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Abstract. We develop a couple of new methods to reduce transmission overheads
in broadcast encryption. The methods are based on the idea of assigning one key
per each partition using one-way key chains after partitioning the users. One method
adopts skipping chains on partitions containing up to p revoked users and the other
adopts cascade chains on partitions with layer structure. The scheme using the for-
mer reduces the transmission overhead down to r

p+1
asymptotically as r grows, and

the scheme using the latter keeps the transmission overhead very small when r ap-
proaches 0, where r is the number of revoked users. Combining the two schemes, we
propose a new broadcast encryption scheme with least transmission overhead. Our
schemes also possess a remarkable feature that any number of new users can join
at any time without key update, which is not available for most of known practical
schemes.
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1 Introduction

Broadcast encryption (BE) is a cryptographic method for a center to broadcast dig-
ital contents efficiently to a large number of users so that only non-revoked users
can decrypt the contents. BE has a wide range of applications such as internet or
mobile broadcast of movies, news or games, pay TV, CD, and DVD, to name a few.
In broadcast encryption, the center distributes to each user u the set K(u) of

keys, called the user-key of u, in the setup stage. We assume that the user-keys
are not updated afterwards, that is, user-keys are stateless. A session is a time
interval during which only one encrypted message (digital contents) is broadcasted.
The session-key, say SK, is the key used to encrypt the message of the session.
In order to broadcast a message M , the center encrypts M using the session-key
SK and broadcasts the encrypted message together with a header, which contains
encryptions of SK and the information for non-revoked users to decrypt SK. In
other words, the center broadcasts

〈 header ; ESK(M) 〉,

where E is any preset symmetric encryption algorithm. Then, every non-revoked
user u computes F(K(u), header) = SK and with this decrypts ESK(M), where F

? An old version of a part of this paper appeared in Eurocrypt’05 [13].
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is a predefined algorithm. For any revoked user v, however, F(K(v), header) should
not render SK. Furthermore, there should be no polynomial time algorithm that
outputs SK even with all the revoked user-keys and the header as input.
The header size, the computing time of F and the size of K(u) are called the

transmission overhead (TO), the computation cost (CC) and the storage size (SS),
respectively. One of the main issues of broadcast encryption is to minimize the
transmission overhead with practical computation cost and storage size.
The notion of broadcast encryption was first introduced by Berkovits [2] in 1991

using polynomial interpolation and vector based secret sharing. Fiat and Naor [7]
in 1993 suggested a formal definition of broadcast encryption and proposed a sys-
tematic method of broadcast encryption. The polynomial interpolation method was
improved by Naor and Pinkas [16] in 2000 to allow multiple usage and by the authors
[19] in 2004 to allow a large number of users. The first practical broadcast encryption
scheme was proposed in 2001 by Naor, Naor and Lotspiech [15], called the Subset
Difference (SD) method. This was improved by Halevi and Shamir [11] in 2002 by
adopting the notion of layers and thereby their scheme is called the Layered Subset

Difference (LSD) method. Both SD and LSD are based on tree structures and they
have been the best known broadcast schemes up to now. To be more precise, let N
be the total number of users and r be the number of revoked users. The SD scheme
requires 2r− 1 transmission overhead and O(log2N) storage size for each user. The
computation cost is only O(logN) computations of one-way permutations. The LSD
scheme reduces the storage size to O(log3/2N) while keeping the computation cost
same. But the transmission overhead increases to 4r−2 in LSD. For other interesting
recent articles on broadcast encryption, we refer the readers [8], [3].
In this paper, we develop a couple of methods to reduce transmission overhead in

broadcast encryption based on the idea of one key per each partition using one-way

key chains after partitioning the users. More precisely, we put all users on a straight
line and partition the line into intervals to each of which the center assigns just one
key. The key can be derived by only those non-revoked users in the interval and will
be used in decrypting the session-key.
The first method adopts skipping chains on partitions containing up to p re-

voked users. It has been a general belief that at least one key per each revoked
user should be included in the overhead and hence r seems to be the lower bound
of the transmission overhead in any broadcast encryption scheme with reasonable
computation cost and storage size. In the scheme using skipping chains, however,
the transmission overhead is about r

p+1 +
N−r
C , which breaks the barrier of r for

the first time under our knowledge, if r is not too small and p ≥ 1, where C is a
predetermined constant. Although we set C = 1000 for comparison purpose here,
we can choose any C that is suitable for other purposes. The computation cost is
very cheap with only C − 1 computations of one-way permutations. The storage
size is O(cp+1), which is practical for most user devices if p is small. Our scheme
is very flexible with two parameters p and C. If a user device allows a large key
storage like set-top boxes and DVD players, then we may take p and C as large as
possible to reduce the transmission overhead, which is much more expensive. If a
user device has limited storage and computing power like smart cards and sensors,
then we may set p and C as small as possible. Another remarkable feature of this
scheme is that it does not have to preset the total number of users - any number of
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additional users can join at any time, which is not available for tree based schemes.
In order to add new users to the system, the center just places them at the end
of the line, computes and sends the corresponding user-keys to them. This process
requires neither interaction nor refreshment of current user-keys. (See [13] and [12]
for the broadcast encryption scheme π, which is an old version of the skipping chain
scheme.)
The second method adopts cascade chains on partitions with layer structure.

