineering, University of British Columbia, Canada, majidk�e
e.ub
.
a

y

Dept. of Ele
tri
al and Computer Engineering, University of Vi
toria, Canada

z

Dept. of Ele
tri
al and Computer Engineering, University of British Columbia, Canada

1

2 Ellipti
 Curves: De�nition and Operations

An ellipti

urve E over the �eld F is a smooth
urve in the so
alled \long weirestra� form"

E : y

2

+ a

1

xy + a

3

y = x

3

+ a

2

x

2

+ a

4

x+ a

6

; (1)

where a

1

; : : : ; a

6

2 F. Equation (1) may be simpli�ed to

E : y

2

= x

3

+ ax+ b; (2)

and

E : y

2

+ xy = x

3

+ ax

2

+ b; (3)

when Char(F) 6= 2; 3 and Char(F) = 2, respe
tively.

2.1 Point Addition, Doubling, Subtra
tion and Multipli
ation

Let E(F) be the set of points P = (x; y) 2 F

2

that satisfy the ellipti

urve equation (along

with a \point at in�nity" denoted O). It is well known that E(F) together with the point

addition operation given in Table 1 form an abelian group. When two operands are equal, i.e.

P

1

= P

2

, the operation is
alled point doubling. As shown in Table 2, point inversion in this

group
an be
omputed easily. Thus, point subtra
tion has the same
ost as point addition.

Note that in Tables 1 and 2, the points P

1

= (x

1

; y

1

); P

2

= (x

2

; y

2

) and P

3

= (x

3

; y

3

) are

represented by AÆne
oordinates. Alternative
oordinates su
h as Proje
tive
oordinates or

Ja
obian
oordinates
an be used to avoid �eld inversion when �eld inversion is mu
h more

expensive than �eld multipli
ation. Point multipli
ation is de�ned as repeated addition

kP = P + P + : : :+ P

| {z }

k times

,

where P is an ellipti

urve point, k 2 [1; N � 1℄ is an integer, and N is the order of point P .

Char(F) = 2

P

1

6= �P

2

� =

y

2

+y

1

x

2

+x

1

x

3

= �

2

+ �+ x

1

+ x

2

+ a

y

3

= (x

1

+ x

3

)�+ y

1

+ x

3

P

1

= P

2

� =

y

1

x

1

+ x

1

x

3

= �

2

+ �+ a

y

3

= (x

1

+ x

3

)�+ y

1

+ x

3

Char(F) 6= 2; 3

P

1

6= �P

2

� =

y

2

�y

1

x

2

�x

1

x

3

= �

2

� x

1

� x

2

y

3

= (x

1

� x

3

)�� y

1

P

1

= P

2

� =

3x

2

1

+a

2y

1

x

3

= �

2

� 2x

1

y

3

= (x

1

� x

3

)�� y

1

Table 1: Ellipti

urve point addition, P

3

= P

1

+ P

2

.

Char(F) = 2 �P

1

= (x

1

; x

1

+ y

1

)

Char(F) 6= 2; 3 �P

1

= (x

1

;�y

1

)

Table 2: Ellipti

urve point inversion.

2

3 Random Point Multipli
ation

There are many algorithms to a

elerate
omputation of random point multipli
ation by redu
ing

the required number of point additions [4, 5℄. These algorithms typi
ally
onsist of two stages, i.e.

a pre
omputation stage and an evaluation stage. Algorithm 1 is an example of su
h algorithms.

The pre
omputation stage of this algorithm
onsists of two steps. In Step 1, the multiplier k is

re
oded to a B-representation as

k =

X

0�i<l

k

i

2

i

;

where k

i

2 B [f0g and B is a set of nonzero integers in
luding 1. In Step 2, point multipli
a-

tions dP for the integers d 2 B; d > 1 are
omputed and stored. In the evaluation stage, the

information obtained from these two steps is used to
ompute kP . Note that, in some algo-

rithms su
h as window algorithm [4℄, the re
oding pro
ess is done in the evaluation stage. This

is be
ause the re
oding and evaluating pro
esses s
an the multiplier digits in the same dire
tion,

i.e. left-to-right or right-to-left. Therefore, these pro
esses
an be
arried out simultaneously.

Algorithm 1: Random point multipli
ation

Input: An integer k and a point P 2 E(F).

Output: kP .

Pre
omputation Stage:

1. Compute the B-representation of the multiplier

k =

P

0�i<l

k

i

2

i

, k

i

2 B [f0g.

2. Compute and store dP for all integers d 2 B, d > 1.

Evaluation Stage:

1. R O.

2. for i from l � 1 down to 0 do

3. R 2R.

4. if k

i

> 0 then R R+ k

i

P .

