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Abstract

The shrinking generator is a well-known key stream generator com-
posed of two LFSR’s, LFSRx and LFSRc, where LFSRx is clock-controlled
according to the regularly clocked LFSRc. In this paper we investigate
the minimum required length of the output sequence for successful recon-
struction of the LFSRx initial state in an optimal probabilistic divide and
conquer correlation attack. We extract an exact expression for the joint
probability of the prefix of length m of the output sequence of LFSRx and
prefix of length n of the output sequence of the generator. Then we use
computer simulation to compare our probability measure and two other
probability measures proposed in [5] and [3] in the sense of minimum
required output length. Our simulation results show that our measure
reduces the required output length.

Keywords. stream ciphers, clock-controlled generators, shrinking
generator, divide and conquer attack, optimal correlation attacks, deletion
channel, joint probability.

1 Introduction

Stream ciphers are commonly used as building blocks in secure communications.
A binary stream cipher produces a key stream using a secret key, which controls
the initial state of the stream cipher and possibly its structure. The output of the
key stream generator is bit-wise added to the plaintext sequence to produce the
ciphertext sequence. From a cryptanalysis point of view, a stream cipher must
be resistant against a known-plaintext attack. In a known-plaintext attack, the
cryptanalyst is given a segment of the key stream, and the goal is to get some
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information about the key, the initial state, the structure or even the unseen
key stream bits, faster than exhaustive search over all possible keys.
The shrinking generator [1] is a well-known stream cipher composed of two

linear feedback shift registers (LFSR’s), LFSRx and LFSRc. We denote the
length of these LFSR’s by rx and rc, and denote their regular output sequences
by X = {xt}∞t=1 and C = {ct}∞t=1, respectively. The output sequence of the
generator, Y = {yt}∞t=1, is the sequence obtained from X, by removing all xt’s
for which ct = 0.
A basic divide and conquer correlation attack on the unknown LFSRc initial

state based on the linear consistency test [8] is successful if the observed output
sequence is sufficiently long. The time complexity of this attack is O(r3x2

rc). On
the other hand, in a probabilistic model where X and C are considered as purely
random and independent binary sequences, the probabilistic correlation attack
is applied by targeting LFSRx. The statistically optimal correlation attack [5],
which minimizes the required output length, is based on MAP decoding in a
communication channel with independent deletion synchronization errors. The
MAP decoding is applied by efficient computing the joint probability of Xm and
Y n, where Xm and Y n are prefixes of length m and n of X and Y , respectively.
The channel capacity argument in [5] shows that for successful reconstruction

of the LFSRx initial state, the required output length of the output sequence,
n, is linear in rx; and it has been conjectured that n ≈ 4rx is sufficient for
successful reconstruction of LFSRx initial state. Also, an efficient method for
computing the joint probability of Xm and Y n has been introduced. However,
what has been introduced in [5] is not exactly the joint probability of Xm

and Y n, simulation results in [7] show that it is a good measure for successful
reconstruction of the LFSRx initial state.
The exact value of the joint probability of Xn and Y n has been computed

in [3] and it has been suggested to compare this measure with the measure
proposed in [5] with respect to the minimum required output sequence length.
In this paper we extract an exact expression for the joint probability of Xm

and Y n. Then we use computer simulation to compare our measure and the
two measures proposed in [5] and [3] with respect to minimum required output
length for successful reconstruction of the LFSRx initial state.
Correlation attack using all three measures requires exhaustive search over

all LFSRx possible initial states. Reduced complexity methods which instead
require more length of the output sequence have been discussed in [3] and [6].
The paper is organized as follows. In section 2 we restate two measures

proposed in [5] and [3], and our measure. Section 3 contains the simulation re-
sults. Conclusions are given in section 4. Proof of a theorem, which exactly and
efficiently computes the joint probability of Xm and Y n, is given in appendix.
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2 Definition of the Three Measures and Their

