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Abstract

Currently, many industrial initiatives focus on web-based applications. In this context an impor-
tant requirement is that the user should only rely on a standard web browser. Hence the underlying
security services also rely solely on a browser for interaction with the user. Browser-based identity
federation is a prominent example of such a protocol. Unfortunately, very little is still known about
the security of browser-based protocols, and they seem at least as error-prone as standard security
protocols. In particular, standard web browsers have limited cryptographic capabilities and thus new
protocols are used. Furthermore, these protocols require certain care by the user in person, which
must be modeled. In addition, browsers, unlike normal protocol principals, cannot be assumed to do
nothing but execute the given security protocol.

In this paper, we lay the theoretical basis for the rigorous analysis and security proofs of browser-
based security protocols. We formally model web browsers, secure browser channels, and the
security-relevant browsing behavior of a user as automata. As a first rigorous security proof of a
browser-based protocol we prove the security of password-based user authentication in our model.
This is not only the most common stand-alone type of browser authentication, but also a fundamental
building block for more complex protocols like identity federation.

1 Introduction

Web-based services have received increasing attention in the last years. The idea is simple: users should
be able to send their requests for desired services using a browser, which offers a set of basic function-
alities, and receive and view the results at the browser. This allows easy deployment of applications at
low cost and without specific user education. Services can be offered by one service provider or several
affiliated enterprises. The requirement on such services not to need any special client software is also
called zero-footprint. The underlying security services must also be zero-footprint, i.e., only a browser
is used for user authentication, and, if desired, for retaining a secure channel with the user, requesting
additional security relevant attributes about the users, and potential confirmation by third parties of the
authentication of the authentication or attribute information.

The typical approach in other security protocols is to perform a key exchange, based on local mas-
ter keys, master keys shared with a third party, or public-key certificates, and to subsequently use the
exchanged key to secure the communication. A large body of literature on such protocols exist. A
seminal paper was [29], although a vulnerability in one of the original protocols was later found in [22].
Tool-supported proofs were initiated in [26, 18, 25], based on abstractions of cryptographic primitives
introduced in [8]. Recent tool-supported proofs concentrated on using existing general-purpose model
checkers, firstin [23, 27, 6], and theorem provers, first in [9, 30]. Cryptographic proofs of key-exchange



and authentication protocols were initiated in [1]. Cryptography also added interesting additional prop-
erties to pure authentication, e.g., see [20]. Modeling secure channels by a comparison to ideal se-
cure channels, a technique that we will use for the underlying secure channels below, was introduced
in [40, 34, 3]. Analyses specifically for SSL and TLS, and thus close to an underlying mechanism used
in browsers, were made in [42, 28, 31, 21].

However, standard browsers simply do not execute most of these protocols. The only exception
that would include user authentication would be to use SSL or TLS channels with client certificates
for 2-party authentication. However, this is not considered truly zero-footprint because the users would
have to obtain the certificates, and because it would not allow a user to easily use different browsers at
different times. Thus it is very rarely used, and not used at all as a basis in larger browser-based security
protocols. Hence browser-based protocols are different from all protocols for which prior security proofs
exist.

A prominent example of browser-based security protocols is identity federation, which aims at link-
ing a user’s (otherwise) distinct identities at several locations. The advantage of such systems is that
the involved organizations can reduce user management costs, such as the cost of password helpdesks
and user registration and deletion. In particular in this area, concrete and complex browser-based secu-
rity protocols were proposed, e.g., Microsoft’s Passport [5], the Security Assertion Markup Language
(SAML) standardized by OASIS [41], the Shibboleth project for university identity federation [4], the
Liberty Alliance project [38], and WS-Federation [16, 17]. Several papers discussed vulnerabilities of
such protocols, in particular for Passport [19], the Liberty enabled-client protocol [37], and a SAML
profile [13]. Others discussed privacy design principles and details [36, 32, 33]. Basic browser-based
authentication without federated identity management is discussed in [11]. As far as the vulnerabilities
found were removable security problems (in contrast to fundamental limitations of the browser-based
protocol class or matters of taste like privacy), they were removed in the next version of the proto-
cols. However, past experience in protocol design has shown that incorporating countermeasures against
known attacks does not guarantee to eliminate all vulnerabilities. Hence it is desirable to devise security
proofs.

It is not trivial to apply previous security proof techniques, both cryptographic techniques and
formal-methods techniques, to browser-based protocols. The primary reason is that a browser repre-
sents a new party with its own, predefined behavior that has impact on the security of the protocols
executed across it. In usual security protocols, principals are assumed to execute precisely the security
protocol under consideration (unless they are corrupted). A browser, in contrast, reacts on a number of
predefined messages, adds information to responses automatically, and stores certain information such
as histories in places which cannot always be assumed secure, e.g., in an Internet kiosk. For instance,
one of the SAML problems found in [13] is based on the HTTP Referer tag, i.e., a browser feature that
is not mentioned at all on the level of the SAML protocol. Another usual issue is that browser-based
protocols use a multitude of names for a principal, while other protocols typically assume a one-to-one
mapping; for instance, there are URL addresses, identities used in SSL certificates, and identities used
in higher protocols, and it is easy to forget some name comparisons in protocols and thus to enable
man-in-the-middle attacks. All this means that a detailed and rigorous browser model is a prerequisite
for convincing security proofs of browser-based protocols, and no such model exists so far. For the
resulting model, one has to assume that a real browser does not perform additional actions, because it
seems that for most security protocols arbitrary additional actions could destroy the security. Hence it
is not enough to make a minimal model covering the few messages and parameters explicitly used by
security protocols, but one has to get as close as possible to real browsers.

Another aspect is that due to the limited capabilities of browsers, the user at the browser is an active
participant and certain assumptions must be made about the user as well, e.g., that the user verifies that
a secure channel to a trusted server is used before entering an important password.

In this paper, we lay the theoretical basis for research in this area by modeling the major build-
ing blocks for browser-based protocols. We present a rigorous and abstract model for a standard web



browser as a principal for browser-based protocols. While our model is still extensible — in particular
we do not model cookies and scripting but assume a browser with these features turned off — we be-
lieve that we have captured the major explicit and implicit browser features that play a role in typical
browser-based protocols. In addition, we model the security-relevant browsing behavior of a user, i.e.,
a machine that implements the explicit constraints on a user that are needed for protocol proofs, but still
allows arbitrary behavior apart from that. Furthermore, we model browser channels in order to capture,
in particular, the naming issues across multiple protocol layers.

As a first security lemma for a browser-based protocol in our model, we focus on the security of the
initial authentication of the user behind a browser by a password. Initial user authentication is an integral
part of all browser-based protocols, and passwords are the standard technique used in the zero-footprint
scenario.

