
Breaking and Repairing Trapdoor-free Group

Signature Schemes from Asiacrypt 2004

Xinyi Huang1, Willy Susilo2 and Yi Mu2

1College of Mathematics and Computer Science

Nanjing Normal University, P.R. China

Email: xinyinjnu@126.com
2Centre for Information Security Research

School of Information Technology and Computer Science

University of Wollongong, Australia

Email: {wsusilo, ymu}@uow.edu.au

Abstract. Group signature schemes allow a member of a group to sign messages anonymously

on behalf of the group. In the case of later dispute, a designated group manager can revoke the

anonymity and identify the originator of a signature. In Asiacrypt 2004, Nguyen and Safavi-Naini

proposed a group signature scheme that has a constant-size public key and signature length, and

more importantly, their group signature scheme does not require trapdoor. Their scheme is very

efficient and the sizes of signatures are shorter compared to the existing schemes that were proposed

earlier. In this paper, we point out that Nguyen and Safavi-Naini’s scheme is insecure. In particular,

we provide a cryptanalysis of the scheme that allows a non-member of the group to sign on behalf of

the group. The resulting group signature can convince any third party that a member of the group

has indeed generated such a signature, although none of the members has done it. Therefore, in the

case of dispute, the group manager cannot identify who has signed the message. We also provide a

new scheme that does not suffer against this problem.

1 Introduction

Chaum and van Heyst proposed a new type of signature scheme for a group of entities,

called group signatures in [10]. Such a scheme allows a group member to sign a message on

behalf of the group such that everybody can verify the signature but no one can identify

which group member provided it. However, there is a designated group manager who can

reveal the identity of the originator of a signature in the case of later dispute. This act

is referred to as “opening” a signature or also as revocation of a signer’s anonymity. The

role of a group manager is also to register new users by issuing membership certificates

that contain registration details. In some schemes, the functions of the group manager

can be split between two managers: an issuer and an opener.

In early group signature schemes [6, 11], the size of the public key and the signature

grew linearly with the size of the group, and hence, the schemes were impractical for large

groups. Schemes with fixed size group public key and signature length have been proposed

in [1,8,9]. In particular, an efficient group signature scheme with very short length and low

computation cost has been proposed in [1]. An efficient group signature scheme without

trapdoor, in the sense that none of parties in the system including the group manager

need to know the trapdoor, has been proposed in [2]. A short group signature scheme

has been proposed in [4]. More recently, Nguyen and Safavi-Naini proposed an efficient

provably secure trapdoor-free group signature scheme in [13].

Our Contribution

In this paper, we point out that the scheme proposed in [13] is insecure. In particular,

we shall show that anyone can sign on behalf of the group and convince any third party

that a member of the group has indeed generated such a signature. More importantly,

the group manager cannot revoke the identity of the signer since the signer is not a group

member. We also show how to fix this scheme to make the scheme secure.

1.1 Cryptographic Tools

Basic Concepts on Bilinear Pairings

Let G1,G2 be cyclic additive groups generated by P1, P2, respectively, whose order are

a prime q. Let GM be a cyclic multiplicative group with the same order q. We assume

there is an isomorphism ψ : G2 → G1 such that ψ(P2) = P1. Let e : G1 ×G2 → GM be a

bilinear mapping with the following properties:

1. Bilinearity: e(aP, bQ) = e(P,Q)ab for all P ∈ G1, Q ∈ G2, a, b,∈ ZZq.

2. Non-degeneracy: There exists P ∈ G1, Q ∈ G2 such that e(P,Q) 6= 1.

3. Computability: There exists an efficient algorithm to compute e(P, Q) for all P ∈
G1, Q ∈ G2.

For simplicity, hereafter, we set G1 = G2 and P1 = P2. We note that our scheme can be

easily modified for a general case, when G1 6= G2.

Bilinear pairing instance generator is defined as a probabilistic polynomial time algo-

rithm IG that takes as input a security parameter ` and returns a uniformly random tuple

param = (p,G1,GM , e, P) of bilinear parameters, including a prime number p of size `, a

cyclic additive group G1 of order q, a multiplicative group GM of order q, a bilinear map

e : G1×G1 → GM and a generator P of G1. For a group G of prime order, we denote the

set G∗ = G \ {O} where O is the identity element of the group.