Usage in a Divide and Conquer Correlation
Attack

Let first introduce some notations. The notation A = {at}∞t=1 is used for a
general binary sequence, Ak = {at}∞t=k for its subsequence, An = {at}nt=1 for its
prefix of length n and An

k = {at}nt=k for a segment of it. The number of ones in
An is denoted by w(An).
LetX, C, Y denote the output sequence of LFSRx, LFSRc, and the shrinking

generator itself, respectively. We assume a probabilistic model where X and C
are independent and purely random binary sequences. It then follows that the
output sequence Y is also purely random. In this model the act of shrinking
generator is equivalent to obtaining Y by sending X in a deletion channel which
deletes the bits of X independently with probability equal to one half. Given
an observed output sequence Y n the MAP decoding, which is optimal decoding,
finds an input sequence X that maximizes the joint probability Pr{X,Y n} or
equivalently the conditional probability Pr{Y n|X}. The prefix Y n is obtained
from prefixXm with a probability that can be arbitrarily close to 1 by increasing
m. As this probability is more than 0.99 for m = b2n+ 3√nc, for this choice of
m, Pr{Y n|Xm} is a very good approximation for Pr{Y n|X}. Thus for practical
respects, we use the joint Pr{Xm, Y n} probability for MAP decoding where
m = b2n+ 3√nc.

2.1 Three Measures

In the following, we restate the measure which proposed in [5] as the joint
probability of Xm and Y n, the exact expression for the joint probability of Xn

and Y n which proposed in [3], and our exact expression for the joint probability
of Xm and Y n. To this end we use the following partial probability which has
been defined in [3] for prefixes of X and Y

Q(e, s) = Pr{Y s, w(Ce+s) = s|Xe+s}. (1)

The above partial probability can be recursively computed using the follow-
ing lemma which has been proved in [3].

Lemma 1 The partial probabilities Q(e, s) is recursively determined by 1

Q(e, s) =
1

2
Q(e− 1, s) + 1

2
δ(xe+s, ys)Q(e, s− 1) (2)

for 0 6 s 6 n, 0 6 e 6 m − s, and (e, s) 6= (0, 0), from the initial value
Q(0, 0) = 1 [3]. (The terms corresponding to impermissible value of e or s are
assumed to be equal to zero.)

1 δ(i, j) is the Kronecker function, i.e., δi,j = 1 if i = j and δi,j = 0 if i 6= j.
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The measure proposed in [5] in terms of Q is 2−nQ(m−n, n) which is equal
to 2m−n Pr{Xm, Y n, w(Cm) = n} and obviously is not the joint probability of
Xm and Y n. The exact value of the joint probability of Xn and Y n, proposed
in [3], is computed using the following theorem.

Theorem 1 For any given Y n and Xn, we have

Pr{Xn, Y n} = 2−n
nX
e=0

2−eQ(e, n− e) (3)

where the partial probability Q(e, s) is determined by Lemma 1 [3].

Our exact and efficient expression for computing the joint probability of Xm

and Y n is given by the following theorem which is proved in appendix.

Theorem 2 For any given Y n and Xm, where m > n, we have

Pr{Xm, Y n} = 2−m−1
m−n−1X
e=0

Q(e, n) + 2−n
mX

e=m−n
2−eQ(e,m− e) (4)

where the partial probability Q(e, s) is determined by Lemma 1.

2.2 Hypotheses Testing

To find the correct initial state of the LFSRx, we consider two hypothesis; H1
correspond to an incorrect guess for the initial state, and H0 correspond to the
correct guess for the initial state. In a probabilistic model we suppose that under
the hypothesis H1, X and Y n are purely random and independent, and under
the hypothesis H0 we assume that X is purely random and Y n is the prefix of
length n of the sequence obtained from X according to the deletion channel. We
need a decision measure, Z(n), which its distribution under two hypotheses are
distinguishable. The variable n, is entered as an argument to show the available
length of the output sequence. In hypothesis testing we deal with two error
probabilities, pmis and pfa, which pmis is the error probability of deciding H1 is
true while H0 is indeed true, and pfa is is the error probability of deciding H0
is true while H1 is indeed true. Ideally, we like to minimize both the pmis and
pfa but normally there is a trade-off. Using Neyman-Pearson lemma [2], pfa
and pmis are jointly minimized by considering a threshold T and choosing H0
if and only if Pr{Z(n)|H0}

Pr{Z(n)|H1} > T . In most situation, the importance of two error
probabilities are not equal. In our case, that is finding the correct initial state
of LFSRx, fixing pmis to a value which need not to be very small (e.g. 0.1),
pfa must be around 2−rx for approximately unique reconstruction of LFSRx
initial state. Given the decision measure Z(n), corresponding pfa determines
the required output length for successful reconstruction of the LFSRx initial
state. If pfa decreases exponentially with n, the required n is linear in rx.
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A theoretical analysis of the separation between two probability distributions
using each one of the three probability measures introduced in section 2.1 as
a decision measure, seems to be very difficult. If there was such a theoretical
analysis, it would be more reliable than the channel capacity argument discussed
in [5]. Instead, we employ experimental computer simulation similar to [7]. The
results are given in the following section.