In cascade chain schemes, we assign a key to each interval which starts from or
ends at some special node so that every interval between two revoked users can
be covered by at most two keys. This enables us to have 2r as the transmission
overhead for very small r, which is comparable to the SD scheme. When r is not
very small, then the transmission overhead of the cascade chain scheme is about r,
which is only a half of that of the SD scheme. Cascade structure also enables us to
reduce the size of a user-key so that the storage size of the scheme is comparable to
most practical schemes. Without cascade structure, the storage size could increase
exponentially as we introduce layers and special nodes. Combining the two schemes,
we propose a new broadcast encryption scheme with least transmission overhead.
The transmission overhead of the combined chain scheme is the same as that of
the cascade chain scheme as r approaches to 0, the same as that of the skipping
chain scheme as r grows bigger, and even better for some values of r in between. User
addition, however, is not available because of left cascade key chains in the combined
chain scheme as well as in the cascade chain scheme. But if we use only right cascade
key chains, then user addition without updating the user-keys of current users is still
feasible in both schemes.
This paper is organized as follows : In Section 2, we introduce the basic chain

scheme. In Section 3 and Section 4, we develop the skipping chain scheme and the
cascade chain scheme, respectively. We combine the two schemes in Section 5. We
compare our schemes with SD and LSD and discuss some practical issues in Section
6, and then briefly summarize our results in Section 7.

2 Linear Structure

In this section, we introduce the basic chain scheme, where users are regarded as
dots lined up in order. Although this scheme cuts the transmission overhead down
to r, the scheme requires a large storage for each user. The basic chain scheme,
however, is the building ground for our skipping chain scheme and cascade chain
scheme. We also introduce a variant of the basic chain scheme, called the C-basic
chain scheme, which improves the storage size at the cost of transmission overhead
for small r.

2.1 Framework

Let L be a straight line with N dots (users) on it, where N is the number of total
users. In our schemes, each user is indexed by an integer k ∈ [0, N −1] and he/she is
represented by the k-th dot, denoted by uk, in the line L. The center first assigns the
user-key K(uk) to each user uk. Consider L as the set of N users and define S(scheme)
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to be the set of all subsets of L satisfying certain conditions (scheme) for the scheme
in discuss. The center assigns each subset S ∈ S(scheme) a keyK, called the subset-key
of the subset S that can be derived by each non-revoked user of S using his/her user-
key. For each session, the center finds the disjoint subsets S1, S2, . . . , Sm in S(scheme),
whose union covers all non-revoked users, under a predetermined rule, keeping m
as small as possible. And then the center encrypts the session-key SK with the
subset-key of Sµ for each µ = 1, 2, . . . ,m. These m encryptions of SK together with
information on Sµ’s form the header. The number m is usually defined to be the
transmission overhead.

Encryption In each session, the center finds disjoint subsets S1, S2, . . . , Sm in
S(scheme), whose union covers all non-revoked users, and their subset-keys K1,K2,
. . . , Km. The center then encrypts the session-key SK with Kµ for each µ =
1, 2, . . . ,m, respectively, and a message M with SK, and then broadcasts

〈 info1, info2, . . . , infom ; EK1(SK), EK2(SK), . . . , EKm(SK) ; ESK(M) 〉,

where infoµ is the information of the subset Sµ and E is a preset symmetric encryp-
tion algorithm like AES for example.

Decryption Receiving the encrypted message

〈 info1, info2, . . . , infom ; C1, C2, . . . , Cm ; M
′ 〉,

each non-revoked user u first finds the subset Sµ where he/she belongs and its
subset-key Kµ. With this, u computes DKµ(Cµ) = SK and DSK(M

′) =M in order,
where D is the decryption algorithm corresponding to E .

2.2 Basic Chain Scheme

Let u0, u1, . . . , uN−1 denote the users, where N is the total number of users, and let
r be the number of revoked ones. We denote the interval starting from ui and ending
at uj by Ii,j . In the basic chain scheme, S(basic) is the set of all these Ii,j ’s for i, j
satisfying 0 ≤ i ≤ j ≤ N − 1. For each interval Ii,j , we assign the interval-key Ki,j

that will be used to encrypt and decrypt the session-key for the users in Ii,j . Then
the number of user-keys for each user uk is (k + 1)(N − k) for k = 0, 1, . . . , N − 1

and hence the average number of user-keys per user is (N+1)(N+2)
6 , which is too big.

We introduce key chains using one-way permutation to reduce the user-key size.

Key Generation In order to reduce the size of each user-key, we give some relations
among the interval-keys. Let

h : {0, 1}∗ → {0, 1}∗

be a one-way permutation. Choose N keys K0,0, K1,1, . . . , KN−1,N−1, randomly.
Construct a key chain from each Ki,i as follows:

Ki,i, Ki,i+1 = h(Ki,i), Ki,i+2 = h(Ki,i+1) = h2(Ki,i), . . . , Ki,N−1 = hN−1−i(Ki,i).
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We assign the user-key

K(uk) = {K0,k, K1,k, . . . , Kk,k }

to uk for each k = 0, 1, . . . , N − 1. Note that the interval-key Ki,j can only be
computed by uk’s for i ≤ k ≤ j and that it is not possible for other users to
compute Ki,j even if they all collude.

Encryption For each session, the center marks the revoked users on the line
L and removes the marked users from the line to obtain disjoint intervals, say
Ii1,j1 , . . . , Iim,jm consisting of non-revoked users as illustrated in Figure 1, whose
union covers all non-revoked users. Then the center broadcasts:

〈(ii, j1), . . . , (im, jm) ; EKi1,j1
(SK), . . . , EKim,jm

(SK) ; ESK(M)〉.

e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e d

?