Signature of Knowledge

The first signature based on proof of knowledge (SPK) was proposed in [6,7]. We will use

the following definition of SPK from [7].

2

Let q be a large prime and p = 2q +1 be also a prime. Let G be a finite cyclic group of

prime order p. Let g be a generator of ZZ∗p such that computing discrete logarithms of any

group elements (apart from the identity element) with respect to one of the generators is

infeasible. Let H : {0, 1}∗ → {0, 1}` denote a strong collision-resistant hash function.

Definition 1. A pair (c, s) ∈ {0, 1}` × ZZq satisfying c = H(g||y||gsyc||m) is a signature

based on proof of knowledge of discrete logarithm of a group element y to the base g of the

message m ∈ {0, 1}∗ and is denoted by SPK{α : y = gα}(m).

An SPK{α : y = gα}(m) can only be computed iff the value (secret key) α = logg(y) is

known. This is also known as a non-interactive proof of the knowledge α.

This technique can be applied to elliptic curve domain. For completeness, we illustrate

the technique as follows.

Definition 2. A pair (c, s) ∈ ZZ2
q satisfying c = H(P ||Q||sP +cQ||m) is a signature based

on proof of knowledge of elliptic curve discrete logarithm of a group element Q to the base

P of the message m ∈ {0, 1}∗ and is denoted by ECSPK{α : Q = αP}(m).

We note that ECSPK{α : Q = αP}(m) can only be computed iff the value of a, where

Q = aP , is known. It can be computed as follows. Firstly, select a random z ∈ ZZ∗q and

compute c = H(P ||Q||zP ||m), and then, compute s = z − ca (mod q). Using the same

technique, the following definition can be derived.

We extend this technique to provide a signature based on proof of knowledge of elliptic

curve discrete logarithm of values α and β, where α, β ∈ ZZ∗q, such that the statement

R = αP + βQ is correct, for both P,Q be group elements. The signature on proof of

knowledge is defined as follows.

Definition 3. A tuple (c, ω1, ω2) ∈ ZZ3
q satisfying c = H(P ||Q||R||ω1P + ω2Q + cR||m)

is a signature based on proof of knowledge of elliptic curve discrete logarithm of values α

and β, where α, β ∈ ZZ∗q, such that the statement R = αP + βQ is correct, for both P,Q

be group elements, of the message m ∈ {0, 1}∗ and is denoted by ECSPK{α, β : R =

αP + βQ}(m).

We note that ECSPK{α, β : R = αP + βQ}(m) can only be computed iff the value of

α and β satisfying R = αP + βQ is known. The computation is done as follows. Firstly,

select two random numbers τ1, τ2 ∈ ZZ∗q and compute c = H(P ||Q||R||τ1P + τ2Q), and

then, compute ω1 = τ1 − cα (mod q) and ω2 = τ2 − cβ (mod q).

We note that this type of signature of knowledge has been widely used and extended,

for instance in [2, 5], to provide a proof that the value of α, β lie in a specified interval.

3

We denote this type of proof as

ECSPK{α, β : R = αP + βQ ∧ α ∈ [γ1, γ2] ∧ β ∈ [γ3, γ4]}(m)

to show a proof of knowledge on α, β, where α relies in the interval [γ1, γ2] and β relies in

the interval [γ3, γ4], on a message m ∈ {0, 1}∗.
Organization of the Paper

The rest of this paper is organized as follows. In section 2, we review the scheme proposed

in [13], by firstly reviewing the model of group signature schemes that they used. In section

3, we present our motivation of the attack and we show a cryptanalysis of the scheme

presented in [13]. In section 4, we show our modification to the scheme in [13] to make

the scheme secure. Section 5 concludes the paper.

2 Review of Nguyen-Safavi-Naini’s Group Signature Schemes

Nguyen-Safavi-Naini’s group signature schemes use the formal model proposed in [3].