3 Simulation Results
In this section we first use the computer simulation for estimating pfa by fixing
pmis = 0.1 for all three measures introduced in section 2.1; that is

Z1(n) = 2m−n Pr{Xm, Y n, w(Cm) = n} = 2−nQ(m− n, n) (5)

Z2(n) = Pr{Xn, Y n} (6)

Z3(n) = Pr{Xm, Y n} (7)

where m = b2n+ 3√nc.
To this end, for each probability measure Zi(1 ≤ i ≤ 3), we choose 10000

purely random and independent pairs Xm and Cm(Xn and Cn for Z2) and
compute the corresponding output sequence in deletion channel model. If the
output length is more than n, we consider the first n bits as Y n, and if the
output length is less than n, we pad it with some random bits to increase its
length to n. This simulates the hypothesis H0. Then for each pair Xm and
Y n(Xn and Y n for Z2), we compute the decision measure Zi. After that in
accordance with pmis = 0.1, we compute a threshold thi such that 9000 out
of 10000 pairs have decision measure greater than thi. To estimate pfai , we
choose 10000 purely random and independent pairs Xm and Y n(Xn and Y n

for Z2) and compute the probability measure Zi for each pair. The estimated
pfai is percent of pairs which have probability measure greater than thi. Table
1 contains our simulation results.

Table 1: Estimated pfai for three measures for n = 25 : 25 : 350
n 25 50 75 100 125 150 175
pfa1 0.4294 0.3286 0.1932 0.1421 0.0793 0.0373 0.0289
pfa2 0.3525 0.2025 0.1534 0.0908 0.0612 0.0312 0.0212
pfa3 0.2057 0.0705 0.0329 0.0113 0.0049 0.0027 0.0013
n 200 225 250 275 300 325 350
pfa1 0.0179 0.0116 0.0055 0.0029 0.0014 0.0005 0.0000
pfa2 0.0140 0.0081 0.0066 0.0036 0.0016 0.0007 0.0000
pfa3 0.0006 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Now, we approximate each pfai by a curve ai2
−bin, where ai and bi are

positive values. For being pfai around 2
−rx , the required output length must

be approximately ni ' rx/bi. From table 1 it follows that2

pfa1 ≈ 1.10× 2−0.0314n → n1 ≈ 32rx
pfa1 ≈ 0.68× 2−0.0283n → n2 ≈ 35rx
pfa1 ≈ 0.34× 2−0.0475n → n3 ≈ 21rx

As we see our measure leads to less required output length to successful
reconstruction of LFSRx initial state. Decreasing pmis, increases the coefficients
ai’s and does not lead to significant changes on coefficient bi’s. This is the
reason that we fix pmis to 0.1 and claim it is small enough, see [7] and [4] for
similar cases. In [7] Success of correlation attack on a shrinking generator with
special parameters using probability measure Z1 has been confirmed. We do
not follow this method using the other measures. Instead, we try to guess the
distribution of Zi under hypotheses H0 and H1. The values of Zi are spread
on a wide range. For a similar situation in [4], it has been noted that their
measure, that is measure in [4] for another generator according to insertion
channel, does not have normal distribution. However, in our case Zi does not
have normal distribution, the distribution of log( Zi) can be approximated by
normal distribution very well. Figure 1 shows estimated distribution of Z3 for
n = 200. As just the shape of distributions are important, we have not shown
the axes number. Also, we have plotted the normal distribution with the same
mean and variance for comparison. As we see, the approximation is very good.

