
Partially Fixed Point Multipliation

Majid Khabbazian

�

, T. Aaron Gulliver

y

, and Vijay K. Bhargava

z

Abstrat

A new tehnique is proposed in whih bandwidth and memory are together used to

redue both the number of point additions and doublings required in omputing random

point multipliation. Using the proposed tehnique, we show that a signi�ant speed-up

an be obtained at the ost of slightly inreased bandwidth. In addition, we show that the

proposed tehnique is well-suited for parallel proessing.

Keywords: ryptography, ellipti urves, point multipliation, fast omputation, parallel

proessing.

1 Introdution

Point multipliation, kP , is a fundamental operation whih dominates the exeution time of el-

lipti urve ryptosystems. Therefore, signi�ant study has been done to redue the time needed

to perform this operation. There are several approahes to speed up this operation, suh as:

(1) reduing the number of ellipti urve operations required in omputing point multipliation,

(2) speeding up ellipti urve operations suh as point doubling, and (3) using faster operations

available in ertain speial ellipti urves suh as Koblitz urves [1℄. Our ontribution deals

with the �rst approah. In this approah, memory is typially used by point multipliation

algorithms to redue the required number of ellipti urve operations. For example, when the

point P is �xed, the number of point additions and doublings required in omputing kP an

be signi�antly redued using a lookup table [2℄, leading to a fast implementation of the opera-

tion. However, lookup tables annot be used to speed up random point multipliation beause

the point P is variable. In this ase, a typial tehnique is to use low average Hamming weight

integer representations suh as w-NAF (see [3℄) to redue the required number of point additions.

In this paper, we propose a new tehnique whih uses memory and bandwidth together to

redue both the number of point additions and point doublings required in omputing random

point multipliation. In the proposed tehnique, we add redundant information to the publi

key. This information an then be used by any entity, partiularly those with onstrained

omputational power or servers overloaded with EC-DSA veri�ation requests, to speed up the

operation. We also show that a substantial performane improvement an be obtained when

multiple proessors are available.

The rest of this paper is organized as follows. In Setion 2, we briey summarize ellipti

urve operations. In Setion 3, we explain random point multipliation. We then propose our

new tehnique and explain its impat on omputing random point multipliation in Setions 4

and 5, respetively. In Setion 6, we show that the proposed tehnique is appropriate for parallel

proessing. Finally, we present some onlusions in Setion 7.

�

Dept. of Eletrial and Computer Engineering, University of British Columbia, Canada, majidk�ee.ub.a

y

Dept. of Eletrial and Computer Engineering, University of Vitoria, Canada

z

Dept. of Eletrial and Computer Engineering, University of British Columbia, Canada

1

2 Ellipti Curves: De�nition and Operations

An ellipti urve E over the �eld F is a smooth urve in the so alled \long weirestra� form"

E : y

2

+ a

1

xy + a

3

y = x

3

+ a

2

x

2

+ a

4

x+ a

6

; (1)

where a

1

; : : : ; a

6

2 F. Equation (1) may be simpli�ed to

E : y

2

= x

3

+ ax+ b; (2)

and

E : y

2

+ xy = x

3

+ ax

2

+ b; (3)

when Char(F) 6= 2; 3 and Char(F) = 2, respetively.

2.1 Point Addition, Doubling, Subtration and Multipliation

Let E(F) be the set of points P = (x; y) 2 F

2

that satisfy the ellipti urve equation (along

with a \point at in�nity" denoted O). It is well known that E(F) together with the point

addition operation given in Table 1 form an abelian group. When two operands are equal, i.e.

P

1

= P

2

, the operation is alled point doubling. As shown in Table 2, point inversion in this

group an be omputed easily. Thus, point subtration has the same ost as point addition.