A group signature scheme consists of a trusted party for initial setup, two group man-

agers, i.e. the issuer and the opener, and users with unique identities i ∈ N, who can

join the group and become a group member. The scheme consists of a tuple GS =

(GKg, UKg, Join, Iss, GSig, GVf, Open, Judge), which are polynomial algorithms. GKg is the

group key generation algorithm that outputs a triple of keys (gpk, ik, ok), where gpk is

the group public key, ik is given to the issuer and ok is given to the opener. UKg is a user

key generation algorithm that outputs a personal public and private key pair. Join, Iss are

interactive algorithms performed by a user and the issuer as two sides of a group joining

protocol. GSig is the group signing algorithm, and GVf is the group verification algorithm.

Open, Judge are deterministic algorithms that are used in the case of dispute. For a formal

definition of these algorithms, we refer the reader to [13].

El GamalBP2 Encryption Scheme

An encryption scheme called El GamalBP2 is introduced in [13] as part of their group

signature scheme. This scheme is the bilinear pairing version of the scheme presented and

proved by Fouque and Pointcheval in [12], that uses the twin-encryption paradigm and

a simulation-sound proof of equality of plaintexts. We refer the reader to [13] for a more

complex account.

2.1 Review of Nguyen-Safavi-Naini’s Group Signature Scheme

Nguyen-Safavi-Naini’s group signature scheme is defined by the following algorithms.

4

– GKg: Suppose l is a security parameter and the Bilinear Pairing Instance Generator G
generates a tuple of bilinear pairing parameter t = (p,G1,GM , e, P) ← G(1l), that is

also the publicly shared parameters. Choose a hash function H2 : {0, 1}∗ → ZZp, which

is assumed to be a random oracle in the security proofs.

Choose P0, G, H ∈R G1, x, x′a, x
′
b ∈R ZZ∗p and compute Ppub = xP , Θa = e(G,G)x′a and

Θb = e(G,G)x′b . The group public key is gpk = (P, P0, Ppub, H, G,Θa, Θb), the issuing

key is ik = x, and the opening key is ok = (x′a, x
′
b).

– UKg: This algorithm generates keys that provide authenticity for messages sent by

the user in the (Join, Iss) protocol. This algorithm is the key generation algorithm

KS of any digital signature scheme (KS, Sign, V er) that is unforgeable against chosen

message attacks (UNF-CMA). A user i runs the UKg algorithm that takes as input

a security parameter 1l and outputs a personal public and private signature key pair

(upk[i], usk[i]).

– Join, Iss: In this protocol, a user i and the issuer first jointly generate a random value

xi ∈ ZZ∗p whose value is only known by the user. The issuer then generates (ai, Si) for

the user so that e(aiP + Ppub, Si) = e(P, xiP + P0). The user uses usk[i] to sign his

messages in the protocol. Note that the formal model assumes the communication to

be private and authenticated. It is assumed that the communication is protected from

replay attacks. The protocol is as follows.

1. user i → issuer: I = yP + rH, where y, r ∈R ZZ∗p.
2. user i ← issuer: u, v ∈R ZZ∗p.
3. The user computes xi = uy + v, Pi = xiP

4. user i → issuer: Pi and a proof of knowledge of (xi, r
′) such that Pi = xiP and

vP + uI − Pi = r′H.

5. The issuer verifies the proof, then chooses ai ∈R ZZ∗p different from all corresponding

elements previously issued, and computes Si = 1
ai+x

(Pi + P0).

6. user i ← issuer: ai, Si.

7. The user computes ∆i = e(P, Si), verifies if e(aiP + Ppub, Si) = e(P, xiP + P0), and

stores the private signing key gsk[i] = (xi, ai, Si, ∆i). Note that only the user knows

xi. The issuer also computes ∆i and makes an entry in the table reg : reg[i] =

(i, ∆i, < Join, Iss > transcript).

– GSig: A group signature of a user i shows his knowledge of (ai, Si) and a secret xi

such that: e(aiP + Ppub, Si) = e(P, xiP + P0). The signature does not reveal any

information about his knowledge to anyone, except for the opener, who can compute

∆i by decrypting an encryption of that value. The algorithm for a user i to sign a

message m ∈ {0, 1}∗ is as follows.