Mark revoked users

L

◦ and × denote a non-revoked and a revoked user, resp.

e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e¡@ ¡@¡@ ¡@ ¡@ ¡@

?

Make intervals by removing the revoked

e e e e e e e e e e e e e e e e e e e e e e e e e

Figure 1. Making the intervals

Decryption Receiving the encrypted message, each non-revoked user uk first lo-
cates the interval Ii,j where he/she belongs, that is, finds i, j such that i ≤ k ≤ j,
and computes

Ki,j = hj−k(Ki,k)

from the key Ki,k he/she owns. And then uk decrypts EKi,j
(SK) and ESK(M) to

obtain the session-key SK and the message M , respectively, in order. Note that a
revoked user cannot compute the session-key since he/she does not belong to any
interval listed in the header (see §2.4).
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Performance When r users are revoked in the basic chain scheme, the maximum
possible number of disjoint intervals in S(basic) to cover all non-revoked users is r+1.
So, the transmission overhead is

TO(basic) = r + 1.

Each user uk needs to keep (k + 1) user-keys. So, the storage size for each user
is N+1

2 in the average and
SS(basic) = N

in the worst case. Note that the center needs to keep only N keys

K0,0, K1,1, . . . , KN−1,N−1.

Finally, the computation cost is at most N −1 computations of the one-way permu-
tation h, i.e.,

CC(basic) = N − 1.

Remark One may consider a circular structure by gluing two ends of the line and
providing more key chains traversing the two ends. In a circular structure, TO is
reduced by 1 and every member has the same size of user-key, N , but it is not easy
to add new users to the structure later.

2.3 C-Basic Chain Scheme

Although the basic chain scheme reduces the transmission overhead down to r, the
storage size of each user is still too big to be practical. We can reduce the storage
size by bounding the interval length, i.e., the number of users in the interval.
Let C be a predetermined positive integer. Let S(C-basic) be the set of all intervals

of the form Ii,j ∈ S(basic) satisfying j − i + 1 ≤ C, where j − i + 1 is the length of
Ii,j . We call such intervals C-intervals.

Key Generation Key generation of the C-basic chain scheme is exactly same as
that of the basic chain scheme except the maximal length of key chains is C, i.e.,
the center constructs the key chain

Ki,i, Ki,i+1 = h(Ki,i), Ki,i+2 = h2(Ki,i), . . . , Ki,i+C−1 = hC−1(Ki,i)

for each 0 ≤ i ≤ N − C and

Ki,i, Ki,i+1 = h(Ki,i), Ki,i+2 = h2(Ki,i), . . . , Ki,N−1 = hN−1−i(Ki,i)

for each N − C + 1 ≤ i ≤ N − 1, and then assigns the user-key

K(uk) =

{

{Kk−C+1,k, Kk−C+2,k, . . . , Kk,k } if k ≥ C
{K1,k, K2,k, . . . , Kk,k } otherwise

to uk for each k = 0, 1, . . . , N − 1.
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Encryption and Decryption For each session, the center finds disjoint intervals
as in the basic chain scheme. If all the intervals are of length ≤ C, then it uses
the intervals for encryption. If there are intervals of length > C, then the center
partitions those intervals further as follows : Partition every Ii,j with j − i+ 1 > C
into subintervals

Ii,i+C−1, Ii+C,i+2C−1, . . . , Ii+(q−1)C,i+qC−1, Ii+qC,j ,

where q = b j−i+1
C c and the last subinterval Ii+qC,j should be excluded if q =

j−i+1
C .

In other words, the center partitions Ii,j into q subintervals of length C starting
from ui and the (q + 1)st subinterval consisting of the remaining users if any. This
process is illustrated in Figure 2.
Once the center obtains the C-intervals

Ii1,j1 , Ii2,j2 , . . . , Iim,jm ∈ S(C-basic),

whose union covers all non-revoked users, encryption and decryption are identical
with those of the basic chain scheme. Those who are not belong to any C-interval
are the revoked ones and they can never access to the session-key (see §2.4).

e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e

?

Mark revoked users

L

e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e¡@ ¡@¡@ ¡@ ¡@ ¡@

?

Make intervals with removing the revoked

e e e e e e e e e e e e e e e e e e e e e e e e e

?

Divide long interval into C-intervals (eg. C=5)

e e e e e e e e e e e e e e e e e e e e e e e e e

Figure 2. Making the C-intervals

Performance In the C-basic scheme, each user uk needs to keep at most C keys
and hence

SS(C-basic) = C.



8

Note that it is still enough for the center to keep only N keys

K0,0, K1,1, . . . , KN−1,N−1,

where N is the total number of users. The computation cost is negligible with C−1
computations of h, i.e.,

CC(C-basic) = C − 1.

Finally, the transmission overhead in the C-basic chain scheme can be computed
rather easily as follows :

Proposition 1. For N as above and the number r of all revoked users,

TO(C-basic) = r +

⌈

N − 2r

C

⌉

.

Proof. The maximum possible number of disjoint C-intervals in S(C-basic) to cover

all non-revoked users is r+dN−2r
C e. This happens when u1, u3, . . . , u2r−1 are revoked.

So, the proposition follows. ut

Let r > N+C
αC+2 for some α, 0 < α < 1. Then

⌈

N − 2r

C

⌉

<
N − 2r

C
+ 1 < αr

and hence
TO(C-basic) < r(1 + α) < 2r.

