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Abstract

A new technique is proposed in which bandwidth and memory are together used to
reduce both the number of point additions and doublings required in computing random
point multiplication. Using the proposed technique, we show that a significant speed-up
can be obtained at the cost of slightly increased bandwidth. In addition, we show that the
proposed technique is well-suited for parallel processing.
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1 Introduction

Point multiplication, kP, is a fundamental operation which dominates the execution time of el-
liptic curve cryptosystems. Therefore, significant study has been done to reduce the time needed
to perform this operation. There are several approaches to speed up this operation, such as:
(1) reducing the number of elliptic curve operations required in computing point multiplication,
(2) speeding up elliptic curve operations such as point doubling, and (3) using faster operations
available in certain special elliptic curves such as Koblitz curves [1]. Our contribution deals
with the first approach. In this approach, memory is typically used by point multiplication
algorithms to reduce the required number of elliptic curve operations. For example, when the
point P is fixed, the number of point additions and doublings required in computing kP can
be significantly reduced using a lookup table [2], leading to a fast implementation of the opera-
tion. However, lookup tables cannot be used to speed up random point multiplication because
the point P is variable. In this case, a typical technique is to use low average Hamming weight
integer representations such as w-NAF (see [3]) to reduce the required number of point additions.

In this paper, we propose a new technique which uses memory and bandwidth together to
reduce both the number of point additions and point doublings required in computing random
point multiplication. In the proposed technique, we add redundant information to the public
key. This information can then be used by any entity, particularly those with constrained
computational power or servers overloaded with EC-DSA verification requests, to speed up the
operation. We also show that a substantial performance improvement can be obtained when
multiple processors are available.

The rest of this paper is organized as follows. In Section 2, we briefly summarize elliptic
curve operations. In Section 3, we explain random point multiplication. We then propose our
new technique and explain its impact on computing random point multiplication in Sections 4
and 5, respectively. In Section 6, we show that the proposed technique is appropriate for parallel
processing. Finally, we present some conclusions in Section 7.
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2 Elliptic Curves: Definition and Operations

An elliptic curve E over the field ' is a smooth curve in the so called “long weirestrafl form”

E y2 + a1y + azy = 3 —I-a2$2 + a4z + ag,

where aq,...,ag € F. Equation (1) may be simplified to

and

E:y* =1+ azx+b,

E:y* +xy=12°+az® +b,

when Char(F) # 2,3 and Char(FF) = 2, respectively.

2.1 Point Addition, Doubling, Subtraction and Multiplication

(1)

(2)

(3)

Let E(F) be the set of points P = (z,y) € F? that satisfy the elliptic curve equation (along
with a “point at infinity” denoted O). It is well known that E(IF) together with the point
addition operation given in Table 1 form an abelian group. When two operands are equal, i.e.
P, = P,, the operation is called point doubling. As shown in Table 2, point inversion in this
group can be computed easily. Thus, point subtraction has the same cost as point addition.
Note that in Tables 1 and 2, the points P, = (z1,y1), P> = (z2,y2) and P3 = (z3,y3) are
represented by Affine coordinates. Alternative coordinates such as Projective coordinates or
Jacobian coordinates can be used to avoid field inversion when field inversion is much more

expensive than field multiplication. Point multiplication is defined as repeated addition

kP=P+P+...+P,

k times

where P is an elliptic curve point, k € [1, N — 1] is an integer, and N is the order of point P.
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Table 1: Elliptic curve point addition, P3 = P} + Ps.

‘ Char(F) =2

| P =(z1,m1+ ) |

[Char(F) 22,3 | —P, = (w1,-y1) |

Table 2: Elliptic curve point inversion.



3 Random Point Multiplication

There are many algorithms to accelerate computation of random point multiplication by reducing
the required number of point additions [4, 5]. These algorithms typically consist of two stages, i.e.
a precomputation stage and an evaluation stage. Algorithm 1 is an example of such algorithms.
The precomputation stage of this algorithm consists of two steps. In Step 1, the multiplier & is
recoded to a B-representation as

k=Y k2,

0<i<l

where k; € BU{0} and B is a set of nonzero integers including 1. In Step 2, point multiplica-
tions dP for the integers d € B,d > 1 are computed and stored. In the evaluation stage, the
information obtained from these two steps is used to compute £P. Note that, in some algo-
rithms such as window algorithm [4], the recoding process is done in the evaluation stage. This
is because the recoding and evaluating processes scan the multiplier digits in the same direction,
i.e. left-to-right or right-to-left. Therefore, these processes can be carried out simultaneously.