5. else if k

i

< 0 then R R� (�k

i

)P .

6. return R.

The integer representation of the multiplier plays an important role in the performan
e

of these algorithms. Some useful integer representations are binary, NAF, and w-NAF for

whi
h B = f1g, B = f�1g, and B = f�1;�3; : : : ;�(2

w�1

� 1)g, respe
tively. If a binary

representation is used in Algorithm 1, Steps 1 and 2 of the pre
omputation stage are not required.

However, the evaluation stage would need (

l

2

� 1) point additions on average. Using the NAF

representation, only Step 2 of the pre
omputation stage is required. In this
ase, the average

number of point additions required in the evaluation stage is redu
ed to (

l

3

�1). This is be
ause

the average Hamming weight (the number of nonzero digits in the representation) of NAF is

(

l

3

). In fa
t, NAF has the minimal average Hamming weight among all B-representations with

B = f�1g. The NAF representation
an be generalized to w-NAF. The w-NAF representation

has the minimal average Hamming weight of (

l

w+1

) among all B-representations with B =

f�1;�3; : : : ;�(2

w�1

�1)g. Consequently, if w-NAF is used in Algorithm 1, the evaluation stage

would require on average (

l

w+1

�1) point additions. However, Step 2 of the pre
omputation stage

requires (2

w�2

� 1) point additions and one point doubling. In all these
ases, the evaluation

stage requires about (l�1) point doublings. Note that l = dlog

2

Ne for the binary representation

and l = dlog

2

Ne+ 1 for the NAF and w-NAF representations.

3

4 The Proposed Te
hnique

Memory is
ommonly used in many point multipli
ation algorithms to speed up the operation.

When the point P is known a priori, pre
omputing and storing some points in a lookup table
an

signi�
antly speed up the operation by redu
ing both the required number of point additions and

doublings. Random point multipli
ation algorithms
annot redu
e both of these, even if there

is a large amount of memory. This is due to the fa
t that the point P is variable. However,

bandwidth
an be used to speed up ellipti

urve operations. It
an for example be used to

eliminate the square root operation when a point, Q, is sent in un
ompressed format, i.e. both

the x-
oordinate and y-
oordinate of Q are sent [6℄.

In our new te
hnique, we use memory and bandwidth together to redu
e both the required

number of point additions and doublings. This
an be done by adding redundant information

to the publi
 key (P). In Se
tion 5, we explain how we
an redu
e the required number of point

doublings for random point multipli
ation by half when we are provided with the point 2

d

l

2

e

P . In

general, we
an redu
e the required number of point doublings by about

1

n

when we are provided

with the points 2

d

l

n

e�i

P for i 2 f1; 2; : : : n� 1g. Therefore, having P

2

= (P; 2

d

l

2

e

P) or in general

P

n

= (P; 2

d

l

n

e�1

P; : : : ; 2

d

l

n

e�(n�1)

P) as the new publi
 key allows other parties to signi�
antly

speed up the
omputation of random point multipli
ation. The redundant information in P

n

need be pre
omputed and stored only on
e. However, this information is often used by �xed

point multipli
ation algorithms su
h as the Lim and Lee algorithm [2℄, in whi
h
ase extra

storage is not required as the information is already available.

When publi
 key
erti�
ates are used, we require a
erti�
ate on P

n

. In
luding P

n

instead

of P in the
erti�
ate does not signi�
antly in
rease the
erti�
ate size. For example, a typi
al

size for an X:509
erti�
ate is about 1K bytes [7℄. For a 192-bit ellipti

urve (as an example),

the publi
 key P requires d

192�2

8

e = 48 bytes. However, using a
ompressed representation, the

point P
ould be represented using one 192-bit value and one additional bit. It then requires

d

192+1

8

e = 25 bytes. Therefore,
hanging the publi
 key from P to P

2

= (P; 2

d

l

2

e

P) would

in
rease the
erti�
ate size by less than 5% and 2:5% when the points are represented in an

un
ompressed and a
ompressed format, respe
tively. Note that the additional data
an be

stored as an extension of the
erti�
ate as X:509 version 3 [8℄ supports extensions.

5 Fixed-base-like Point Multipli
ation Using The Proposed

Te
hnique

In this se
tion we determine the impa
t of using the proposed te
hnique on the speed of random

point multipli
ation algorithms. To give a detailed explanation, we present an improvement of

Algorithm 1 (Algorithm 2), whi
h employs P

n

. We then
ompare the performan
e of these two

algorithms in terms of the required number of point additions and point doublings. A similar

approa
h
an be used to show the impa
t of using the proposed te
hnique on the performan
e

of other random point multipli
ation algorithms.