A first step in the direction of proofs of browser-based protocols was taken in [14]. There, however,
we only modeled exactly those parts of the user and browser behavior that we concretely needed for the
protocol, and made assumptions that other things would not happen, where the assumptions were made
top-down for the needs of the protocol rather than bottom-up from a browser and user model. In this
paper, we lay the bottom-up groundwork for such assumptions.

Another related area is the analysis of web services security protocols [12, 2], because in standard-
ization web-based protocols and web services protocols are closely related, e.g., in WS-Federation or in
the use of SAML tokens for web services protocols. The techniques developed there are very useful for
security proofs for real standards. However, so far, they do not consider browser-based protocols, and
hence do not affect the novelty of our browser and user models and of proofs based on them.

2 Notation

General Notation. We use a straight font for constants, including constant Sets and Types, functions,
and predicates, where Types are predefined constant sets. We use italics for variables and variable
Sets. Let X be an alphabet without the symbols { “e”, “I”, <77, <9 <[« «//” 1. then ¥* is the
set of strings over 3 where € denotes the empty string and ¥ = 3* \ {e}. For a set S, P(S) denotes
the powerset of S and S* the set of finite sequences over S. We define S.add (z) as § := S U {z}
and S.remove (z) as S := S\ {z}. Assignment by possibly probabilistic functions is written as <.
Assignment of a value to a tuple of variables means making correspondingly many projections; if one of
these fails the entire assignment fails. We denote the set of URL host names, including protocol names
such as “https”, by URLHost, and the set of URL host and path names by URLHostPath. We write an
address adr € URLHostPath as a pair (host, path) of a host name host € URLHost and a path. The
type ChType := {secure, insecure} contains the channel types available.

Automata. We represent our machines such as the browser model as I/O automata, in other words
finite-state machines with additional variables. This is a very usual basis for specifying participants in
distributed protocols; the first specific use for security is in [24]. Specifically we use the automata model
proposed in [35], which has a well-defined realization by probabilistic interactive Turing machines and is
therefore linked to more detailed cryptographic considerations where those become necessary in multi-
layer proofs. In the following we give a brief overview of this machine model (see also Figure 2).
Machines may have multiple fixed connections to other machines organized by means of ports. We
define a simple port for message transmission as p = (n,d) € £ x {!,7} where n indicates the port
name and d the port direction. Ports are uni-directional, where d = ! denotes output and d = 7 input.
The machine model connects simple ports n? and n! of same name n and opposite direction d; these are
called complement ports. We call ports without such a complement free ports. We define a clock port
p=(n,",d) € 1 x {7} x {!,7} as a port that schedules the connection between simple ports n? and
n! with same name n, or is free itself if this connection does not exist.

A machine M is defined as a tuple M = (namey, Portsy, Varsw, Statesw, dm, Iniy, Finy) of a
name namey € LT, a finite sequence Portsy of ports, a finite sequence Varsy of local variables a
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Figure 2: System architecture for browser-based protocols with a browser B, a user U, servers S;,
secchan and their interfaces.

set Statesyy € X* of major states, a probabilistic state-transition function dy;, and sets Iniy, Finy C
Statesy of initial and final states. The inputs are tuples I = (I;)j—1 .. in(Portsy)» Where I; € X" is
the input for the i-th in-port, in(Ports)y) is the input ports of the machine and |in(Ports )| denotes the
number of the input ports. Analogously, the outputs are tuples O = AQL@.HT.;_E: Portsy)|- The empty
word, €, denotes “no in- or output”, respectively. The value assignments of local variables are tuples
V' = (Vi)i=1,...,|Varsu|> Where V; € X7 is the value for the 4-th variable in the sequence Varsw.

We define the state transition function dy; of a machine M using a notation analogous to UML state
diagrams [15] (see Figure 1). We define a transition of such a state diagram as an arrow from state s
to s’ with label Event[Guard]//Action, where the components are defined as follows: s and s’ are the
source and destination states, Event is a sequence of non-empty inputs to the input ports, Guard is a
predicate over the Event and V' which is the machine’s current variable allocation. Action specifies
computations and outputs of the transition.

System Overview for Browser-based Protocols. Figure 2 gives an overview of the automata in our
model. We call the generic browser machine B, the user machine that implements the minimum as-
sumptions on secure user behavior U, and the machine that models the behavior of secure channels as
implemented within HTTPS (see [39]) by secchan. To analyze and prove browser-based security proto-
cols one complements these general-purpose machines with one or more server machines, here denoted
by S;, that jointly execute the browser-based protocol. Furthermore, one configures the user machine U
with a suitable initial trust relationship and knowledge about trusted parties.

3 1Ideal Web Browser B

In this section, we introduce the functionality of real web browsers, and we describe the feature set that
we model and its benefit for the rigorous security analysis of browser-based security protocols.

A web browser acts as the client in transactions of the Hypertext Transfer Protocol (HTTP) [10] and
renders protocol state and payloads to its user. A browser acts on behalf of one single user in a browsing
session. However, the browser may display multiple windows that render different HTTP transactions in
parallel. The browser model represents a window by a window identifier in the communication between
U and B. We therefore allow a user machine to distinguish multiple windows; however, the window
management of the browser machine is omitted for brevity. A real browser accepts inputs from the user



specifying addresses to retrieve and render the content associated with such addresses, as well as the
status of the channel to the server and the identity of the server. The browser also initiates dialogs with
the user to negotiate changes of the channel state, verify a server’s authentication or request for user
authentication. We model the interface towards a user such that the user has the same information as in
the real world. Thus, the interface not only contains content and error messages, but also information
about the channel state and the address of the server. Normally the browser always displays the server’s
hostname, yet, a certified server identity only if secure channels are used.

HTTP is a client-server protocol positioned in the application layer of the TCP/IP protocol stack
with variable underlying transport protocols. In order to initiate an HTTP transaction, a web browser
establishes a connection to a server specified by the address to access and may leverage multiple types
of transport protocols underlying the HTTP transaction, e.g., TCP/IP, SSL 3.0 or TLS1.0 [7]. Having
established a channel, the browser issues an HTTP request to the server. Such a request specifies the
resource that the browser intends to retrieve, but may also contain additional data and parameters. The
server evaluates the request and issues a response using the same channel. We call such an interaction
an HTTP transaction. In principle, browsers do not need to hold state beyond such a single transac-
tion, however, a real web browser builds, e.g., local cache and browsing history and lets a transaction
influence the subsequent one. Our browser model reflects this behavior of real browsers.