5

1. Encrypt ∆i by El GamalBP2 with public key (G,Θa, Θb) as (Ea = tG, Λa =

∆iΘ
t
a, Eb, Λb, ς)

2. Perform the non-interactive version of a protocol, which the authors call the Signing

protocol, as follows.

(a) Generate r1, · · · , r3, k0, · · · , k5 ∈R ZZ∗q and computes:

U = r1(aiP + Ppub); V = r2Si,

W = r1r2(xiP + P0); X = r2U + r3H,

T1 = k1P + k2Ppub + k0H; T2 = k3P + k2P0,

T3 = k4U + k0H; T4 = k5G− k4Ea; Π = Θk5
a Λ−k4

a .

(b) Computes c = H2(P ||P0||Ppub||H||G||Θa||Θb||Ea||Λa||Eb||Λb||ς||U || V ||W ||X||T1||
· · ·T4||Π||m)

(c) Computes in ZZp:

s0 = k0 + cr3,

s1 = k1 + cr1r2ai,

s2 = k2 + cr1r2,

s3 = k3 + cr1r2xi,

s4 = k4 + cr2,

s5 = k5 + cr2t.

3. Outputs the signature (c, s0, · · · , s5, U, V, W,X, Ea, Λa, Eb, Λb, ς) for message m.

– GVf: The verification algorithm for m, (c, s0, · · · , s5, U, V,W,X, Ea, Λa, Eb, Λb, ς) out-

puts accept if and only if verifying the proof ς outputs accept and the following two

equations hold.

e(U, V)
?
= e(P, W)

c
?
=H2(P ||P0||Ppub||H||G||Θa||Λa||Eb||Λb||ς||U ||V ||W ||X||

s1P + s2Ppub + s0H − cX||s3P + s2P0 − cW ||
s4U + s0H − cX||s5G− s4Ea||Θs5

a Λ−s4
a e(P, cV)||m)

6

– Open: To open m and its valid signature (c, s0, · · · , s5, U, V,W,X, Ea, Λa, Eb, Λb, ς) to

find the signer, the opener performs the following steps.

1. Use the GVf algorithm to check the signature’s validity. If the algorithm rejects,

return (0, ε), where ε denotes an empty string.

2. Computes ∆i = Λae(Ea, G)−x′a and find the corresponding entry i in the table reg.

If no entry is found, return (0, ε).

3. Return Reg[i] and a non-interactive zero-knowledge proof % of knowledge of x′a so

that Θa = e(G, G)x′a and Λa/∆i = e(Ea, G)x′a .

– Judge: On an output by the Openalgorithm for a message m and its signature ω, the

Judge algorithm is performed as follows:

1. If Open algorithm outputs (0, ε), run GVf algorithm on m,ω. If GVf rejects, return

accept; otherwise, return reject.

2. If Open algorithm outputs (reg[i], %), return reject if one of the following happens:

(i) on m,ω, GVf algorithm rejects; (ii) verification of the proof % rejects; (iii) the

< join, Iss > transcript is invalid with regard to upk[i]; (iv) ∆i 6= e(Pi, Si) where Si

is extracted from the < join, Iss > transcript. Otherwise, return accept.

3 Cryptanalysis of Nguyen-Safavi-Naini’s Group Signature

Schemes

3.1 Background

Our attack is inspired by the proof of the following lemma from [13].

Lemma 1. [13] The interactive Signing protocol underlying the GSig algorithm is a

(honest-verifier) perfect zero-knowledge proof of knowledge of (ai, Si), xi and t such that

e(aiP + Ppub, Si) = e(P, xiP + P0), Ea = tG and Λa = e(P, Si)Θ
t
a.

The proof of the above Lemma presented in [13] is summarized as follows. If the

protocol accepts with non-negiligible probably, the interactive signing protocol underlying

the GSig algorithm is a (honest-verifier) perfect zero-knowledge proof of knowledge of

(ai, Si), xi and t such that e(aiP +Ppub, Si) = e(P, xiP +P0), Ea = tG and Λa = e(P, Si)Θ
t
a

[13]. The Soundness is justified as follows.