Algorithm 1: Random point multiplication
Input: An integer k and a point P € E(F).
Output: kP.

Precomputation Stage:
1.  Compute the B-representation of the multiplier
k= Eogid k;2', k; € BU{0}.
2. Compute and store dP for all integers d € B, d > 1.
Evaluation Stage:
R+ O.
for ¢ from I — 1 down to 0 do
R < 2R.
if k; > 0 then R < R + k;P.
else if k; < 0 then R <~ R — (—Fk;)P.
return R.

SOt W=

The integer representation of the multiplier plays an important role in the performance
of these algorithms. Some useful integer representations are binary, NAF, and w-NAF for
which B = {1}, B = {£1}, and B = {£1,£3,...,£(2¥ ! — 1)}, respectively. If a binary
representation is used in Algorithm 1, Steps 1 and 2 of the precomputation stage are not required.
However, the evaluation stage would need (% — 1) point additions on average. Using the NAF
representation, only Step 2 of the precomputation stage is required. In this case, the average
number of point additions required in the evaluation stage is reduced to (% —1). This is because
the average Hamming weight (the number of nonzero digits in the representation) of NAF is
(é) In fact, NAF has the minimal average Hamming weight among all B-representations with
B = {£1}. The NAF representation can be generalized to w-NAF. The w-NAF representation
has the minimal average Hamming weight of (w%_l) among all B-representations with B =
{£1,43,...,+(2¥" " —1)}. Consequently, if w-NAF is used in Algorithm 1, the evaluation stage
would require on average (w%_l —1) point additions. However, Step 2 of the precomputation stage
requires (2¥~2 — 1) point additions and one point doubling. In all these cases, the evaluation
stage requires about (I —1) point doublings. Note that [ = [log, N'| for the binary representation
and [ = [logy N| 4 1 for the NAF and w-NAF representations.



4 The Proposed Technique

Memory is commonly used in many point multiplication algorithms to speed up the operation.
When the point P is known a priori, precomputing and storing some points in a lookup table can
significantly speed up the operation by reducing both the required number of point additions and
doublings. Random point multiplication algorithms cannot reduce both of these, even if there
is a large amount of memory. This is due to the fact that the point P is variable. However,
bandwidth can be used to speed up elliptic curve operations. It can for example be used to
eliminate the square root operation when a point, @, is sent in uncompressed format, i.e. both
the z-coordinate and y-coordinate of @ are sent [6].

In our new technique, we use memory and bandwidth together to reduce both the required
number of point additions and doublings. This can be done by adding redundant information
to the public key (P). In Section 5, we explain how we can reduce the required number of point

doublings for random point multiplication by half when we are provided with the point 2l31p. In
general, we can reduce the required number of point doublings by about % when we are provided
with the points 2l 51X P for i € {1,2,...n —1}. Therefore, having P, = (P, 2[é]P) or in general
P, = (P, 2[%1X1P, . ,2[%1X("_1)P) as the new public key allows other parties to significantly
speed up the computation of random point multiplication. The redundant information in P,
need be precomputed and stored only once. However, this information is often used by fixed
point multiplication algorithms such as the Lim and Lee algorithm [2], in which case extra
storage is not required as the information is already available.

When public key certificates are used, we require a certificate on P,. Including P, instead
of P in the certificate does not significantly increase the certificate size. For example, a typical
size for an X.509 certificate is about 1K bytes [7]. For a 192-bit elliptic curve (as an example),
the public key P requires (%] = 48 bytes. However, using a compressed representation, the
point P could be represented using one 192-bit value and one additional bit. It then requires
192417 = 25 bytes. Therefore, changing the public key from P to P, = (P,2[%1P) would
increase the certificate size by less than 5% and 2.5% when the points are represented in an
uncompressed and a compressed format, respectively. Note that the additional data can be
stored as an extension of the certificate as X.509 version 3 [8] supports extensions.

5 Fixed-base-like Point Multiplication Using The Proposed
Technique

In this section we determine the impact of using the proposed technique on the speed of random
point multiplication algorithms. To give a detailed explanation, we present an improvement of
Algorithm 1 (Algorithm 2), which employs P,,. We then compare the performance of these two
algorithms in terms of the required number of point additions and point doublings. A similar
approach can be used to show the impact of using the proposed technique on the performance
of other random point multiplication algorithms.