For example, if we set C = 1000 and α = 0.1, then we have

TO(C-basic) < 1.1r

provided that the revoked ratio r
N is bigger than 0.01. The C-basic chain scheme,

however, has bigger TO than SD when r
N is very small. Even if there is no revoked

user, the TO of this scheme is dN−2r
C e while that of SD is just 1.

2.4 Security

In this subsection, we give a security proof of both the basic chain scheme and the
C-basic chain scheme. We first prove a lemma.

Lemma 1. The user uk can compute Ki,j if and only if uk ∈ Ii,j, that is, i ≤ k ≤ j.

Proof. The necessity is obvious from the description of the schemes. Suppose uk /∈
Ii,j , that is, either k < i or j < k. If k < i, then no value in the key chain

Ki,i, Ki,i+1 = h(Ki,i), . . . , Ki,j = hj−i(Ki,i)

can be computed by uk and the probability of picking one of the keys above randomly
and computing Ki,j from it is same as that of picking Ki,j randomly. If j < k, then
uk cannot compute Ki,j because of one-wayness of h. This proves the sufficiency. ut
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The only way to compute the interval-key Ki,j of Ii,j is acquiring one of the keys
in the following key chain :

Ki,i, Ki,i+1, . . . , Ki,j−1, Ki,j .

For each k, i ≤ k ≤ j, the key Ki,k can be computed only by the users ui, ui+1, . . . ,
uk. Therefore, no user other than ui, ui+1, . . . , uj can compute any one of the keys
in the above chain. This implies, in particular, that even if all the revoked users
collude, they cannot recover the session-key.
Note that we may replace the one-way permutation h by a pseudo-random se-

quence generator because the collision-freeness is not required for the schemes to be
secure. Note also that user addition is almost free in the basic scheme as well as in
the C-basic scheme.

3 Skipping Chain and Punctured Intervals

In this section, we propose the skipping chain scheme that reduces the transmis-
sion overhead further down by introducing skipping chains on punctured intervals.
For example, using skipping chains on p-punctured intervals, we can reduce the
transmission overhead down to r

p+1 asymptotically as r grows, where p is a positive
integer. The skipping chain scheme is based on the C-basic chain scheme. In order
to make the number m of disjoint intervals I1, I2, . . . , Im, whose union covers all
non-revoked users, as small as possible, we have to enlarge S(C-basic). This is the
main reason for introducing the notion of punctured intervals and skipping chains
on them.

3.1 Punctured Intervals

Let p, c and C = `c be positive integers, where ` is also an integer, and fix them.
Here, C is the constant introduced in the C-basic chain scheme. By a p-punctured
c-interval we mean a subset of c or less consecutive users starting from and ending
at non-revoked users and containing p or less revoked users. Let S(c,p -skip) be the
set of all p-punctured c-intervals. Define

S(C; c,p -skip) := S(C-basic) ∪ S(c,p -skip).

In each session, the disjoint intervals in S(C; c,p -skip), which covers all non-revoked
users, are determined under the following rule :

• The first interval starts from the leftmost non-revoked user.
• Each interval starts and ends with non-revoked users.
• An interval with no revoked user may contain as many as C users.
• An interval with at least one revoked user may contain at most c users including
up to p revoked ones.

• Each interval contains the maximal possible number of users possibly including
revoked ones.
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µ ´ µ ´ µ ­́ª

Figure 3. 1-punctured 6-intervals

Figure 3 illustrates how to make p-punctured c-intervals with an example when
p = 1, c = 6 :

The interval in S(C; c,p -skip) starting from ui and ending at uj with ux1 , . . . , uxq
revoked users is denoted by Ii,j ;x1,...,xq or Ii,j ;X in short for X = {x1, . . . , xq}, where

{

1 ≤ j − i+ 1 ≤ C if X = ∅, or equivalently q = 0
1 ≤ j − i+ 1 ≤ c otherwise,

0 ≤ q ≤ p and i < x1 < · · · < xq < j if q 6= 0. When X = ∅, we simply write Ii,j .

3.2 Skipping Chain Scheme

In this subsection, we propose the skipping chain scheme with parameters C, c and p
(an improved version of π-scheme [13]) for broadcast encryption, which is denoted by
(C; c, p-skip). In the skipping chain scheme, we assign only one key to each interval
in S(C; c,p -skip), which can be derived exclusively by all non-revoked users in that
interval. To accomplish this, we construct key chains skipping revoked users.

Key Generation Let ht : {0, 1}
∗ → {0, 1}∗ be one-way permutations for each

t = 0, 1, . . . , p. To assign one key to each interval in S(C; c,p -skip), choose N keys
K1,1, K2,2, . . . , KN,N , randomly, to be given to u1, . . . , uN , respectively. From each
Ki,i, construct skipping key chains for all possible intervals in S(C; c,p -skip) starting
from ui. Let I ∈ S(C; c,p -skip) be such an interval. Then the skipping key chain for I
is constructed inductively under the following rule :

• The chain starts from Ki,i.
• For any non-revoked user uk ∈ I, if the next user uk+1 ∈ I is also non-revoked,
then just apply h0 to the key of uk to obtain the key of uk+1.

• If the next t users are revoked and the user uk+t+1 ∈ I is non-revoked, then skip
those revoked users and apply ht to the key of uk to obtain the key of uk+t+1,
where 1 ≤ t ≤ p.