Soundness [13]: Suppose the protocol accepts for the same commitment (U, V, W,X, T1,

· · · , T4, Π), two different pairs of challenges and responses (c, s0, · · · , s5) and (c′, s′0, · · · , s′5).
Let fi =

si−s′i
c−c′ , i = 0, · · · , 5, then X = f1P + f2Ppub + f0H; W = f3P + f2P0 and

7

X = f4U + f0H; Ea = f5f
−1
4 G; e(P, V) = Θ−f5Λf4

a so U = f1f
−1
4 P + f2f

−1
4 Ppub. Further-

more, let ai = f1f
−1
2 , Si = f−1

4 , xi = f3f
−1
2 , t = f5f

−1
4 , then Ea = tG, Λa = e(P, Si)Θ

t
a,

and e(aiP + Ppub, Si) = e(P, xiP + P0).

Checking the above proof, the value of U is set to U = f1f
−1
4 P + f2f

−1
4 Ppub, but the

authors fail to ensure that f2 must be a non-zero value in this equation. Moreover, f2 is

set to f2 =
(s2−s′2)

(c−c′) but there is no assurance that s2 and s′2 must be different that will lead

f2 to zero.

When the value of f2 is set to zero, then U can be created by anyone who is not

a group member to sign a message on behalf of the group. The detail of the attack is

presented below.

3.2 Attack on Nguyen-Safavi-Naini’s Group Signature Schemes

In this section, we show that a non-group member can sign on behalf of the group by

performing the following GSig algorithm.

GSig Algorithm.

1. set ∆i = e(P, P), also encrypt the ∆i by El GamalBP2 with the group public key as

(Ea = taG,Λa = ∆iΘ
ta
a , Eb, Λb, ς), here ta ∈ Zp is randomly chosen by the adversary-

Lan described the encryption scheme in section 3.2 .

2. Performs the non-interactive version of a protocol as follows:

(a) Generate r1, · · · , r3, k0, · · · , k5 ∈R Z∗p and compute:

U = r0r1P,

V = r2P,

W = r0r1r2P,

X = r2U + r3H,

T1 = k1P + (k2 + r1r2)Ppub + k0H,

T2 = k3P + (k2 + r1r2)P0,

T3 = k4U + k0H,

T4 = k5G + k4Ea,

Π = Θk5
a Λ−k4

a .

(b) Compute c = H2(P ||P0||Ppub||H||G||Θa||Θb||Ea||Λa||Eb||Λb||ς||U || V ||W ||X||T1||
· · ·T4||Π||m)

8

(c) Compute in Zp:

s0 = k0 + cr3,

s1 = k1 + cr1r2r0,

s2 = k2 + r1r2,

s3 = k3 + cr0r1r2,

s4 = k4 + cr2,

s5 = k5 + cr2ta,

3. Output the signature (c, s0, s1, s2, s3, s4, s5, U, V,W,X, Ea, Λa, Eb, Λb, ς) for message m.

Remarks: We note that the above GSig algorithm can be performed by anyone who does

not have any knowledge of (ai, Si) and a secret xi.

Theorem 1. The above GSig algorithm can be used to sign a message on behalf of the

group. Anyone can be convinced with the signature that a group member has indeed signed

the message, by invoking the GVf algorithm. Hence, the group signature scheme is insecure.

Proof. To show the correctness of the above theorem, we need to show that the output of

GVf algorithm is accept, given a signature on a message that is produced by the above GSig

algorithm. Note that the GVf algorithm can be invoked by anyone. The GVf algorithm that

we will use is the original GVf algorithm as defined in [13]. We will show this argument

as follows.

GVf Algorithm.

1. Verify whether the proof ς outputs accept

We can easily see that if the encryption scheme is done correctly, it will definitely pass

this verification. This is true because ς only provides a proof of the equality of the

plaintexts between (Ea, Λa) and (Eb, Λb).

2. Verify whether e(U, V)
?
= e(P,W)

From the signature scheme, we can find that: e(U, V) = e(r0r1P, r2P) = e(P, r0r1r2P) =

e(P, W).