Note that in Tables 1 and 2, the points P

1

= (x

1

; y

1

); P

2

= (x

2

; y

2

) and P

3

= (x

3

; y

3

) are

represented by AÆne oordinates. Alternative oordinates suh as Projetive oordinates or

Jaobian oordinates an be used to avoid �eld inversion when �eld inversion is muh more

expensive than �eld multipliation. Point multipliation is de�ned as repeated addition

kP = P + P + : : :+ P

| {z }

k times

,

where P is an ellipti urve point, k 2 [1; N � 1℄ is an integer, and N is the order of point P .

Char(F) = 2

P

1

6= �P

2

� =

y

2

+y

1

x

2

+x

1

x

3

= �

2

+ �+ x

1

+ x

2

+ a

y

3

= (x

1

+ x

3

)�+ y

1

+ x

3

P

1

= P

2

� =

y

1

x

1

+ x

1

x

3

= �

2

+ �+ a

y

3

= (x

1

+ x

3

)�+ y

1

+ x

3

Char(F) 6= 2; 3

P

1

6= �P

2

� =

y

2

�y

1

x

2

�x

1

x

3

= �

2

� x

1

� x

2

y

3

= (x

1

� x

3

)�� y

1

P

1

= P

2

� =

3x

2

1

+a

2y

1

x

3

= �

2

� 2x

1

y

3

= (x

1

� x

3

)�� y

1

Table 1: Ellipti urve point addition, P

3

= P

1

+ P

2

.

Char(F) = 2 �P

1

= (x

1

; x

1

+ y

1

)

Char(F) 6= 2; 3 �P

1

= (x

1

;�y

1

)

Table 2: Ellipti urve point inversion.

2

3 Random Point Multipliation

There are many algorithms to aelerate omputation of random point multipliation by reduing

the required number of point additions [4, 5℄. These algorithms typially onsist of two stages, i.e.

a preomputation stage and an evaluation stage. Algorithm 1 is an example of suh algorithms.

The preomputation stage of this algorithm onsists of two steps. In Step 1, the multiplier k is

reoded to a B-representation as

k =

X

0�i<l

k

i

2

i

;

where k

i

2 B [f0g and B is a set of nonzero integers inluding 1. In Step 2, point multiplia-

tions dP for the integers d 2 B; d > 1 are omputed and stored. In the evaluation stage, the

information obtained from these two steps is used to ompute kP . Note that, in some algo-

rithms suh as window algorithm [4℄, the reoding proess is done in the evaluation stage. This

is beause the reoding and evaluating proesses san the multiplier digits in the same diretion,

i.e. left-to-right or right-to-left. Therefore, these proesses an be arried out simultaneously.

Algorithm 1: Random point multipliation

Input: An integer k and a point P 2 E(F).

Output: kP .

Preomputation Stage:

1. Compute the B-representation of the multiplier

k =

P

0�i<l

k

i

2

i

, k

i

2 B [f0g.

2. Compute and store dP for all integers d 2 B, d > 1.

Evaluation Stage:

1. R O.

2. for i from l � 1 down to 0 do

3. R 2R.

4. if k

i

> 0 then R R+ k

i

P .

5. else if k

i

< 0 then R R� (�k

i

)P .

6. return R.

The integer representation of the multiplier plays an important role in the performane

of these algorithms. Some useful integer representations are binary, NAF, and w-NAF for

whih B = f1g, B = f�1g, and B = f�1;�3; : : : ;�(2

w�1

� 1)g, respetively. If a binary

representation is used in Algorithm 1, Steps 1 and 2 of the preomputation stage are not required.

However, the evaluation stage would need (

l

2

� 1) point additions on average. Using the NAF

representation, only Step 2 of the preomputation stage is required. In this ase, the average

number of point additions required in the evaluation stage is redued to (

l

3

�1). This is beause

the average Hamming weight (the number of nonzero digits in the representation) of NAF is

(

l

3

). In fat, NAF has the minimal average Hamming weight among all B-representations with

B = f�1g. The NAF representation an be generalized to w-NAF. The w-NAF representation

has the minimal average Hamming weight of (

l

w+1

) among all B-representations with B =

f�1;�3; : : : ;�(2

w�1

�1)g. Consequently, if w-NAF is used in Algorithm 1, the evaluation stage

would require on average (

l

w+1

�1) point additions. However, Step 2 of the preomputation stage

requires (2

w�2

� 1) point additions and one point doubling. In all these ases, the evaluation

stage requires about (l�1) point doublings. Note that l = dlog

2

Ne for the binary representation

and l = dlog

2

Ne+ 1 for the NAF and w-NAF representations.