The following figure illustrates how to construct the key chain of a given punctured
interval (with p = 10, c = 20) :

In the key chain for I = Ii,j ;x1,...,xq , the key of a non-revoked user uk ∈ I is
denoted by Ki,k ;x1,...,xt , where i < x1 < · · · < xt < k < xt+1 < · · · < xq and
0 ≤ t ≤ q ≤ p. When t = 0, we simply write Ki,k. For examples,

K5,11 = h6
0(K5,5) ; K5,11 ; 7 = h3

0h1h0(K5,5) ; K4,11 ; 5,6,7,9,10 = h2h3(K4,4) ;
K3,11 ; 4,5,7,8 = h2

0h
2
2(K3,3) ; K3,11 ; 4,5,6,7,9 = h0h1h4(K3,3) ; . . . .
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­ª
h0

µ ´
h3

µ ´
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­ª
h0

­ª
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µ ´
h1

µ ´
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±°
h0

­ª
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Figure 4. The key chain of a 10-punctured 20-interval

The center assigns these keys to users so that the user uk receives his/her user-key
K(uk) consisting of all possible Ki,k ;x1,...,xt ’s, where

{

i < x1 < x2 < · · · < xt < k and 3 ≤ k − i+ 1 ≤ c if 0 < t ≤ p
i ≤ k and 1 ≤ k − i+ 1 ≤ C if t = 0.

The following figure illustrates the key assignment to u5 in the skipping chain scheme
with p = 3 and c = C = 5 :

- - - - -

- -

- - -

- - - -

- -

- -

- - -

- -

no punctured

1-punctured

2-punctured

3-punctured

key chain for
assigned
to u5

I1,5

I1,5;4

I1,5;3

I1,5;2

I1,5;2,4

I1,5;3,4

I1,5;2,3

I1,5;2,3,4

K1,1 K1,2 K1,3 K1,4 K1,5

K1,5;4

K1,5;3K1,4;3

K1,5;2K1,4;2K1,3;2

K1,5;2,4

K1,5;3,4

K1,5;2,3K1,4;2,3

K1,5;2,3,4

h0 h0 h0 h0

h0

h0h0

h0

h1

h1

h1

h1

h2

h2

h3

Figure 5. One-way key chains starting from K1,1, where p = 3, c = C = 5

Encryption For each session, the center divides L into disjoint intervals I1, I2,
. . . , Im ∈ S(C; c,p -skip), whose union covers all the non-revoked users, under the rule
described in §3.1. Let I = Ii,j ;x1,...,xq be one of Iµ’s. Then the last key Ki,j ;x1,...,xq

of the key chain for I is the interval-key of I. For convenience, let’s denote the
interval-key of Iµ by Kµ for each µ = 1, 2 . . . ,m. Then the center broadcasts :

〈 info1, info2, . . . , infom ; EK1(SK), EK2(SK), . . . , EKm(SK) ; ESK(M) 〉,

where infoµ is information on Iµ. The info of I = Ii,j ;x1,...,xq consists of

i, γ0, γ1, . . . , γq,
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where γ0 = j − i + 1 and γt = xt − i for each t = 1, 2, . . . , q. The starting position
i can be represented by logN bits and the γ’s by at most logC bits. So the size of
all infoµ’s is m(logN + (p + 1) logC), which will be ignored when computing the
transmission overhead because it is negligible compared to the size of all EKµ(SK)’s.

Decryption Receiving the encrypted message, each non-revoked user uk first lo-
cates the interval where he/she belongs using the info’s in the header. Let the inter-
val be Ii,j ;x1,...,xq ∈ S(C; c,p -skip), where i ≤ k ≤ j, k 6= x1, . . . , xq. Then uk can find
Ki,j ;x1,...,xq as follows:

• Find t for which xt < k < xt+1, where 0 ≤ t ≤ q. Here, t = 0 and t = q mean
that there is no revoked user before and after uk, respectively.

• Choose Ki,k ;x1,...,xt from the assigned user-key.
• Starting from Ki,k ;x1,...,xt , apply one-way permutation hi’s under the rule de-
scribed in Key Generation until the second subscript reaches to j.

• The resulting key is then Ki,j ;x1,...,xq .

With this, uk decrypts EKi,j;x1,...,xq
(SK) and ESK(M) to obtain the session-key SK

and the message M , respectively, in order.

3.3 Performance

In this subsection, we analyze efficiency - the transmission overhead, the computa-
tion cost and the storage size - of the skipping chain scheme (C; c, p-skip), where
C = `c, ` ≥ 2 and c ≥ 4.
Let p = 1. For convenience, we regard any nonempty interval consisting of less

than c consecutive non-revoked users and one revoked user at the end also as a
1-punctured interval in S(C;c,1-skip). In order to compute the transmission overhead
in the worst case, we are going to introduce blocks. In general, a block of type B(a, b)
is an interval Iα,β starting from a non-revoked user uα, containing exactly a revoked
users and being covered by b subintervals in S(C;c,1-skip). In a block, we do not allow
revoked users between the neighboring subintervals in the block but allow at most
one revoked user at the end. The main purpose to introduce the notion of blocks is
to count the maximum number of disjoint subintervals in S(C;c,1-skip) necessary to
cover all non-revoked users as a function of r, the number of revoked users given.
In any given session of the skipping chain scheme (C; c, 1-skip), we can partition

the set L of all users into disjoint blocks of type B(2, 1), B(1, 1) and B(0, 1), and
revoked users in between. The worst case transmission overhead is attained when
each block is shortest of its type and there are no revoked users between blocks.
Except the last block, whose length may be smaller than the others of the same

type, any block of type B(2, 1) is of length at least 3, which is the length of the
interval of the form ◦××, any block of type B(1, 1) is of length at least c, which
is the length of a 1-punctured c-interval, and finally any block of type B(0, 1) is of
length at least C, which is the length of a C-interval.
Let x, y and z be the number of blocks of types B(2, 1), B(1, 1) and B(0, 1),

respectively. Then we obtain :

2x+ y = r, N ≥ 3x+ cy + Cz and TO = x+ y + z,
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where r is the number of revoked users. To maximize TO, we need to reduce x as
small as possible. When 0 ≤ r ≤ N

c , the worst case occurs when x = 0. In this case,
we have y = r and therefore we may put

TO ≤ r +
N − cr

C
=
(

1−
c

C

)

r +
N

C
.