3. Verify whether

c =H2(P ||P0||Ppub||H||G||Θa||Λa||Eb||Λb||ς||U ||V ||W ||X||
s1P + s2Ppub + s0H − cX||s3P + s2P0 − cW ||
s4U + s0H − cX||s5G− s4Ea||Θs5

a Λ−s4
a e(P, cV).||m)

9

The signature can only pass this verification, if and only if the following equations

hold with equality.

T1 = s1P + s2Ppub + s0H − cX,

T2 = s3P + s2P0 − cW,

T3 = s4U + s0H − cX,

T4 = s5G− s4Ea,

Π = Θs5
a Λ−s4

a e(P, cV).

We will show this verification as follows.

(a) T1
?
= s1P + s2Ppub + s0H − cX

s1P + s2Ppub + s0H − cX

= (k1 + cr1r2r0)P + (k2 + r1r2)Ppub + (k0 + cr3)H − c(r2U + r3H)

= k1P + cr1r2r0P + k2Ppub + r1r2Ppub + k0H + cr3H − cr2r0r1P − cr3H

= k1P + (k2 + r1r2)Ppub + k0H = T1.

(b) T2
?
= s3P + s2P0 − cW

s3P + s2P0 − cW

= (k3 + cr0r1r2)P + (k2 + r1r2)P0 − cr0r1r2P

= k3P + cr0r1r2P + (k2 + r1r2)P0 − cr0r1r2P

= k3P + (k2 + r1r2)P0 = T2.

(c) T3
?
= s4U + s0H − cX

s4U + s0H − cX

= (k4 + cr2)U + (k0 + cr3)H − c(r2U + r3H)

= k4U + cr2U + k0H + cr3H − cr2U − cr3H

= k4U + k0H = T3.

(d) T4
?
= s5G− s4Ea

s5G− s4Ea

= (k5 + cr2ta)G− (k4 + cr2)tagG

= k5G + cr2taG− k4taG− cr2taG

= k5G− k4taG = k5G− k4Ea = T4.

10

(e) Π
?
= Θs5

a Λ−s4
a e(P, cV)

Θs5
a Λ−s4

a e(P, cV)

= Θ(k5+cr2ta)
a · (∆iΘ

ta
a)−(k4+cr2) · e(P, cr2P)

= Θk5
a ·Θcr2ta

a · (∆i)
−(k4+cr2) · (Θa)

−ta(k4+cr2) · e(P, P)cr2

= Θk5
a ·Θcr2ta

a · e(P, P)−(k4+cr2) · (Θa)
−tak4 · (Θa)

−tacr2 · e(P, P)cr2

= Θk5
a · e(P, P)−k4 · (Θa)

−tak4

= Θk5
a (·e(P, P)Θta

a)−k4

= Θk5
a Λ−k4 = Π.

From all of the above verification steps, we can find that the signature passes all the

verification tests using the group’s public key Θa. The receiver can believe that the

signature was originated from the group. However the Open algorithm can not find

the corresponding item in reg. This is due to Λae(Ea, G)−x′a = ∆i = e(P, P).

2

4 Our Improved Scheme

In this section, we present our modification to the scheme presented in [13] to make the

scheme secure. As illustrated in section 3, the scheme presented in [13] is vulnerable against

our attack due to the ability of an attacker to set the second part of U to zero. Therefore,

to avoid such an attack, a simple solution is to employ a proof that the representation of

U about Ppub and W about P0 is not zero. Therefore, the GSig algorithm is modified as

follows.

GSig:

The algorithm for a user i to sign a message m ∈ {0, 1}∗ is as follows.

1. Encrypt ∆i by El GamalBP2 with public key (G, Θa, Θb) as (Ea = tG, Λa = ∆iΘ
t
a, Eb, Λb, ς)

2. Perform the non-interactive version of a protocol, which the authors call the Signing

protocol, as follows.