3

4 The Proposed Tehnique

Memory is ommonly used in many point multipliation algorithms to speed up the operation.

When the point P is known a priori, preomputing and storing some points in a lookup table an

signi�antly speed up the operation by reduing both the required number of point additions and

doublings. Random point multipliation algorithms annot redue both of these, even if there

is a large amount of memory. This is due to the fat that the point P is variable. However,

bandwidth an be used to speed up ellipti urve operations. It an for example be used to

eliminate the square root operation when a point, Q, is sent in unompressed format, i.e. both

the x-oordinate and y-oordinate of Q are sent [6℄.

In our new tehnique, we use memory and bandwidth together to redue both the required

number of point additions and doublings. This an be done by adding redundant information

to the publi key (P). In Setion 5, we explain how we an redue the required number of point

doublings for random point multipliation by half when we are provided with the point 2

d

l

2

e

P . In

general, we an redue the required number of point doublings by about

1

n

when we are provided

with the points 2

d

l

n

e�i

P for i 2 f1; 2; : : : n� 1g. Therefore, having P

2

= (P; 2

d

l

2

e

P) or in general

P

n

= (P; 2

d

l

n

e�1

P; : : : ; 2

d

l

n

e�(n�1)

P) as the new publi key allows other parties to signi�antly

speed up the omputation of random point multipliation. The redundant information in P

n

need be preomputed and stored only one. However, this information is often used by �xed

point multipliation algorithms suh as the Lim and Lee algorithm [2℄, in whih ase extra

storage is not required as the information is already available.

When publi key erti�ates are used, we require a erti�ate on P

n

. Inluding P

n

instead

of P in the erti�ate does not signi�antly inrease the erti�ate size. For example, a typial

size for an X:509 erti�ate is about 1K bytes [7℄. For a 192-bit ellipti urve (as an example),

the publi key P requires d

192�2

8

e = 48 bytes. However, using a ompressed representation, the

point P ould be represented using one 192-bit value and one additional bit. It then requires

d

192+1

8

e = 25 bytes. Therefore, hanging the publi key from P to P

2

= (P; 2

d

l

2

e

P) would

inrease the erti�ate size by less than 5% and 2:5% when the points are represented in an

unompressed and a ompressed format, respetively. Note that the additional data an be

stored as an extension of the erti�ate as X:509 version 3 [8℄ supports extensions.

5 Fixed-base-like Point Multipliation Using The Proposed

Tehnique

In this setion we determine the impat of using the proposed tehnique on the speed of random

point multipliation algorithms. To give a detailed explanation, we present an improvement of

Algorithm 1 (Algorithm 2), whih employs P

n

. We then ompare the performane of these two

algorithms in terms of the required number of point additions and point doublings. A similar

approah an be used to show the impat of using the proposed tehnique on the performane

of other random point multipliation algorithms.

Algorithm 2 is a generalization of Algorithm 1 beause it is the same as Algorithm 1 for

n = 1. In Algorithm 2, the B-representation of the multiplier k is divided into n subbloks

of length s = d

l

n

e. In the evaluation stage of this algorithm, the point multipliation kP is

omputed as

kP = (

X

0�i<l

k

i

2

i

)P =

X

0�i<s

0

�

X

0�j<n

(k

sj+i

2

i

)(2

sj

P)

1

A

:

Therefore, the required number of point doublings at this stage is redued to (d

l

n

e�1) while the

required number of point additions remains the same as that with Algorithm 1. Note that the

4

evaluation stage of Algorithm 2 is the same as Moller's window w-NAF splitting [9℄. However,

Moller's algorithm does not require a preomputation stage as it is used for �xed point multi-

pliation. In the preomputation stage of Algorithm 2, we need to ompute the points d(2

sj

P),

where d 2 B, d > 1 and 0 � j < n. For example, if the w-NAF representation is used, Algorithm

2 would require n(2

w�2

� 1) point additions and n point doublings in its preomputation stage.