Algorithm 2 is a generalization of Algorithm 1 be
ause it is the same as Algorithm 1 for

n = 1. In Algorithm 2, the B-representation of the multiplier k is divided into n subblo
ks

of length s = d

l

n

e. In the evaluation stage of this algorithm, the point multipli
ation kP is

omputed as

kP = (

X

0�i<l

k

i

2

i

)P =

X

0�i<s

0

�

X

0�j<n

(k

sj+i

2

i

)(2

sj

P)

1

A

:

Therefore, the required number of point doublings at this stage is redu
ed to (d

l

n

e�1) while the

required number of point additions remains the same as that with Algorithm 1. Note that the

4

evaluation stage of Algorithm 2 is the same as Moller's window w-NAF splitting [9℄. However,

Moller's algorithm does not require a pre
omputation stage as it is used for �xed point multi-

pli
ation. In the pre
omputation stage of Algorithm 2, we need to
ompute the points d(2

sj

P),

where d 2 B, d > 1 and 0 � j < n. For example, if the w-NAF representation is used, Algorithm

2 would require n(2

w�2

� 1) point additions and n point doublings in its pre
omputation stage.

Therefore, the
ost of this stage is approximately n(2

w�2

� 1)A+nD, where A denotes the
ost

of a point addition, and D the
ost of a point doubling.

Algorithm 2: Random Point Multipli
ation using P

n

Input: An integer k and P

n

= (P; 2

d

l

n

e�1

P; : : : ; 2

d

l

n

e�(n�1)

P).

Output: kP .

Pre
omputation Stage:

1. Compute the B-representation of the multiplier

k =

P

0�i<l

k

i

2

i

, k

i

2 B [f0g.

2. Compute and store d(2

d

l

n

e�j

P) for all integers d 2 B,

d > 1 and 0 � j < n.

Evaluation Stage:

1. s d

l

n

e, R O.

2. for i from (s� 1) down to 0 do

3. R 2R.

4. for j from (n� 1) down to 0 do

5. if (k

sj+i

> 0) then R R+ k

sj+i

(2

sj

P)

6. else if (k

sj+i

< 0) then R R� (�k

sj+i

)(2

sj

P)

7. return R.

The total
ost of Algorithm 1 or Algorithm 2 depends on some properties of theB-representation

employed, su
h as Hamming weight. Therefore, for an a

urate performan
e
omparison of these

two algorithms we must know whi
h B-representation is used. If a binary representation is used,

the
ost of Algorithm 1 and Algorithm 2 would be approximately (

l

2

A + lD) and (

l

2

A +

l

n

D),

respe
tively. Therefore, we have

R �

l

2

A+ lD

l

2

A+

l

n

D

=

1

2

+ t

1

2

+

t

n

;

where R =

ost of Algorithm 1

ost of Algorithm 2

and t =

D

A

. Similarly, when the NAF representation is used we

have

R �

l

3

A+ lD

l

3

A+

l

n

D

=

1

3

+ t

1

3

+

t

n

:

Figure 1
ompares the performan
e of Algorithm 1 with that of Algorithm 2 for the
ases when

binary and NAF representations are used. As shown in this �gure, the higher the values of t and

n, the better the performan
e improvement a
hieved by repla
ing Algorithm 1 with Algorithm

2. The value of t depends on the �nite �eld and
oordinate system employed. For example, if

the binary �nite �eld and AÆne
oordinates system are used, we would have t = 1 (see Table

1). In this
ase, for n = 3 (as an example), Algorithm 2 is twi
e as fast as Algorithm 1 if they

both use the NAF representation.

5

0 0.2 0.4 0.6 0.8 1 1.2
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

t

R

n=2

n=3

n=4

n=8

n=16

0 0.2 0.4 0.6 0.8 1 1.2
1

1.5

2

2.5

3

3.5

t

R

n=2

n=3

n=4

n=8

n=16

Figure 1: Performan
e
omparison of Algorithms 1 and 2 for the
ases when binary (left) and

NAF (right) representations are used.