This is the line connecting (0, NC ) and (
N
c ,

N
c ).

If N
c ≤ r ≤ 2N

3 , x cannot be zero. But we may assume z = 0 in the worst
case because x, y and z, when z 6= 0, can be replaced by x − 1, y + 2, z − 1 while
maintaining the same TO. Since x = r−y

2 , y =
2N−3r
2c−3 and therefore

TO =
r + y

2
=
r

2
+
2N − 3r

2(2c− 3)
=

(

1

2
−

3

2(2c− 3)

)

r +
N

2c− 3
.

This is the line connecting (Nc ,
N
c ) and (

2N
3 ,

N
3 ).

Proposition 2. In the skipping chain scheme (C; c, 1-skip) with C = `c, ` ≥ 2 and
c ≥ 4,

TO(C; c,1-skip) =











(

1−
c

C

)

r +
N

C
if 0 ≤ r ≤

N

c
(

1

2
−

1 · 3

2(2c− 3)

)

r +
1 · 2

2(2c− 3)
N if

N

c
≤ r ≤

2N

3
.

In general,

TO(C; c,p -skip) =











(

1−
c

C

)

r +
N

C
if 0 ≤ r ≤

N

c
(

1

p+ 1
−
p(p+ 2)

Dp

)

r +
p(p+ 1)

Dp
N if

N

c
≤ r ≤

(p+ 1)N

p+ 2
,

where Dp = (p+ 1)
2c− (p+ 1)(p+ 2).

Proof. For the scheme (C; c, p-skip), we replace ◦×× in the scheme (C; c, 1-skip)
by ◦× × · · ·× of length p + 2. Let x, y and z be the number of blocks of types
B(p, 1), B(1, 1) and B(0, 1), respectively. Then each type of blocks has length at
least (p+ 1), c and C, respectively. So we obtain the system of equations

(p+ 1)x+ y = r, N ≥ (p+ 2)x+ cy + Cz and TO = x+ y + z.

By solving the system, we obtain the formula TO(C; c,p -skip). ut

It is trivial that the computation cost is at most C − 1 computations of one-way
permutations, that is,

CC(C; c,p -skip) = C − 1,

which is independent of N and r.

Proposition 3. The storage size of each user in the scheme (C; c, 1-skip) is

SS(C; c,p -skip) =

p
∑

k=1

(

c− 1

k + 1

)

+ C,

which is independent of N and r.
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Proof. We count the number of keys of the form Ki,k;X for the user uk. Let νs denote
the number of keys of the form Ki,k;X with |X| = s. It is obvious that ν0 = C. For
ν1, it suffices to count the number of keys from 1-skipping key chains of length c,
which is c− 2, the number of keys from 1-skipping key chains of length c− 1, which
is c− 3, . . . , the number of keys from 1-skipping key chains of length 3, which is 1.
That is,

ν1 = (c− 2) + (c− 3) + · · ·+ 1 =
(c− 1)(c− 2)

2
=

(

c− 1

2

)

.

Similarly, we obtain

ν2 =

(

c− 2

2

)

+

(

c− 3

2

)

+ · · ·+

(

2

2

)

=
(c− 1)(c− 2)(c− 3)

6
=

(

c− 1

3

)

,

and in general

νp =

(

c− 2

p

)

+

(

c− 3

p

)

+ · · ·+

(

p

p

)

=
1

(p+ 1)!

p+1
∏

t=1

(c− t) =

(

c− 1

p+ 1

)

.

Therefore the storage size of the scheme (C; c, p-skip) is

SS(C; c,p -skip) =

p
∑

k=0

νk =

p
∑

k=1

(

c− 1

k + 1

)

+ C.

In other words, we have SS(C; c,p -skip) = O(cp+1). ut

For example, let c = 100, C = 1000 and p = 10. Then for r ≥ 0.1

TO(1000 ; 100,10 -skip) ≤
r

10
.

This is amazing but we have to pay the price : the storage size increases exponentially
with p. This scheme, however, can be fit in to various broadcast environments by
adjusting the parameters C, c and p. If a user device allows a large key storage like
set-top boxes and DVD players, then we may take p and C as large as possible to
reduce the transmission overhead, which is much more expensive. If a user device
has limited storage and computing power like smart cards and sensors, then we may
set p and c as small as possible. User addition is also almost free in the skipping
chain scheme. Finally, note that if p = 0, then we don’t need the parameter c and
the scheme (C; c, p-skip) becomes the C-basic chain scheme.

4 Cascade Chain and Layers

Although the skipping chain scheme performs marvellous (in terms of transmis-
sion overhead) when r is not too small, the scheme has a shortcoming in that the
transmission overhead is larger than that of SD when r is very small. This is mainly
because long intervals (of length bigger than C) consisting of only non-revoked users
require several intervals in S(C; c,p -skip) to cover them while covering no revoked users
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at all. In fact, the C-basic chain scheme shares the same problem. In this section, we
propose another scheme, called the cascade chain scheme, that resolves this problem
by introducing layer structure and cascade key chains flowing along the layers. The
cascade chain scheme is also based on C-basic chain scheme and successfully reduces
the transmission overhead when r is very small.