HTTP transactions may implement various functions. Clients such as real browsers may use a
transaction to retrieve data by a GET request, and send data by a POST request. Servers may not
only deliver content but also direct the browser to a behavior change by issuing executable scripts and
error messages. Most prominent examples are HTTP responses with scripted form POST and redirect
messages, which direct the browser to another address of the server’s choice. The server may also
issue an HTTP response that requests a user’s authentication by means of a username-password pair We
model browser messages as abstract formats and abstract from parsing bitstrings. We focus on the subset
of message and parameter types of HTTP that is actively used in browser-based protocols or may have
impact on their security. Thus, for modeling a standard browser-based protocol like SAML [41], Liberty
[38] or WS-Federation [16] the model provides the right set of functionality without overwhelming with
too many options.

An important aspect of real web browsers is that they do more than browser-based protocols intend.
Most prominent is the problem of information flow. On the one hand, information flows through the
HTTP requests to the server, e.g., by means of the HTTP Referer tag. Also, features such as history,
cache or password storage have data flow to the underlying operating system. We explicitly model this
property of real browsers in order to allow information flow analysis. We dedicate Section 3.4 to this
important part of the browser specification.

Supported by a rudimentary trust model, a web browser can establish secure channels to servers by
leveraging the SSL3.0 or TLS protocol. We model the establishment of insecure and secure channels
and the corresponding key management by the channel machine secchan. The user’s log off from the
browser session that removes browsers state from the machine’s memory is also security-relevant.

Further, we do not consider cookies as many browser-based protocols do not use them directly.

In Section 3.1 we define the interface consisting of ports Portsg and possible events. Section 3.3
specifies static elements of B such as the set of local variables Varsg, whereas we explain algorithms
and predicates in Section B. Specific abstract browser messages is the subject of Section 3.2 while
Section 3.4 considers the imperfections of the browsers. Section 3.5 describes the behavior model of B
consisting of the state sets Statesg, Inig, and Fing as well as the transition function dpg.

3.1 Interface of Browser Machine B

We refine the interface of B depicted in Figure 2 by defining the exact messages types transferred over
the ports of B. We list them all in Table 5 of Appendix Section B. Here we only explain them as far as
it is useful to understand the upcoming state diagram.

The ports guiy g? and guig y! model the browser’s user interface and connect B to a user machine



U. The messages enter_address, trigger_address and submit_form issue a request for an address to B.
The enter_address message represents an input in the browser’s address field, whereas trigger _address
models clicking a link. The message submit_form defines the submission of HTML forms. The mes-
sages established and error inform the user of the channel status. The message channel_change notifies
the user of a change of the security level of the transport channel. The remaining messages organize
a certificate verification dialog with the user. The browser uses request_uauth and authenticate in the
password-based user authentication dialog. The security of browser-based protocols builds upon the
browser machine reliably presenting secure channels and the server identity to their users. Thus, if an
HTTP transaction uses a secure channel, B includes the channel’s server identity in each message to U.
The user machine U confirms the server identity in each message to B explicitly. !

The input and output ports channel_ing? and channel_outg! connect the browser to the underlying
channel abstraction secchan. We introduce the ports selfg! and selfg? to reduce complexity of the state
diagrams. By means of these ports, we allow the browser to delegate trigger address and submit_form
commands to itself on the same command path as the user inputs. The ports ing? and outg! model
information flow to the OS and may be connected to a higher protocol layer or the adversary. We
discuss in Section 3.4 how B explicitly leaks information about its state. Loosely speaking, upon an
input do_leak on ing? the browser outputs its full persistent state to outg!.

3.2 Specific Abstract Browser Messages

Correct browsers only send messages well-formed according to HTTP and only accept messages
parsable according to HTTP. We model this property by refining the messages the browsers commu-
nicate at the interface to the channel machine secchan.

The abstract message GET (adr : URLHost, path : URLPath, query : ¥*, login : X*, info_leak :
(X* x ¥*)*) models an HTTP GET request. The parameters adr and path contain the address to
be retrieved. The query is encoded in the query string of the URL. The parameter login contains
the credentials of a password-based user authentication, including the account name. The parameter
info_leak is a list of name-value pairs. It models that web browsers include additional data into the
request and generate an information flow to the server, e.g., the preceding address in the HTTP Referer
tag. We discuss information a browser may leak to other parties through this parameter in Section 3.4.
We define POST (adr : URLHost, path : URLPath, query : 3%, login : ¥*, info_leak : (X% x ¥*)*)
for HTTP POST requests analogously.

We also define abstract messages to model HTTP responses a browser receives including au-
thentication queries, redirects and forms for scripted POSTs. The abstract messages Page(m
¥*, close : Bool,nocache : Bool) and Error(m : X*, close : Bool) model HTTP 200 OK re-
sponses and HTTP 40x error responses, both containing a page m as payload and a flag close that
directs the browser to close the underlying channel or keep it alive for further HTTP transactions.
This parameter models the Connection header of HTTPI.1 [10] and its token close.The parameter
nocache of page models the cache-response directive nostore of HTTP1.1, which forces a browser
not to store any part of either this response or the request that elicited it. The abstract message
Redirect(adr : URLHost, path : URLPath, query : ¥*, close : Bool) models a redirect (HTTP 302
or 303) to adr/path?querystring, where querystring is an encoding of the abstract query. Similarly,
POSTForm(adr : URLHost, path : URLPath, query : X*, close : Bool, nocache : Bool) models
a form containing a script that will POST a message whose body encodes the abstract query to the
address adr/path?. The parameters close and nocache model the connection and cache-response di-
rectives of HTTP1.1. In consequence of both messages the browser establishes a channel to the address

"We only model that the user sees the server identity, not a channel identifier, because he or she will not notice if a channel
is interrupted. Usually, however, a user can distinguish different channels with one partner by different windows.

2 Abstract message POSTForm (“https://www.somedomain.org”, “/login/user”, “login=nobody,nobody_pwd”, FALSE,
TRUE) describes a POST to address “https://www.somedomain.org/login/user” over a secure channel which transfers the
query “login=nobody,nobody_pwd”. The command directs the browser to keep the channel alive and not to store the message
in the browser cache.



Name Domain Description Init.
prev_run | ChType x URLHostPath x X* | Data of preceding HTTP transaction undef
wid * Identifier of the browser window undef
Channels | Channel” Set of all channels the browser holds 0
UAuth 3* x ¥* x URLHost Set of login data stored by B 0
History URLHostPath* History of addresses successfully retrieved | )
Cache (URLHostPath x X*)* Cache of all pages retrieved 0

Table 1: Persistent local variables of the browser machine B.

adr and then sends path and query over that channel. The channel type is implied by the HTTP proto-
col name “http” or “https” in adr. The abstract message Authenticate() queries the browser for a user
authentication and triggers the browser for this purpose.

3.3 Static Model of Browser Machine B

We now define the browser’s local variables Varsg. The variable space is not only a major prerequisite
of the definition of the transition function, it is also the source of all information flow of B.