Now,
onsider the
ase that w-NAF (w > 2) is used by both Algorithms 1 and 2. The
osts

of Algorithms 1 and 2 are then ((

l

w+1

�1)+(2

w�2

�1))A+ lD and ((

l

w+1

�1)+n(2

w�2

�1))A+

(d

l

n

e+ n� 1)D, respe
tively. Therefore, we have

R �

((

l

w+1

� 1) + (2

w�2

� 1)) + lt

((

l

w+1

� 1) + n(2

w�2

� 1)) + (

l

n

+ n� 1)t

=

F (l; w)

G(l; w; n)

;

where

F (l; w) = ((

l

w + 1

� 1) + (2

w�2

� 1)) + lt;

and

G(l; w; n) = (

l

w + 1

� 1) + n(2

w�2

� 1)) + (

l

n

+ n� 1)t:

One way to
ompare the performan
e of Algorithm 1 with that of Algorithm 2 is to
ompare

their minimum
osts. In order to do this, we need to determine the integers w

1

, w

2

and n

2

for

whi
h F (l; w

1

) and G(l; w

2

; n

2

) are minimal. Let

F

w

(l) = argmin

w

(F (l; w)); l; w 2 N:

It is easy to verify that w

1

= F

w

(l), w

2

� F

w

([

l

n

2

℄) and n

2

�

h
q

lt

2

w

2

�2

+t�1

i

. However, we

set w = maxf3; w

2

g to avoid using (w

2

= 2) whi
h was
onsidered before (note that the NAF

representation is the same as the w-NAF representation for w = 2). Figure 2 presents F

w

(l) for

100 � l � 1000. As shown in this �gure, w

1

= 5; 6 for typi
al values of l (i.e. 160 � l � 600).

Figure 3
ompares the maximum a
hievable speed of Algorithm 2 with that of Algorithm 1. For

example, for t = 0:8 and l = 192 we have w

1

= 5, w

2

= 3 and n

2

= 9. As shown in Figure

3, R

0

=

F (l;w

1

)

G(l;w

2

;n

2

)

= 2:4. Therefore, the maximum a
hievable speed of Algorithm 2 is 2:4 times

higher than that of Algorithm 1.

The
ost of Algorithm 2
an be further redu
ed using Montgomery's tri
k [10℄. As mentioned

before, in the pre
omputation stage of Algorithm 2, we require that d(2

sj

P) be
omputed for

d 2 B, d > 1 and 0 � j < n. When w-NAF is employed, this
omputation
an be a

omplished

6

in n steps by
omputing the points P

i;j

= P

i�1;j

+ P

0;j

for 0 � j < n in the i-th step, where

P

0;j

= 2

sj

P and 1 � i � n. In the pre
omputation stage, it is preferable to represent the points

P

i;j

using AÆne
oordinates in order to redu
e the amount of memory required to store them,

and to speed up the evaluation stage of the algorithm using mixed
oordinates systems [11℄.

Using AÆne
oordinates, we require n simultaneous �eld inversions in ea
h step. Montgomery's

tri
k enables us to do this using one �eld inversion and 3(n� 1) �eld multipli
ations [10℄. Thus,

for large n, one �eld inversion is repla
ed by approximately 3 �eld multipli
ations, whi
h is a

signi�
ant
ost saving as a �eld inversion typi
ally
osts more than 3 �eld multipli
ations in

most useful �elds.

100 200 300 400 500 600 700 800 900 1000
3.5

4

4.5

5

5.5

6

6.5

7

7.5

l

F
w

(l
)

Figure 2: F

w

(l) for 100 � l � 1000.

100 200 300 400 500 600 700 800 900 1000
1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

l

R
’=

F
(l

, w
1)/

G
(l

, w
2, n

2)

t=0.4

t=0.6

t=0.8

t=1.0

Figure 3: Comparison between the maximum speeds of Algorithms 1 and 2 when w-NAF is

used.

7

6 Parallel Pro
essing

Using the proposed te
hnique, random point multipli
ation
an be
omputed mu
h faster with

multiple pro
essors. For example, assume that n pro
essors are available and we have P

n

. Then

kP
an be
omputed as follows

kP = (

l�1

X

i=0

k

i

2

i

)P =

n�1

X

j=0

(

s�1

X

i=0

k

sj+i

2

i

)(2

sj

P)

!