Algorithm 2 is a generalization of Algorithm 1 because it is the same as Algorithm 1 for
n = 1. In Algorithm 2, the B-representation of the multiplier £ is divided into n subblocks
of length s = [%] In the evaluation stage of this algorithm, the point multiplication kP is
computed as

kP = (Y k2Y)P =" | Y (k1i2)(27P)

0<i<l 0<i<s \0<j<n

I3
n
required number of point additions remains the same as that with Algorithm 1. Note that the

Therefore, the required number of point doublings at this stage is reduced to ([£] — 1) while the



evaluation stage of Algorithm 2 is the same as Moller’s window w-NAF splitting [9]. However,
Moller’s algorithm does not require a precomputation stage as it is used for fixed point multi-
plication. In the precomputation stage of Algorithm 2, we need to compute the points d(2% P),
where d € B,d > 1 and 0 < j < n. For example, if the w-NAF representation is used, Algorithm
2 would require n(2* 2 — 1) point additions and n point doublings in its precomputation stage.
Therefore, the cost of this stage is approximately n(2¥~2 — 1)A +nD, where A denotes the cost
of a point addition, and D the cost of a point doubling.

Algorithm 2: Random Point Multiplication using P,
Input: An integer k£ and P, = (P, 2%1X1P, . ,Z%]X("_l)P).
Output: kP.

Precomputation Stage:

1. Compute the B-representation of the multiplier
k= Zogz‘<l k2", k; € BU{0}.

2. Compute and store d(Z%] XJP) for all integers d € B,
d>1and 0 <j <n.

Evaluation Stage:

. s« [L],R« 0.

2. for i from (s — 1) down to 0 do

3 R <+ 2R.

4. for j from (n — 1) down to 0 do

5 if (ksj+i > 0) then R+ R+ kg (257 P)

6 else if (ksj+i < 0) then R < R — (—kgj1;)(25 P)

7. return R.

The total cost of Algorithm 1 or Algorithm 2 depends on some properties of the B-representation
employed, such as Hamming weight. Therefore, for an accurate performance comparison of these
two algorithms we must know which B-representation is used. If a binary representation is used,
the cost of Algorithm 1 and Algorithm 2 would be approximately (%A +[D) and (%A + %D),
respectively. Therefore, we have

P l%A-I—iD 3 1%+vtf
sA+-D 5+
where R = gg: gg ﬁiggﬁzﬁg % and t = %. Similarly, when the NAF representation is used we
have l .
R~ lgA-I-iD _ 1§+f
sA+-D 35+

Figure 1 compares the performance of Algorithm 1 with that of Algorithm 2 for the cases when
binary and NAF representations are used. As shown in this figure, the higher the values of ¢ and
n, the better the performance improvement achieved by replacing Algorithm 1 with Algorithm
2. The value of t depends on the finite field and coordinate system employed. For example, if
the binary finite field and Affine coordinates system are used, we would have ¢ = 1 (see Table
1). In this case, for n = 3 (as an example), Algorithm 2 is twice as fast as Algorithm 1 if they
both use the NAF representation.
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Figure 1: Performance comparison of Algorithms 1 and 2 for the cases when binary (left) and
NAF (right) representations are used.

Now, consider the case that w-NAF (w > 2) is used by both Algorithms 1 and 2. The costs

of Algorithms 1 and 2 are then ((UJLJrl —1)+(2¥2-1))A+ID and ((UJLJrl —1)+n2v 2 -1))A+

([£]+mn — 1)D, respectively. Therefore, we have

R~ (G -D+@U2-1)+It _ F(lw)
TG - e 2= 1))+ (L -1t Glw,n)
where /
P(lw) = (- =D+ (2972 — 1)) + 1,
and ' l
G(l,w,n) = (w——l—l —1) +n(2¥"2 1)) + (; +n —1)t.