We distinguish volatile and persistent variables. Persistent variables hold the browser’s long-term
state and are only deleted by the log_off command, whereas volatile variables are deleted in every final
state of an HTTP transition. We start by describing the volatile variables, which we also summarize in
Table 6 of Appendix Section B.

At the beginning of an HTTP transaction a browser is directed to retrieve an address, either through
a user input or derived from the previous HTTP transaction. The variable adr contains the address
to be retrieved and implies the value of host and ch_type. The value of ch_type specifies the type of
the channel the browser establishes to the server with hostname host. The variables source _uri and
method specify the properties of the HTTP request, where the source _ur: states that the entity issuing
the request for adr has a URI on its own. This variable implies whether a Referer Tag is included
in the request and therefore implies an information flow to the server. The variable method contains
the HTTP method to be used in this HTTP transition. The variable form _in contains additional input
provided by the user. The variable ch € Channel contains the browser’s local representation of a
channel established to a server, i.e., the data the browser has acquired about the channel. An element of
Channel is a tuple (cid, host, sid, type, free) from the domain N x URLHost x ¥* x ChType x Bool.
The variables host and sid describe the server to which the browser channel is connected, where host
contains the hostname of the server whereas sid names the server’s identity in a secure channel, and
is € in an insecure channel. The variable type represents the channel type (secure or insecure). The
variable free is used to organize the reuse of existing channels and flags that the channel is currently not
associated to a HTTP transaction. The variable m contains the payload of an HTTP response, whereas
variable store flags the user’s decision whether to store login data in the browser’s state.

We describe the persistent variables in Table 1. We first consider variables that are associated with
every single window. Firstly, the variable wid names the identifier of the browser window. Secondly,
the tuple prev_run contains data about the preceding HTTP transaction in this window. Its element
ch_type contains the channel type, whereas adr contains the address retrieved in the preceding HTTP
transaction. The element form contains the structure of an HTML form together with hidden value fields
already included in the form. The other persistent variables are global for B. The set Channels contains
representations of type Channel for all channels the browser has established. The following variables
are important for the information flow analysis of browser-based protocols. The set UAuth contains a
user’s login information the user decided to store in the browser’s state. The persistent variable History
is a finite sequence of addresses successfully retrieved by the browser. The variable Cache models the
local browser cache. It is a finite sequence of pairs of addresses and page contents retrieved from these
addresses.



3.4 Imperfections

Even correct browsers produce information flow to (i) communication partners and (ii) the underly-
ing operating system. As this information flow may impose vulnerabilities to browser-based security
protocols, we model it as explicit imperfection in the browser model.

A web browser leaks information about previous transactions and its user to communication partners
in HTTP transactions. A real browser includes such information into HTTP header tags such as Referer,
From or Accept_Language. We model this behavior by having the browser machine include such data
in the info_leak parameter of the abstract HTTP request messages defined in Section 3.2. Thus, the
browser leaks this data into the communication with each GET or POST request. We generate the list
of data that flow to a server by means of the function leak2server(). This function takes the browser’s
current variable assignment V' as argument and computes a list of name and value pairs of information
to be disclosed. Information about the user may flow to the server by, e.g., the tags Accept_Language
and From, however the persistent state of our browser model does not contain data that flows into these
tags. Therefore, the default implementation of leak2server only includes the Referer tag into the request
and therefore generates an information flow of the preceding address to the server if the request was
issued by an entity with URI: leak2server(V') = (Referer, V.prev_run.adr) if V.source_uri, else €.

Real web browsers also store information on a user’s machine. Most prominent examples are the
local browser cache, the browsing history and the cookie storage. This behavior of a standard web
browser introduces security and privacy risks especially in kiosk scenarios. We explicitly model the local
cache as a persistent variable Cache and the history as a variable History. We do not model cookies.
We model the information flow introduced by the browser’s behavior with the output leak(info) at the
browser’s port outg! and the input do_leak at port ing?. These ports are free by default, such that the
adversary can connect to them or they may be a specified ports of the interface to a higher protocol.
This allows for flexibility in the information flow policy. Upon the do_leak command on port ing?, the
browser outputs all its persistent state, involving History, local Cache, data about the channels opened
Channels and the user authentication data stored UAuth. Browser B generates a leak message with the
string representation of this information as argument and sends it at outg!.

3.5 Behavior Model

For formal security proofs of browser-based protocols, one needs a precise definition of the browser’s
state transition function dg. We choose state diagrams as concise and efficient definition method for
0g. This method allows for graph analysis of command and information flow of B which eases secu-
rity proofs. A browser handles several classes of user actions asynchronously, such as enter_address,
trigger_address or log_off. Upon enter_address, trigger_address or submit_form the window with the
corresponding window identifier wid starts a new HTTP transaction. If there exists an ongoing HTTP
transaction, that one’s state flow is exited. Upon a log_off command at port guiy g7, the browser B exits
all state diagrams of HTTP transactions and starts a log-off flow, which closes all channels and deletes
the browser state. Figures 3 and 4 depict the state diagram of a single HTTP transaction, i.e., an HTTP
request-response pair. The start state typically corresponds to the inactive state of the browser window
where the user views a page; the transaction is then triggered by the user selecting a link or directly
inputting a new URL. The start state can also correspond to a user filling a form or to the middle of a
redirect.

We first describe two phases that complement the channel establishment of B. The browser begins
with a local negotiation where the browser notifies its user U about the establishment of a new channel
if it is of a different type than the previous one, e.g., insecure HTTP after secure HTTPS. If the user
consents to the channel change in State Channel_type_changed, the browser procures a suitable chan-
nel. We allow the browser to reuse free channels, i.e., opened yet not associated to an ongoing HTTP
transaction, with the correct host and security level (channel reuse).

We depict the channel establishment in Figure 3. The channel establishment distinguishes the
Secure_channel and Insecure_channel. Establishing an insecure channel is straightforward. Establishing
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host', sid, secure); guiB‘Uq!()

prev_run.ch_type .= secure

/
(Chan nel established)

!
Failure: wrong /

host prev_run.ch_type
3 = insecure

(New channel required)

\

[ch_type = insecure] // ]
channel_out !(new, host, channel_ing?(accepted,
insecure); channel_out, () cid, host', *) [host’ = hosf]

Chan established)

|

Gnsecure channel

channel_ing?(accepted, cid, host' €) [host’
= host] I/l ch := (cid, host’, ¢, insecure, false);
Channels.add(ch); guiB‘U!(estainshed, wid,
host’, ¢, insecure); guiB‘Uq!()

channel_ing?(con_error) //
guiB‘U!(error, wid, con); QUiB,Uq!() Failure: channel

establishment failed

Figure 3: Channel establishment phase of an HTTP transaction. B establishes a new insecure channel
in State Insecure_channel, a secure channel in State Secure_channel, or reuses a free channel in State
Reusable_channel_exists.



a secure channel involves a certificate check and potential user interaction if the browser is in doubt of
a certificate.