Therefore, the ost of this stage is approximately n(2

w�2

� 1)A+nD, where A denotes the ost

of a point addition, and D the ost of a point doubling.

Algorithm 2: Random Point Multipliation using P

n

Input: An integer k and P

n

= (P; 2

d

l

n

e�1

P; : : : ; 2

d

l

n

e�(n�1)

P).

Output: kP .

Preomputation Stage:

1. Compute the B-representation of the multiplier

k =

P

0�i<l

k

i

2

i

, k

i

2 B [f0g.

2. Compute and store d(2

d

l

n

e�j

P) for all integers d 2 B,

d > 1 and 0 � j < n.

Evaluation Stage:

1. s d

l

n

e, R O.

2. for i from (s� 1) down to 0 do

3. R 2R.

4. for j from (n� 1) down to 0 do

5. if (k

sj+i

> 0) then R R+ k

sj+i

(2

sj

P)

6. else if (k

sj+i

< 0) then R R� (�k

sj+i

)(2

sj

P)

7. return R.

The total ost of Algorithm 1 or Algorithm 2 depends on some properties of theB-representation

employed, suh as Hamming weight. Therefore, for an aurate performane omparison of these

two algorithms we must know whih B-representation is used. If a binary representation is used,

the ost of Algorithm 1 and Algorithm 2 would be approximately (

l

2

A + lD) and (

l

2

A +

l

n

D),

respetively. Therefore, we have

R �

l

2

A+ lD

l

2

A+

l

n

D

=

1

2

+ t

1

2

+

t

n

;

where R =

ost of Algorithm 1

ost of Algorithm 2

and t =

D

A

. Similarly, when the NAF representation is used we

have

R �

l

3

A+ lD

l

3

A+

l

n

D

=

1

3

+ t

1

3

+

t

n

:

Figure 1 ompares the performane of Algorithm 1 with that of Algorithm 2 for the ases when

binary and NAF representations are used. As shown in this �gure, the higher the values of t and

n, the better the performane improvement ahieved by replaing Algorithm 1 with Algorithm

2. The value of t depends on the �nite �eld and oordinate system employed. For example, if

the binary �nite �eld and AÆne oordinates system are used, we would have t = 1 (see Table

1). In this ase, for n = 3 (as an example), Algorithm 2 is twie as fast as Algorithm 1 if they

both use the NAF representation.

5

0 0.2 0.4 0.6 0.8 1 1.2
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

t

R

n=2

n=3

n=4

n=8

n=16

0 0.2 0.4 0.6 0.8 1 1.2
1

1.5

2

2.5

3

3.5

t

R

n=2

n=3

n=4

n=8

n=16

Figure 1: Performane omparison of Algorithms 1 and 2 for the ases when binary (left) and

NAF (right) representations are used.

Now, onsider the ase that w-NAF (w > 2) is used by both Algorithms 1 and 2. The osts

of Algorithms 1 and 2 are then ((

l

w+1

�1)+(2

w�2

�1))A+ lD and ((

l

w+1

�1)+n(2

w�2

�1))A+

(d

l

n

e+ n� 1)D, respetively. Therefore, we have

R �

((

l

w+1

� 1) + (2

w�2

� 1)) + lt

((

l

w+1

� 1) + n(2

w�2

� 1)) + (

l

n

+ n� 1)t

=

F (l; w)

G(l; w; n)

;

where

F (l; w) = ((

l

w + 1

� 1) + (2

w�2

� 1)) + lt;

and

G(l; w; n) = (

l

w + 1

� 1) + n(2

w�2

� 1)) + (

l

n

+ n� 1)t:

One way to ompare the performane of Algorithm 1 with that of Algorithm 2 is to ompare

their minimum osts. In order to do this, we need to determine the integers w

1

, w

2

and n

2

for

whih F (l; w

1

) and G(l; w

2

; n

2

) are minimal. Let

F

w

(l) = argmin

w

(F (l; w)); l; w 2 N:

It is easy to verify that w

1

= F

w

(l), w

2

� F

w

([

l

n

2

℄) and n

2

�

h
q

lt

2

w

2

�2

+t�1

i

. However, we

set w = maxf3; w

2

g to avoid using (w

2

= 2) whih was onsidered before (note that the NAF

representation is the same as the w-NAF representation for w = 2). Figure 2 presents F

w

(l) for

100 � l � 1000. As shown in this �gure, w

1

= 5; 6 for typial values of l (i.e. 160 � l � 600).

Figure 3 ompares the maximum ahievable speed of Algorithm 2 with that of Algorithm 1. For

example, for t = 0:8 and l = 192 we have w

1

= 5, w

2

= 3 and n

2

= 9. As shown in Figure

3, R

0

=

F (l;w

1

)

G(l;w

2

;n

2

)

= 2:4. Therefore, the maximum ahievable speed of Algorithm 2 is 2:4 times

higher than that of Algorithm 1.

The ost of Algorithm 2 an be further redued using Montgomery's trik [10℄. As mentioned

before, in the preomputation stage of Algorithm 2, we require that d(2

sj

P) be omputed for

d 2 B, d > 1 and 0 � j < n. When w-NAF is employed, this omputation an be aomplished

6

in n steps by omputing the points P

i;j

= P

i�1;j

+ P

0;j

for 0 � j < n in the i-th step, where

P

0;j

= 2

sj

P and 1 � i � n. In the preomputation stage, it is preferable to represent the points

P

i;j

using AÆne oordinates in order to redue the amount of memory required to store them,

and to speed up the evaluation stage of the algorithm using mixed oordinates systems [11℄.

Using AÆne oordinates, we require n simultaneous �eld inversions in eah step. Montgomery's

trik enables us to do this using one �eld inversion and 3(n� 1) �eld multipliations [10℄. Thus,

for large n, one �eld inversion is replaed by approximately 3 �eld multipliations, whih is a

signi�ant ost saving as a �eld inversion typially osts more than 3 �eld multipliations in

most useful �elds.

100 200 300 400 500 600 700 800 900 1000
3.5

4

4.5

5

5.5

6

6.5

7

7.5

l

F
w

(l
)

Figure 2: F

w

(l) for 100 � l � 1000.

100 200 300 400 500 600 700 800 900 1000
1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

l

R
’=

F
(l

, w
1)/

G
(l

, w
2, n

2)

t=0.4

t=0.6

t=0.8

t=1.0

Figure 3: Comparison between the maximum speeds of Algorithms 1 and 2 when w-NAF is

used.

7

6 Parallel Proessing

Using the proposed tehnique, random point multipliation an be omputed muh faster with

multiple proessors. For example, assume that n proessors are available and we have P

n

. Then

kP an be omputed as follows

kP = (

l�1

X

i=0

k

i

2

i

)P =

n�1

X

j=0

(

s�1

X

i=0

k

sj+i

2

i

)(2

sj

P)

!

=

n�1

X

j=0

R

j

;

where R

j

= (

P

s�1

i=0

k

sj+i

2

i

)(2

sj

P). The j-th proessor an then ompute R

j�1

using Algorithm

1. Hene, eah proessor requires s point doublings and on average ((

s

w+1

� 1) + (2

w�2

� 1))

point additions when the w-NAF representation is used. Then dlog

2

ne point additions are

required to ompute the �nal result. Therefore the total ost of parallel omputation of kP is

((

s

w+1

� 1) + (2

w�2

� 1) + dlog

2

ne)A + sD. Consequently, using the proposed tehnique and

parallel proessing, random point multipliation an be omputed about n times faster than

Algorithm 1 when (n� l) beause

((

l

w+1

� 1) + (2

w�2

� 1))A + lD

((

s

w+1

� 1) + (2

w�2

� 1) + dlog

2

ne)A+ sD

�

l

w+1

A+ lD

1

n

(

l

w+1

A+ lD)

= n: (4)

Note that for the algorithm used in the parallel proessing, the optimal w is F

w

(d

l

n

e) whih

is generally smaller than F

w

(l) used in Algorithm 1. However, we used the same w in (4) for

omputational onveniene. In fat, using the optimal w for parallel proessing results in a value

loser to n than in (4).