4.1 Layers and Special Nodes

The key idea is to restrict the starting points or the ending points of long intervals
to be special nodes (users) on top of the C-basic chain scheme.

Layer Structure Let c be a positive integer satisfying C = `c for some positive
integer `, as in the the skipping chain scheme. The special nodes are defined as
follows : Starting from the leftmost user u0, the user set

R1 := {u0, uc, u2c, u3c, u4c, . . . }

is called the first right layer and the users in the set are called the first right layer
nodes and

L1 := {uc−1, u2c−1, u3c−1, . . . }

is called the first left layer and the users in the set are called the first left layer
nodes. Inductively for positive integer t ≤ dlogcNe − 1, the user set

Rt := {u0, uct , u2ct , u3ct , u4ct , . . . }

is called the t-th right layer and the users in the set are called the t-th right layer

nodes and
Lt := {uct−1, u2ct−1, u3ct−1, . . . }

is called the t-th left layer and the users in the set are called the t-th left layer nodes.
By the t-th layer, denoted by U t, we mean

U t := Lt ∪Rt.

Note that

R1 ⊃ R2 ⊃ · · · ⊃ Rt ⊃ · · · and L1 ⊃ L2 ⊃ · · · ⊃ Lt ⊃ · · · .

For convenience, we call the base line L, which is the set of all users, the ground
layer, denoted by U 0. We call an interval Iα,β starting from a t-th right layer node
a t-th right cascade interval and an interval ending at a t-th left layer node a t-th
left cascade interval. A t-th right (or left) cascade interval can cover at most ct+1

nodes.
Let S(c -casc) be the set of all intervals of the following types :

• t-th right cascade intervals Iρ,β with max{C, c
t} < β − ρ + 1 ≤ ct+1 for all

t = 1, 2 . . . , d.
• t-th left cascade intervals Iα,λ with max{C, c

t} < λ − α + 1 ≤ ct+1 for all
t = 1, 2 . . . , d.

Defines
S(C; c -casc) := S(C-basic) ∪ S(c -casc).
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Partitioning Algorithm Using the layer structure, we can cover any set of con-
secutive non-revoked users by one or two intervals. As before, let N be the total
number of users lined up on the ground layer L. For convenience, we assume that
N = cd+1 for some positive integer d. For each user u, we define the height of u,
denoted by ht(u), by the index t for which u ∈ U t but u /∈ U t+1. For an integer
e, 0 ≤ e ≤ N − 1, let

e = e0 + e1c+ · · ·+ ed−1c
d−1 + edc

d =: [e0, e1, · · · , ed]

be the c-ary expansion of e, where 0 ≤ et < c for all t = 0, 1, . . . , d. Then right layer
nodes and left layer nodes can be described as follows : the e-th node in L is a t-th
right layer node if and only if

e0 = e1 = · · · = et−1 = 0,

and a t-th left layer node if and only if

e0 = e1 = · · · = et−1 = c− 1.

Now we describe the partitioning algorithm by which each interval consisting
of consecutive non-revoked users can be partitioned into at most two subintervals.
Recall that the interval Iα,β starts from uα and ends at uβ . Let ω = ht(uα). We first
compare the length of the interval β−α+1 with C. If the length is shorter than or
equal to C, then we don’t partition the interval. Otherwise, we find the highest right
layer Rt containing at least two nodes in the interval. If t > ω, then partition the
interval into one left cascade interval of maximal possible length starting from uα
and the rest, if any, which make one right cascade interval. If t = ω, then partition
the interval into one or two right cascade intervals according to its length. If t < ω,
then we don’t partition the interval because the interval itself is a right cascade
interval.
To be more precise, let α = [α0, α1, · · · , αd] and β = [β0, β1, · · · , βd]. Let ω be

the smallest integer satisfying αω 6= 0, i.e., ω = ht(uα). If there is no such ω, that
is, if α = 0, then we set ω = d. Let j be the largest integer satisfying αj 6= βj , i.e.,
β − α+ 1 ≤ cj+1. Then we partition Iα,β in the following order :

• Step 1 : If β − α + 1 ≤ C, i.e., Iα,β is a C-interval, then do not partition the
interval because Iα,β ∈ S(C-basic). If β − α+ 1 > C, then go to Step 2.

• Step 2 : Find the largest integer t > ω, if exists, such that

j
∑

i=t

βic
i−t >

j
∑

i=t

αic
i−t + 1.

Let α′ :=
∑j

i=t αic
i−t and β′ :=

∑j
i=t βic

i−t. Then, partition Iα,β into Iα,λ and
Iλ+1,β if λ 6= β, and do not partition the interval otherwise, where

λ :=























d
∑

i=t

βic
i − 1 if α′ + 2 ≤ β′ < α′ + c

d
∑

i=t

αic
i + ct+1 − 1 if α′ + c ≤ β′ < α′ + 2c.
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Note that Iα,λ is a t-th left cascade interval and that Iλ+1,β is a t-th right cascade
interval. So, both are in S(c -casc). If there is no such t, then go to Step 3.

• Step 3 : Find the largest t such that 1 ≤ t ≤ ω and

j
∑

i=t

βic
i−t >

j
∑

i=t

αic
i−t + 1.