Figure 4 starts at the state Channel_established from the Figure 3 and handles HTTP requests
and responses. In the Request sending, B issues an HTTP request as a GET or POST according
to the method of the initial user input and enters the state Await_response expecting a HTTP re-
sponse from the server. Next B enters the Response handling of different abstract response types: a
normal answer Page, an Error, a Redirect, scripted POST FormPQOST, or an authentication request
Authenticate. An Authenticate response leads to a user interaction over ports guiy g? and guig y! in
State Authentication_Request and finally to a resending of the HTTP request with the login information
from the user. The response types Redirect and FormPOST specify an address the browser will send
an HTTP request to in the following HTTP transaction. This next HTTP request is treated by the next
iteration of the entire state-transition diagram, but to set up for it the browser sends a message to its own
port selfg?, with the format accepted in the start state.

4 Ideal User Browsing Behavior U

In browser-based protocols, the browser’s user has an important role. As we have seen, the browser
is a state-less device that only provides a rudimental trust management. However, in higher protocols
one needs to store information beyond a single transaction and have a stronger trust model. Also, the
user controls most of the browser behavior and has the final say about the browser’s actions. Therefore,
without a user fulfilling certain tasks and properties all browser-based protocols must fail. Thus, we
consider a user as active protocol participant and model it by an in general transparent machine, which,
however, enforces the requirements for browser-based protocols. Firstly, the user stores data of the
protocols it is involved in. Such data may be addresses of trusted servers or identity information. The
user knows its trust relationship to other parties in the browser-based protocols. The machine U stores
this data in its state. As the web browser is not aware of any higher-level protocol, the user acts as
a supervisor of the protocol flow the browser is involved in. It checks certificates, observes the status
of secure channels and logs off from the browser in error cases. Also, the user engages in the user
authentication with a server and performs the crucial verification of the server’s identity. The machine
acts autonomically upon browser dialogs concerning these tasks.

As depicted in Figure 2, the machine U works as proxy between browser machine and the protocol
interface. It forwards communication from the protocol interface to B and the browser’s pages back.
With the message compromised it indicates that the browser behaved contrary to the expectations of U
and that U aborted the interaction with it. The user machine is connected to the browser through the user
interface ports guiy g! and guig y?, which we described in Section 3.1 in detail.

The user machine contains confidential metadata in its state. Therefore, Varsy is an important initial
point for information flow analysis. As in Section 3.3, we distinguish persistent and volatile variables.
We use similar names as in the browser machine for the volatile variables: the address adr and channel
type ch_type refer to the address the browser established a channel to. For secure channels the server
identity s¢d additionally contains the identity according to the server’s certificate. The variable P refers
to instances of the type Server, e.g. to servers U trusts. A Server is a tuple (host, sid, login, sec) of
domain URLHost x ¥* x 3* x P(ChType) where host contains the server’s hostname, sid its identity
in a secure channel and login the login information for user U. The set sec contains the channel types
allowed for a user authentication with that server. In Table 2, we introduce the persistent variables of
user machine U, which we use to model the trust relationships of U. The set 7'y contains all instances
of type Server to which machine U has a trust relationship. The pairs (host, sid) within this table
must be unique. The set uauth_sec models the general policy of U for allowed channel types for user
authentication and contains the channel types that are acceptable.

We define the state transition function §y by the state diagram in Figure 5. The Start state of this
machine models a user being idle, waiting for an input from the higher protocol layer which address
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Request sending

Response handling Channel close
. if required
Failure: data @ [-nocache] Il Cache.add(adr, m);
retrieval failed guig ! (show_page, wid, m, ch.sid)
PN
v nocache] Il guiy, ,,!(show_page,
channel_ing ?(con_error, cid) [cid’ L “__\_\-.Qmsmwrﬁmg -Pag
= ch.cid] Il Channels.remove(ch); e

guig ! (error, wid, con); m:_m.cA_o

] AR

[method = POST] /
channel_outg!(send, ch.cid,
POST(path(adr), form, «,
leak2server(Vp))); o:m::m_lo:ﬂmA__o

o

ﬁnsm::m_ mmnm_u__msmaw

@Em: response

channel_ing?(receive, cid’, m) channel_ing?(receive, cid’, Page(m,
[cid’ = ch.cid A —parsable(m)] // close, nocache)) [cid’ = ch.cid] Il
guig ! (error, wid, res); m:_m.cA_o prev_run.adr := adr, prev_run.form :=
false; auto_req = false; History.add(adp);

{ \
channel_ing?(receive, cid’, Error(m, close)) [cid’
= ch.cid] Il prev_run.adr = adr, prev_run.form =
false; auto_req = false; History.add(adp);
guig ! (show_page, wid, m, ch.sid)

\
[close] /i cid := ch.cid; H:Jmn_aum_m_ﬁ% Proceed:
channel_ing?(receive, cid’ Channels.remove(ch); 9 BU "V ltransaction
POSTForm(radr, rpath, rquery, close, o:m::m_lo:ﬂm_bﬁo_omm_ cid) successful

nocache)) [cid’ = ch.cid] Il prev_run.adr =
adr, prev_run.form := rquery; ra := (radr,

|
rpath); auto_req := true; History.add(adp); /ﬁ_.qm:wmozoz a:mw:mav ‘
selfg!(submit_form, wid, ¢, ra)
4

ch.cid, GET(path(adr), query(adn), ¢,
leak2server(Vp))); o:m::m_lo:ﬂmA__o

[method = GET] // channel_outg!(send,

[auto_req] I
@osz FormPOST \?:onm%& 7 [-close] selfy 0

ch.free = true

[-nocache] /I

channel_ing?(receive, cid’, Cache.add(adr, m)
Redirect(radr, rpath, rquery, close))

[store] /I ° [cid’ = ch.cid] Il History.add(adp);
UAuth.add((ch.sid, login)) [-store] Il prev_run.adr := adr; prev_run.form =
\ false; ra := (radr, rpath, rquery); auto_req
[method = POST] I/ HTTP Redirect = true; selfg!(trigger_address, wid, ra)
channel_outg!(send, ch.cid,
POST(path(adn), query(adr), login, - - — -
leak2server(V/y))); channel_out,<1() o:mzﬂm._%_:mﬂa.mumﬂm.nhn : m—mﬁﬁmﬂ%mﬂmov Failure: wrong window id/
cid’ = ch.ci istory.add(adr); I
m:_m.c_ﬁqmn:mmﬂlcm:ﬂ:_ wid, ch.host, ch.sid, authentication canceled
P4 ch.type); guig ;10 ®
[method = GET] // channel_out,!(send,
ch.cid, GET(path(adr), query(adr), login, \@:Emzzomzo: Request o . o
. Q guiy, g ?(authenticate, wid, login,
leak2server(\j))); channel_out,<!() sid’. ™) [sid’ = ch.sid 1 login = <]
guiy, g ?(Authenticate, wid,

login, sid'’, store) [sid’ = ch.sid]