One way to compare the performance of Algorithm 1 with that of Algorithm 2 is to compare
their minimum costs. In order to do this, we need to determine the integers w, ws and no for
which F(I,w) and G(I,w2,n2) are minimal. Let

Fy(l) = argmin(F(l,w)), [,weN.
w

It is easy to verify that wy = F,(l), we =~ Fw([n—lz]) and ny =~ [,/Wtﬂ_l]. However, we
set w = max{3, w2} to avoid using (we = 2) which was considered before (note that the NAF
representation is the same as the w-NAF representation for w = 2). Figure 2 presents F,(l) for
100 <1 < 1000. As shown in this figure, w; = 5,6 for typical values of [ (i.e. 160 <[ < 600).
Figure 3 compares the maximum achievable speed of Algorithm 2 with that of Algorithm 1. For
example, for t = 0.8 and [ = 192 we have w; = 5, ws = 3 and ny = 9. As shown in Figure
3, R = % = 2.4. Therefore, the maximum achievable speed of Algorithm 2 is 2.4 times
higher than that of Algorithm 1.

The cost of Algorithm 2 can be further reduced using Montgomery’s trick [10]. As mentioned
before, in the precomputation stage of Algorithm 2, we require that d(2°/ P) be computed for
d€B,d>1and 0<j<n. When w-NAF is employed, this computation can be accomplished



in n steps by computing the points P;; = P; 1 ; + Py ; for 0 < j < n in the i-th step, where
Py ; =2%P and 1 <4 <n. In the precomputation stage, it is preferable to represent the points
P; ; using Affine coordinates in order to reduce the amount of memory required to store them,
and to speed up the evaluation stage of the algorithm using mixed coordinates systems [11].
Using Affine coordinates, we require n simultaneous field inversions in each step. Montgomery’s
trick enables us to do this using one field inversion and 3(n — 1) field multiplications [10]. Thus,
for large n, one field inversion is replaced by approximately 3 field multiplications, which is a
significant cost saving as a field inversion typically costs more than 3 field multiplications in
most useful fields.
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Figure 2: F,,(I) for 100 <1 < 1000.
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Figure 3: Comparison between the maximum speeds of Algorithms 1 and 2 when w-NAF is
used.



6 Parallel Processing

Using the proposed technique, random point multiplication can be computed much faster with
multiple processors. For example, assume that n processors are available and we have P,. Then
kP can be computed as follows

-1 n—1 s—1 n—1
SOILEDY ((stﬁﬂz)@””) - &,
i=0 j= i=0

where R; = (Ef;& ksj+i2%) (257 P). The j-th processor can then compute R;_; using Algorithm
1. Hence, each processor requires s point doublings and on average ((—3 T )+ (2¥ 72 — 1))
point additions when the w-NAF representation is used. Then [logy n] point additions are
required to compute the final result. Therefore the total cost of parallel computation of kP is
(g -1+ (292 — 1) + [logyn])A 4 sD. Consequently, using the proposed technique and
parallel processing, random point multiplication can be computed about n times faster than
Algorithm 1 when (n < [) because

((w—+1 1)+ (22 -1)A+ID

(g — 1D +(2v=2 = 1) + [logyn])A + sD ~

_L_A4+1ID
A+ID)

w+1

(4)

1
(w—i—l

Note that for the algorithm used in the parallel processing, the optimal w is Fw(f%]) which
is generally smaller than F, () used in Algorithm 1. However, we used the same w in (4) for
computational convenience. In fact, using the optimal w for parallel processing results in a value
closer to n than in (4).

Consider the general case where we have m processors (m < n) and we know P,. Random
point multiplication can then be computed in the following (similar) way

-1 m—1 s'—1 m—1
= (Z k,LQZ)P = Z ( Z ks ]+Z2Z 25 ]P ) - Z R],
i=0 J=0

=0 j=

where s' = [L] x [2] and R; = (Zf:ol kg i1:2')(2°9P). Note that in this case, each processor
uses Algorithm 2 instead of Algorithm 1 to compute R;.

7 Conclusions

In this paper, we proposed a new technique to use both bandwidth and memory to speed
up the computation of random point multiplication. In the proposed technique, redundant
information of the form 2% 1P is added to the public key P. It was shown that using these
points significantly reduces the cost of computing random point multiplication via reducing the
required number of point doublings. In addition, these points may already be available in a
lookup table as they are often used in elliptic curve digital signature generation algorithms. We
also showed that further cost savings can be obtained by using Montgomery’s trick. Finally, the
proposed technique was shown to be suitable for parallel processing. This technique can also be
used to speed up exponentiation in Hyperelliptic Curve Cryptography (HECC) [12] and RSA
(when a large public exponent is used).
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