Consider the general ase where we have m proessors (m < n) and we know P

n

. Random

point multipliation an then be omputed in the following (similar) way

kP = (

l�1

X

i=0

k

i

2

i

)P =

m�1

X

j=0

(

s

0

�1

X

i=0

k

s

0

j+i

2

i

)(2

s

0

j

P)

!

=

m�1

X

j=0

R

j

;

where s

0

= d

l

n

e � d

n

m

e and R

j

= (

P

s

0

�1

i=0

k

s

0

j+i

2

i

)(2

s

0

j

P). Note that in this ase, eah proessor

uses Algorithm 2 instead of Algorithm 1 to ompute R

j

.

7 Conlusions

In this paper, we proposed a new tehnique to use both bandwidth and memory to speed

up the omputation of random point multipliation. In the proposed tehnique, redundant

information of the form 2

d

l

n

e�i

P is added to the publi key P . It was shown that using these

points signi�antly redues the ost of omputing random point multipliation via reduing the

required number of point doublings. In addition, these points may already be available in a

lookup table as they are often used in ellipti urve digital signature generation algorithms. We

also showed that further ost savings an be obtained by using Montgomery's trik. Finally, the

proposed tehnique was shown to be suitable for parallel proessing. This tehnique an also be

used to speed up exponentiation in Hyperellipti Curve Cryptography (HECC) [12℄ and RSA

(when a large publi exponent is used).

8

Referenes

[1℄ N. Koblitz, \CM-urves with good ryptographi properties," Advanes in Cryptology -

Pro. Crypto '92, vol. 576, pp. 279{287, 1992.

[2℄ C. H. Lim and P. J. Lee, \More exible exponentiation with preomputation," Springer-

Verlag Leture Notes in Computer Siene, vol. 839, pp. 95{107, 1994.

[3℄ J. A. Muir and D. R. Stinson, \Minimality and other proper-

ties of the with-w nonadjaent form," Preprint, 2004, Available from

http://www.ar.math.uwaterloo.a/teh reports.html.

[4℄ D. Gordon, \A survey of fast exponentiation methods," J. Algorithms, vol. 27, pp. 129{146,

1998.

[5℄ I. Blake, G. Seroussy, and N. Smart, Ellipti Curves in Cryptography. Cambridge: Cam-

bridge University Press, 1999.

[6℄ A. Menezes, P. van Oorshot, and S. Vanstone, Handbook of Applied Cryptography. CRC

Press, 1997.

[7℄ R. Zuherato, \Ellipti urve ryptography support in entrust," May 9, 2000.

[8℄ ITU-T, ITU-T Reommendation X.509 version 3 (1997), Information Tehnology - Open

Systems Interonnetion - The Diretory Authentiation Framewordk, ISO/IEC 9594-8,

1997.

[9℄ B. M�oller, \Improved tehniques for fast exponentiation," Springer-Verlag Leture Notes in

Computer Siene, vol. 2587, pp. 298{312, 2003.

[10℄ H. Cohen, A Course in Computational Number Theory, Graduate Texts in Math. 138.

Springer-Verlag, 1993, third Correted Printing, 1996.

[11℄ H. Cohen, A. Miyaji, and T. Ono, \EÆient ellipti urve exponentiation using mixed

oordinates," Springer-Verlag Leture Notes in Computer Siene, vol. 1514, pp. 51{65,

1998.

[12℄ N. Koblitz, \Hyperellipti ryptosystems," J. Cryptology, vol. 1, pp. 139{150, 1989.

9