Figure 4: Request handling phase of an HTTP transaction. B issues a HTTP request in State
Channel_established and handles the server’s response in State Await_response. Responses Redirect
and POSTForm have B request another address in the following execution of the state diagram.

| Name Domain | Description Init.
Tu Server® | Set of all servers trusted by U. [}
Wy Identifiers of windows opened by U 0
uauth_sec | ChType | Channel types generally allowed for uauth | {secure }

Table 2: Persistent local variables of the user machine U.
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adr to retrieve or for browser events. After having issued an address request to the browser, the ma-
chine observes the browser’s behavior and reacts to events generated by B. The state machine models
Transparent Behavior on the left side (around State Honest_user_event), where it only forwards mes-
sages between protocol interface and browser. This transparent part handles the messages enter_address,
trigger_address, submit_form, and show_page. The user tracks channel status changes and channels es-
tablished in the States Channel_status_changed and Channelestablished, verifies certificates B doubts
in State Cert_verify_requested, and forwards errors and pages to the protocol interface. The user also
handles the user authentication process in State Authentication_request.

5 Channel Machine secchan

Our browser model comes with a channel abstraction secchan for secure and insecure browser channels.
For space reasons, we describe this machine only partially here.

As shown in Figure 2, each machine M with network access has two ports channel_out)! and
channel_iny1? to connect to secchan. The channel machine connects to the adversary by two means.
The ports net_outy! and net_iny;? are for insecure channels and not needed here. For modeling the
imperfections of secure channels, we connect the ports channel outa! and channel_ina? to the adversary.
The adversary also controls the network scheduling and decides which messages are delivered.

The machine secchan chooses channel identifiers uniquely and keeps track of channels. To model
insecure DNS, it queries the adversary for ports corresponding to hostnames. The machine secchan has
a table CA of tuples binding = (port, sid, host) € £ x $* x URLHost linking a certified identity sid
and the base hostname host of the corresponding security domain to the port index of a communication
partner of secchan. The setup of this table enforces that the identities si¢d are unique. For handling a
concrete channel instance, secchan dispatches the communication to a sub-machine. Such an instance
contains the channel identifier cid, the port indices of the initiator and responder, the server’s actual
address host, the server’s identity rid and the security level, here secure. We depict the most important
steps of a secure channel instance in Figure 6 and discuss the establishment of a secure channel in the
following.

Clients initiate secure channels to an address host by the command new with the parameter
ch_type = secure. Then secchan queries the adversary for the recipient port index R corresponding
to host, chooses a unique channel identifier cid, and dispatches to a sub-machine for a secure chan-
nel (Figure 6) with R, host, and cid as parameters. This sub-machine handles further communication.
First it notifies the server with the channel identifier cid. The server may accept the channel and iden-
tify itself under an identity r:d € URLHost The secure channel instance verifies the server identity in
State accept_request: It tests whether it has a tuple (S, rid, host’) € CA such that the current address
host lies under the base address host’, denoted by “€”. If yes, it notifies the client that the channel
was accepted. From now on, the port indices of client and server are non-ambiguously bound to the
unique channel identifier cid. Thus client and server are the fixed channel partners of this channel.
Both partners may send messages referring to cid.

6 Security of User Authentication

In this section, we present the first protocol proof based on a detailed browser model: We show the
security of typical password-based user authentication by one server. Such user authentication is an
important building block for most other security protocols based on browsers, e.g., in federated identity
management.

6.1 Authentication Server

The overall system is a special case of the architecture shown in Figure 2. We consider the definition of
one server S; of course there can be several such servers and also servers of different types interacting
with the same browsers and users. We only rename the free ports of this server from ing? and outg!
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Failure: channel does not
fulfill channel policy.

&®

[P e T, | P.host = host A ch_type ¢ P.sec]
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Ehm

u | P-host = host A ch_type ¢ P.sec] I
cm:_om-os out,!(compromised,
channel J%mv guiy g0

Transparent Behavior [@Pe

Success:
address entered

Ty | P.host=
= ch_type € P.sec] I
guiy g!(channel_change,
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Proceed:
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= ch_type € P.sec]
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\
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A

type) [wid € W]

H_\_\\N_m _\A__\_cA_v: guig ,?(show_page, wid,
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I I

m:_m o7, wid)
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in oﬁ:mmmq address, wid, adr) /l
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Browser event

Proceed: certificate pre-

Cert verify _.mn:mmﬂmav:miccﬁma in setup

guig ,?(verify_server_cert,
wid, host, sid) [wid € W]

m:_m y2(error, *,*) il gui, !
out _Aooz__oqo:__mmn error m:_c mA__o

(log-off);

1 e

m:_m.cwﬁmn:mmﬂlcm:ﬂ:_ wid, host,
sid, ch_type) [wid € W]

\

Failure:
certificate invalid

[2Pe T, | P.host= host n P.sid =

out, !(compromised, inval_cert);

sid] I m:_c.m:_om-osu

guiy g0

@ Authentication _.ma:mmw

Failure: HTTP or channel
- error occurred.

N

in,?(submit_form, wid, form_in,
adr) Il gui, ;!(submit_form, wid,

[AP e T,|P.host=

h sid = sid A P.login = ] Il
.c m_AmE:m::omﬂm wid, e,
sid, false); guiy g0

host A

[1P e T, | P.host = host A
P.sid = sid n P.login + €]

form_in, adr)

m:_c.