(a) Generate r1, · · · , r3, k0, · · · , k5 ∈R ZZ∗q and computes:

U = r1(aiP + Ppub); V = r2Si,

W = r1r2(xiP + P0); X = r2U + r3H,

11

T1 = k1P + k2Ppub + k0H; T2 = k3P + k2P0,

T3 = k4U + k0H; T4 = k5G− k4Ea; Π = Θk5
a Λ−k4

a .

(b) Provide the following proof

Γ1 = ECSPK{α, β : U = αP + βPpub ∧ α ∈ [1, q − 1] ∧ β ∈ [1, q − 1]

Γ2 = ECSPK{α, β : W = αP + βP0 ∧ α ∈ [1, q − 1] ∧ β ∈ [1, q − 1]

(c) Computes c = H2(P ||P0||Ppub||H||G||Θa||Θb||Ea||Λa||Eb||Λb||ς||U || V ||W ||X||T1||
· · ·T4||Π||m)

(d) Computes in ZZp:

s0 = k0 + cr3,

s1 = k1 + cr1r2ai,

s2 = k2 + cr1r2,

s3 = k3 + cr1r2xi,

s4 = k4 + cr2,

s5 = k5 + cr2t.

3. Outputs the signature (c, s0, · · · , s5, U, V, W,X,Ea, Λa, Eb, Λb, ς, Γ1, Γ2) for message m.

As part of the verification algorithm GVf , the correctness of Γ1, Γ2 must be verified.

5 Conclusion

In this paper, firstly we identified an attack to the recently proposed group signature

schemes by Nguyen and Safavi-Naini in Asiacrypt 2004. We have shown how to fix the

scheme to obtain a provably secure scheme as claimed in [13].

References

1. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably secure coalition-resistant group

signature scheme. Advances in Cryptology - CRYPTO 2000, Lecture Notes in Computer Science 1880, pages

255–270, 2000.

2. G. Ateniese and B. de Medeiros. Efficient Group Signatures without Trapdoors. Advances in Cryptology -

Asiacrypt 2003, Lecture Notes in Computer Science 2894, pages 246 – 268, 2003.

12

3. M. Bellare, H. Shi, and C. Zhang. Foundations of Group Signatures: The case of dynamic groups. Cryptology

ePrint Archive: Report 2004/077.

4. D. Boneh, X. Boyen, and H. Shacham. Short Group Signatures. Advances in Cryptology - Crypto ’04, Lecture

Notes in Computer Science 3152, 2004.

5. F. Boudot. Efficient Proofs that A Committed Number lies in an Interval. Advances in Cryptology - Eurocrypt

2000, Lecture Notes in Computer Science 1807, pages 431 – 444, 2000.

6. J. Camenisch. Efficient and generalized group signatures. Advances in Cryptology - Eurocrypt ’97, Lecture

Notes in Computer Science 1233, pages 465–479, 1997.

7. J. Camenisch. Group signature schemes and payment systems based on the discrete logarithm problem. PhD

thesis, ETH Zürich, 1998.

8. J. Camenisch and M. Michels. A group signature scheme with improved efficiency. Advances in Cryptology -

Asiacrypt ’98, Lecture Notes in Computer Science 1514, pages 160–174, 1998.

9. J. Camenisch and M. Stadler. Efficient group signature schemes for large groups. Advances in Cryptology -

Crypto ’97, Lecture Notes in Computer Science 1294, pages 410–424, 1997.

10. D. Chaum and E. van Heyst. Group signatures. Advances in Cryptology - Eurocrypt ’91, Lecture Notes in

Computer Science 547, pages 257–265, 1991.

11. L. Chen and T. P. Pedersen. New group signature schemes. Advances in Cryptology - Eurocrypt ’94, Lecture

Notes in Computer Science 950, pages 171–181, 1995.

12. P. Fouque and D. Pointcheval. Threshold Cryptosystems Secure against Chosen-Ciphertext Attacks. Asi-

acrypt 2001, Lecture Notes in Computer Science 2248, 2001.

13. L. Nguyen and R. Safavi-Naini. Efficient and Provably Secure Trapdoor-free Groupo Siganture Schemes from

Bilinear Pairings. Advances in Cryptology - Asiacrypt 04, Lecture Notes in Computer Science 3329, pages

372 – 386, 2004.

13