=

n�1

X

j=0

R

j

;

where R

j

= (

P

s�1

i=0

k

sj+i

2

i

)(2

sj

P). The j-th pro
essor
an then
ompute R

j�1

using Algorithm

1. Hen
e, ea
h pro
essor requires s point doublings and on average ((

s

w+1

� 1) + (2

w�2

� 1))

point additions when the w-NAF representation is used. Then dlog

2

ne point additions are

required to
ompute the �nal result. Therefore the total
ost of parallel
omputation of kP is

((

s

w+1

� 1) + (2

w�2

� 1) + dlog

2

ne)A + sD. Consequently, using the proposed te
hnique and

parallel pro
essing, random point multipli
ation
an be
omputed about n times faster than

Algorithm 1 when (n� l) be
ause

((

l

w+1

� 1) + (2

w�2

� 1))A + lD

((

s

w+1

� 1) + (2

w�2

� 1) + dlog

2

ne)A+ sD

�

l

w+1

A+ lD

1

n

(

l

w+1

A+ lD)

= n: (4)

Note that for the algorithm used in the parallel pro
essing, the optimal w is F

w

(d

l

n

e) whi
h

is generally smaller than F

w

(l) used in Algorithm 1. However, we used the same w in (4) for

omputational
onvenien
e. In fa
t, using the optimal w for parallel pro
essing results in a value

loser to n than in (4).

Consider the general
ase where we have m pro
essors (m < n) and we know P

n

. Random

point multipli
ation
an then be
omputed in the following (similar) way

kP = (

l�1

X

i=0

k

i

2

i

)P =

m�1

X

j=0

(

s

0

�1

X

i=0

k

s

0

j+i

2

i

)(2

s

0

j

P)

!

=

m�1

X

j=0

R

j

;

where s

0

= d

l

n

e � d

n

m

e and R

j

= (

P

s

0

�1

i=0

k

s

0

j+i

2

i

)(2

s

0

j

P). Note that in this
ase, ea
h pro
essor

uses Algorithm 2 instead of Algorithm 1 to
ompute R

j

.

7 Con
lusions

In this paper, we proposed a new te
hnique to use both bandwidth and memory to speed

up the
omputation of random point multipli
ation. In the proposed te
hnique, redundant

information of the form 2

d

l

n

e�i

P is added to the publi
 key P . It was shown that using these

points signi�
antly redu
es the
ost of
omputing random point multipli
ation via redu
ing the

required number of point doublings. In addition, these points may already be available in a

lookup table as they are often used in ellipti

urve digital signature generation algorithms. We

also showed that further
ost savings
an be obtained by using Montgomery's tri
k. Finally, the

proposed te
hnique was shown to be suitable for parallel pro
essing. This te
hnique
an also be

used to speed up exponentiation in Hyperellipti
 Curve Cryptography (HECC) [12℄ and RSA

(when a large publi
 exponent is used).

8

Referen
es

[1℄ N. Koblitz, \CM-
urves with good
ryptographi
 properties," Advan
es in Cryptology -

Pro
. Crypto '92, vol. 576, pp. 279{287, 1992.

[2℄ C. H. Lim and P. J. Lee, \More
exible exponentiation with pre
omputation," Springer-

Verlag Le
ture Notes in Computer S
ien
e, vol. 839, pp. 95{107, 1994.

[3℄ J. A. Muir and D. R. Stinson, \Minimality and other proper-

ties of the with-w nonadja
ent form," Preprint, 2004, Available from

http://www.
a
r.math.uwaterloo.
a/te
h reports.html.

[4℄ D. Gordon, \A survey of fast exponentiation methods," J. Algorithms, vol. 27, pp. 129{146,

1998.

[5℄ I. Blake, G. Seroussy, and N. Smart, Ellipti
 Curves in Cryptography. Cambridge: Cam-

bridge University Press, 1999.

[6℄ A. Menezes, P. van Oors
hot, and S. Vanstone, Handbook of Applied Cryptography. CRC

Press, 1997.

[7℄ R. Zu

herato, \Ellipti

urve
ryptography support in entrust," May 9, 2000.

[8℄ ITU-T, ITU-T Re
ommendation X.509 version 3 (1997), Information Te
hnology - Open

Systems Inter
onne
tion - The Dire
tory Authenti
ation Framewordk, ISO/IEC 9594-8,

1997.

[9℄ B. M�oller, \Improved te
hniques for fast exponentiation," Springer-Verlag Le
ture Notes in

Computer S
ien
e, vol. 2587, pp. 298{312, 2003.

[10℄ H. Cohen, A Course in Computational Number Theory, Graduate Texts in Math. 138.

Springer-Verlag, 1993, third Corre
ted Printing, 1996.

[11℄ H. Cohen, A. Miyaji, and T. Ono, \EÆ
ient ellipti

urve exponentiation using mixed

oordinates," Springer-Verlag Le
ture Notes in Computer S
ien
e, vol. 1514, pp. 51{65,

1998.

[12℄ N. Koblitz, \Hyperellipti

ryptosystems," J. Cryptology, vol. 1, pp. 139{150, 1989.

9