[ch_type ¢ (uauth_sec ~ P.sec)] Il
m:_c.m:_om-osu
out,!(compromised, uauth),

=0

[ch_type € (uauth_sec ~ P.sec)]
Il gui, g!(authenticate, wid,
P.login, P.sid, false); guiy g !0

®

Failure: missing login for
uauth / channel insecure

Figure 5: The ideal user browsing behavior

Start
new delivered

channel_outg?(accept, cid,
rid) //net_out,!(accept, cid, rid)

o

net_ing?(new, cid, host,
secure) / channel_ing!(new,
cid, secure)

channel_out,?(new, cid, host,
R) // net_outg!(new, cid, host,
secure)

‘ new request '

Figure 6: State diagram of a single instance of a secure channel

accept request

ELSE

Failure:
certificate
verification
failed

®

Proceed:
uauth successful

channel_outp?(send, cid, m)
[P € Partnen] I/

Q € Partner\ {P}; Buffer[++]] := (m, Q);
channel_in,!(sent, cid, P, Q, i, length(m))

net_in,?(accept, cid, rid)
[3 (R, rid, host) € CA | host’ e host] I/
Partner := {l, R};
channel_in,!(accepted, cid, host, rid)
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Port Type | Parameters Description
uauth_ing? Input to authentication server S

start | cid : &* Start authentication of channel cid
uauth_outg! Output of authentication server S

done | cid : ¥*, idu : ¥* | Authentication for channel cid finished with

identity ¢du, where € means failure.
Table 3: Protocol in- and outputs of the authentication server S
| Name Domain Description Init.

hosts URLHost Hostname of this server See setup
sids 3 Identity of this server for secure channels See setup
MetaUs | P(EF x X*) | Pairs of known user identities and login information. | @

Table 4: Persistent local variables of the authentication server S

into uvauth_ing? and uauth_outg! to indicate that it offers a user authentication service. Further, we
specialize the architecture by allowing the adversary full access to the browser’s cache and history, i.e.,
we show that user authentication (in contrast to some other protocols) is not vulnerable to such attacks.
This means that the adversary connects to all free ports in Figure 2 that are not defined to belong to the
protocol interface.

The inputs at the ports that S does not share with a prior machine and its persistent variables are
shown in Tables 3 and 4. We refer to the two parts of an entry e in the user metadata table MetaU s as
e.id and e.login. We require that both id and login are unique within the table MetaU g of a correct
server S at all times.

The state machine for one authentication protocol run of server S is shown in Figure 7. The server
user (typically a higher protocol) starts authentication for some channel with identity cid. The server
sends an authentication request over the channel cid. Upon receipt of an authentication message, it
looks up whether the included login information is present in its user metadata. If yes, it outputs the
corresponding identity as the main part of the authentication result, else e.

6.2 Setup Assumptions

As set-up for a particular user machine U and authentication server S, they exchange login infor-
mation loginy s # € such that U and S are the only parties that obtain information about it. Fur-
ther, U must know a valid certificate identity of S so that it can verify later that it has a secure
channel to S. Formally, the result of the set-up is this: The set Ty of U’s trusted servers con-
tains an entry servers = (hosts, sids, loginy s, {secure}) with the same variables hosts and sids
as in S. The server’s set MetaUs contains a pair (idy, loginy ), where the user’s identity idy is
freely chosen by S. The binding table C'A of the secure channel abstraction secchan contains a triple
bindings = (S, sids, hosts) where hosts defines a security domain of S. No other variables contain

[Fe e MetaUg | e.fogin = fogin] I
uauth_outg!(done, cid, e.id); :NE:IOEwA_O ‘

channel_ing?(receive, cid,
POST(adr, path, query, login,

1 Request leak))

/

° \f?.»_r.n_
uauth_ing?(start, cid) #f
channel_outg!(send,
cid, authenticate());
channel_out ()

Received Authentication

Success:
authenticated

channel_ing?(closed, cid) If
uauth_outg!(error, con, cid);
uauth_out ()

®

channel_ing?(con_error, cid) i
uauth_outg!(error, con, cid);
uauth_out ()

Failure:

connection error

channel_ing?(receive, cid,
GET(adr, path, query, login,
leak))

ELSE /7
uauth_outg!(done, cid,
€); uauth_out ()

Figure 7: State machine of the user authentication server S.
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information about login s.

6.3 Security of User Authentication

We now show that user authentication, as defined by the general user machine U and the specific authen-
tication server S, is secure. Note that we are making a relatively strong statement: We have not required
that S only makes its requests on secure channels, nor that the user correctly logs out of browser ses-
sions or otherwise protects caches and histories. Extended protocols, e.g., the continued secure use of
the channel for which the authentication is made, may need additional assumptions.

Lemma 6.1 (User Authentication) Let a correct user machine U and authentication server S be given
that have performed setup according to Section 6.2 at some time with the user identity id y, and let the
user’s browser B be correct. Then S only outputs (done, cid, idy) at uauth_outs! if cid is the identity of
a secure channel, and the partner machine at this channel is the browser B of the given user U, unless an
adversary can guess loginyy s based on a priori knowledge of its distribution, its length, and the results
of previous guessing attempts, which each exclude one potential value. O

7 Conclusion

In prior art, browser-based protocols only came with vulnerability analyses and informal security consid-
erations. However, those methods do not guarantee the protocols’ security and do not meet the require-
ments of industry embracing browser-based protocols in complex scenarios. We designed the first model
for the rigorous security analysis of browser-based protocols. Our model encompasses generic machines
for browsers, user browsing behavior and channel abstraction that allow precise protocol proofs. We
have also proven the security of the initial password-based user authentication, a very common protocol
on its own and a key ingredient of browser-based protocols. In future work, we will use this model to
analyze and prove the security of POST- and artifact-based protocols in the prominent area of identity
federation.
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A Proof of User Authentication

We now prove Lemma 6.1.

Proof. The proof begins with an information-flow analysis about the login information login g that
U and S shared in the setup. This analysis shows that no parties except U, S, the browser B and the
channel abstraction secchan learn the login information, and that the login information never flows into
other persistent variables than the original entries in 7'y and MetaUs. The analysis further shows that
the login information only passes volatile variables and interface messages as one would expect by the
intended login protocol. Finally, we use this knowledge to show that S only outputs the authentication
acceptance message (done, cid, idy) under the conditions claimed in the lemma.

We now carry out this proof in detail. Even more rigorously, what we show in the information-flow
analysis are invariants about the variables that can hold login information and the messages that the
participants send with this login information.

Information flow in the user machine U. Initially, the only persistent variable in U that contains
information about login,, g is the entry servers = (hosts, sids, loginy s, {secure}) in Ty. In the state
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diagram, the login information therefore occurs only as a variable P.login where P is a server variable.
The only read access to this variable is in State Authentication_Request.

For our case P = servers, the verification P.login # € made in this state is always successful. Thus
it does not cause any indirect information flow.

Direct information flow in this state occurs if all checks were successful and the user enters login g
into the browser as a message m = (authenticate, wid, login u,s, P.sid, false) at guig y!. The user ma-
chine U reached this state upon receiving a login request mo = (request_uauth, wid, host, sid, ch_type)
at guig,y? with host = P.host and sid = P.sid. The tests before entering loginy s ensure that
ch_type = secure, because we have P.sec = {secure} for P = servers.

After these actions, U enters a final state of the protocol run defining the volatile variables. Hence it
sets the volatile variable login to € and further information flow is prevented.