4 Conclusion
We derived the exact expression for the joint probability of the prefix of length
m of the output sequence of LFSRx and prefix of length n of the output sequence
of the shrinking generator. Computer simulation shows that the required output
length for successful reconstruction of the LFSRx initial state using this expres-
sion as a measure of correlation is less than two probability measures proposed
in [5] and [3]. In the cryptographic point of view this improvement is not very
important. However in coding point of view, justification of the gap between 4rx
and 21rx, which respectively come from channel capacity argument [5] and our
simulation results, seems to be more important. The reason is obvious, the com-
munication channel with independent deletion synchronization errors is such a
bad channel that a random coding can not provide near capacity performance
on it.

2Simulations in [7] shows that n1 ≈ 20rx which differs from our results. We ran and
checked our simulation several times, but there was not significant change in the results. Any
way, it is obvious that our measure needs less output length.
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Figure 1: Figure 1: Estimated distributions of log(Z3) for n=200

Appendix

Proof of Theorem 2.
As X is purely random we have Pr{Xm, Y n} = 2−m Pr{Y n|Xm}, so we first
compute Pr{Y n|Xm}. Using Total probability Theorem, we have

Pr{Y n|Xm} =
mX
e=0

Pr{Y n, w(Cm) = e|Xm}. (8)

To simplify Pr{Y n, w(Cm) = e|Xm} where 0 ≤ e ≤ m, we consider two
situations, 0 ≤ e ≤ n and n+ 1 ≤ e ≤ m.
a) 0 ≤ e ≤ n
In this case by separating Y n, we have

Pr{Y n, w(Cm) = e|Xm} = Pr{Y e, Y n
e+1, w(C

m) = e|Xm} (9)

= Pr{Y e, w(Cm) = e|Xm}Pr{Y n
e+1|Y e, w(Cm) = e,Xm}(10)

= Q(m− e, e)2−(n−e) (11)

(10) follows from (9) according to the Chain Rule. Conditioned on w(Cm) =
e, the string Y n

e+1 is obtained from Xm+1 according to Cm+1, where Xm+1 and
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Cm+1 are still mutually independent and purely random, even when condi-
tioned on Xm and Y e. Therefore, Y n

e+1 is purely random on the conditions
Y e, w(Cm) = e and Xm. So (10) simplifies as (11).
b) n+ 1 ≤ e ≤ m
In this case we can not partition Y n as (9). We partition the set of all Cm

where w(Cm) = e to some subsets which satisfy the conditions w(Ck) = n,
ck+1 = 1 and w(Cm

k+2) = e − n − 1 over all allowed values for k, that is the
overlap of three sets n ≤ k and m−k− 1 ≤ e−n− 1 and 0 ≤ k ≤ m− 1. Using
Total Probability Theorem, we have have

Pr{Y n, w(Cm) = e|Xm} =
m+n−eX
k=n

Pr{Y n, w(Ck) = n, ck+1 = 1, w(C
m
k+2) = e−n−1|Xm}.

(12)
Using Chain Rule, we have

Pr{Y n, w(Ck) = n, ck+1 = 1, w(C
m
k+2) = e− n− 1|Xm} =

Pr{ck+1 = 1, w(Cm
k+2) = e− n− 1|Xm} ×

Pr{Y n, w(Ck) = n|Xm, ck+1 = 1, w(C
m
k+2) = e− n− 1} (13)

As X and C are mutually independent and purely random, the second term
of (13) is equal to

Pr{ck+1 = 1, w(Cm
k+2) = e− n− 1} = 1

2

µ
m− k − 1
e− n− 1

¶
. (14)

As w(Ck) is independent of X and ck+1, and conditioned on w(Ck) = n, Y n

is independent of Xk+1 and Ck+1, the last term of (13) is simplified as

Pr{Y n, w(Ck) = n|Xk} = Q(k − n, n) (15)

Using (14) and (15), for case (b) we have

Pr{Y n, w(Cm) = e|Xm} =
m+n−eX
k=n

1

2
Q(k − n, n)

µ
m− k − 1
e− n− 1

¶
(16)

Combining the results of (a) and (b), and using some arithmetic relations,
we have

Pr{Y n|Xm} =
nX
e=0

Q(m− e, e)2−(n−e) +
mX

e=n+1

m+n−eX
k=n

1

2
Q(k − n, n)

µ
m− k − 1
e− n− 1

¶

=
mX

e=m−n
Q(e,m− e)2m−n−e +

1

2

m−n−1X
e=0

Q(e, n) (17)

8



(4) immediately follows from (17).
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