Information flow in the browser B. This information flow is based on the login input m from the user
U. A message of the form of m is only accepted in the browser state Authentication_Request (bottom
of Figure 4). The browser does not add an entry (which would contain the login information) to the
persistent variable UAuth because for our specific message m, we have store = false.

The value loginy g from the input is assigned to the local volatile variable login. The only in-
formation flow from this variable in this protocol run is that the browser sends it to the server in a
message m, = (send, ch.cid, GET (adr.path, adr.query, login, leak2server(Vg))) at channel_outg!. It
only does this after verifying that the currently used channel ch fulfills ch.sid = P.sid, i.e., the recipient
of this channel has the identity desired in the user input 7. This implies ch.sid = sids.

The volatile variable login is set to € in the final states of this protocol run, so that no further
information flow from it is possible.

Information flow in secchan. Upon receiving the message m1 (accepted only in state established),
and because the channel with identity ch.cid is secure, the channel machine secchan only outputs
mgy = channel!(sent, ch.cid, B, S, length(m,)) to the adversary.

If the adversary schedules the  message, then the message m3 =
(receive, ch.cid, GET (adr.path, adr.query, login, leak2server(Vg))) is delivered to the channel
partner of ch.cid. We know that B verified ch.sid = sids and that secchan verified during the
establishment of the channel with identity ch.cid that there exists a binding between sid s and port S.
As secchan enforces that server identities are unique, only our server S controls the server identity sid s.
Thus, S is indeed the channel partner of ch.cid and unique recipient of m3.

Information flow in S. The server S contains login s in a persistent variable and further receives it in
a message mg3 via a secure channel.

Upon receiving loginy s in a message mg3 from the machine secchan as described above, it
looks it up in the user metadata MetaUs. By our setup assumption, the resulting output is always
(done, cid, idy), which is no information flow about login,, .

The instance of login g in the persistent table MetaU's is used whenever S receives a supposed
login message, i.e., a message of the form mf = (receive, cid, GET (path, query, login, leak)), or the
same with POST. The resulting output designates whether the input login is present in MetaU s and,
if yes, contains the corresponding interface user identity ¢d. This is the typical information flow of an
online dictionary attack, which is permitted by the lemma. (Recall that login is assumed to contain the
account name, so we do not allow cross-account queries for passwords here.)

Proof of the lemma. We now prove the statement of the lemma based on the information flow invari-
ants established so far. The server S only outputs (done, cid, idy) in State Received_Authentication,
and only if it received a message m4 = (receive, cid, GET/POST (path, query, login, leak)) at port
channel_ing? with login = loginy s (by the uniqueness of idy in MetaUs).

It only receives mj if the channel partner C of cid has sent a message m3 =
(receive, cid, GET /POST (path, query, login, leak)). From the information flow analysis we know that
such a message with the value login = login s only occurs if this channel partner C is the browser B
of user U. This finishes the proof. ]
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B Details of Browser B

Table 6 denotes the volatile variables of machine B, whereas Table 5 contains the interface of B, i.e.,
its ports and messages expected. We describe the functions and predicates used in the browser model
as follows: The I/O automata in Section 3.5 use several predefined predicates and functions. The func-
tion ctype(adr) with ctype : URLHostPath — ChType determines the channel type corresponding
to the argument adr. If the address is HTTPS the channel type is secure, in other cases insecure.
The functions path(adr) : URLHostPath — URLHost, path(adr) : URLHostPath — URLPath,
and query(adr) : URLHostPath — X* return parts of an URL argument adr. The predicate
fmatch(form, form_in) with fmatch : 3* x ¥* — Bool checks whether the parameter names of form
and the user inputs form_in match. The function fmerge(form, form_in) : £* x ¥* — 3* merges
a given form with the user inputs form_in to a new form. The predicate parsable(m) : ¥* — Bool
checks whether message m is parsable according to the HTTP specification for HTTP responses. The
function leak2server(V) with leak2server : (£*)IVors8l — (3% x ¥*)* generates a finite sequence of
name and value pairs that model an information flow from the current variable assignments V' into the
browser’s communication with a server.
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Port Type Parameters Description
ing? do_leak Leak command from OS
outg! leak info : ¥* Info leakage of B to OS
guiy g? Inputs from user U
enter_address wid : ¥*, adr : URLHostPath Input in address line
trigger_address wid @ ¥*, adr : URLHostPath Clicking of a link
submit_form wid : ¥*, m : ¥, adr : URLHostPath | Submission of a form
channel_change wid : £*, d : {accept, reject} Consent to sec level
server_cert wid : *, d : {accept, reject}, sid : £* | Result of cert verify
authenticate wid : X, login : X%, sid : X%, User authentication
store : Bool
log_off User logs off from B
guig,y! Outputs to user U
error wid : ¥*, type : {con, res} Error notification
established wid : X%, host : URLHost, sid : ¥*, A channel was established
ch_type : ChType
channel_change wid : ¥*, host : URLHost, Channel sec level changed
ch_type : ChType
verify_server_cert wid : ¥*, host : URLHost, sid : ¥* Request to verify cert
request_uauth wid : ¥*, host : URLHost, sid : ¥*, Request for user auth
ch_type : ChType
show_page wid : X%, m : ¥*, sid : ¥* Rendering a payload page
selfg!, selfg? Selfdelegation of browser B
trigger_address adr : URLHostPath Triggers a redirect
submit_form m : X*, adr : URLHostPath Scripted form submission
channel_ing? Inputs from secchan
accepted cid : ¥*, host : URLHost, sid : ¥* Server accepted channel
receive cid : ¥*,m: ¥* Received a message
closed cid : X* Server closed channel
con_error cid : ¥* Connection error notify
ca_untrusted sid : X Browser does not trust CA
inval_cert sid - X* Cert was completely invalid
channel_outg! Outputs to secchan
new host : URLHost, type : ChType Establish a new channel
send cid : ¥*, m: ¥* Send a message to channel
close cid : X* Close channel
accept_server_cert | sid : ¥* User accepted server cert

Table 5: Input and output types of browser machine B.

Name Domain Description Init.
adr URLHostPath | Address to retrieve undef
host URLHost Hostname of an address undef
ch_type ChType Channel security type for this protocol run insecure
sid 3 Identity of a server connected by a secure channel undef
source_uri | Bool Whether the request was triggered false
by an entity with an own URI
method {GET,POST} | Method type of the HTTP request GET
ch Channel Internal representation of a channel. undef
cid ¥ Unique identifier of a channel of the channel model undef
m »* Payload of a POSTFormS undef
form 3 Form with values to be posted undef
form_in > User input to a form undef
store Bool Flag whether to store the login data false
auto_req Bool Flag whether to send a follow-up request automatically | undef
Table 6: Volatile local variables of the browser machine B
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