Because β − α + 1 > C = `c, such t should exist. Let α′′ :=
∑j

i=ω αic
i−ω and

β′′ :=
∑j

i=ω βic
i−ω. If t = ω and α′′ + c ≤ β′′ < α′′ + 2c, then partition Iα,β into

Iα,ρ−1 and Iρ,β if ρ 6= β + 1, and do not partition the interval otherwise, where

ρ :=
d
∑

i=ω

αic
i + cω+1.

Note that both Iα,ρ−1 and Iρ,β are t-th right cascade intervals and hence in
S(c -casc). If t = ω and α′′ + 1 ≤ β′′ < α′′ + c, or if 1 ≤ t < ω, then do not
partition the interval because Iα,β as a t-th right cascade interval and hence
Iα,β ∈ S(c -casc).

4.2 Cascade Chain Scheme

In this subsection, we propose the cascade chain scheme with parameters C and
c, denoted by (C; c-casc), based on the C-basic chain scheme. The scheme reduces
transmission overhead when r is very small by adopting right and left cascade-keys
which are the corresponding left and right cascade interval-keys, respectively.

Key Generation In this scheme, the center assigns each user all possible right
section-keys and left section-keys in addition to his/her user-key of the C-basic
chain scheme.
For each t, 0 < t ≤ d and for each ρ = [ρ0, ρ1, . . . , ρd−1, ρd] satisfying

ρ0 = ρ1 = · · · = ρt−1 = 0,

we define RI
(t)
ρ by the set of consecutive ct users starting from uρ ∈ Rt, that is

RI
(t)
ρ = Iρ,ρ+ct−1, and call such an interval a right section. For convenience, we

set RI
(0)
ρ = {uρ}. Let gt : {0, 1}

∗ → {0, 1}∗ be one-way permutations for each
t = 1, 2, . . . , d and let g0 = h0.

Choose a random key RK
(t)
ρ to RI

(t)
ρ for each ρ and t. First, the center constructs

the t-th right cascade key chain from RK
(t)
ρ of length c as follows :

g0
t (RK

(t)
ρ ) := RK(t)

ρ , g1
t (RK

(t)
ρ ), g

2
t (RK

(t)
ρ ), . . . , gc−1

t (RK(t)
ρ ),

and assigns

gjt (RK
(t)
ρ ) to all users of RI

(t)
ρ+jct

for each j = 0, 1, . . . , c−1. Next, for each j the center constructs the (t−1)-th right

cascade key chain from gjt (RK
(t)
ρ ) of length c as follows:

g1
t−1(g

j
t (RK

(t)
ρ )), g

2
t−1(g

j
t (RK

(t)
ρ )), . . . , gct−1(g

j
t (RK

(t)
ρ )),
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and assigns

git−1(g
j
t (RK

(t)
ρ )) to all users of RI

(t−1)
ρ+jct+(i−1)ct−1

for each i = 1, 2, . . . , c.
The (t − 2)-th right cascade key chains are constructed from each key (except

the last) in the t-th and (t − 1)-th right cascade key chains. For each j and k,
0 ≤ j ≤ c− 2 and 0 ≤ k ≤ c− 1, the center constructs the (t− 2)-th right cascade

key chain from gkt−1(g
j
t (RK

(t)
ρ )) of length c as follows:

g1
t−2(g

k
t−1(g

j
t (RK

(t)
ρ ))), g

2
t−2(g

k
t−1(g

j
t (RK

(t)
ρ ))), . . . , g

c
t−2(g

k
t−1(g

j
t (RK

(t)
ρ ))),

and assigns git−2(g
k
t−1(g

j
t (RK

(t)
ρ ))) to all users of RI

(t−2)
ρ+jct+kct−1+(i−1)ct−2 for each

i = 1, 2, . . . , c.
This process ends when it hits the ground layer. These keys to be assigned to a

right section RI
(t)
ρ are called the right section-keys of RK

(t)
ρ .

Let Iρ,β be a right cascade interval and c
t < β − ρ + 1 ≤ ct+1. Then we define

the right cascade-key RK
(t)
ρ,β corresponding to Iρ,β as follows :

RK
(t)
ρ,β = he00 g

e1
1 · · · g

et−1
t (RK(t)

ρ ),

where β − ρ + 1 − ct = [e0, e1, . . . , et]. The right cascade key RK
(t)
ρ,β is the induced

key from a right section key of RK
(t)
ρ .

Each user uκ receives RK
(t)
ρ,κ’s for all possible ρ’s and t’s. Moreover, for each s

with 1 ≤ s ≤ t, all possible RK
(t)
ρ,κs ’s are also assigned to uκ, where κs = b

κ
cs+1cc

s−1.

Therefore, each user uκ eventually receives all the keys corresponding to all RI
(t)
ρ ’s

containing uκ. These are the right section-keys. From these keys, each non-revoked

user in Iρ,β can compute RK
(t)
ρ,β .

Left cascade-keys are constructed in a similar process. For each t, 0 < t ≤ d and
for each λ = [λ 0, λ 1, . . . , λ d−1, λ d] satisfying

λ 0 = λ 1 = · · · = λ t−1 = c− 1,

we define LI
(t)
λ by the set of consecutive ct users ending at uλ ∈ Lt, that is, LI

(t)
λ =

Iλ−ct+1,λ, and call such an interval a left section. For convenience, we set LI
(0)
λ =

{uλ}.

Choose a random key LK
(t)
λ to LI

(t)
λ for each λ and t. First, the center constructs

the t-th left cascade key chain from LK
(t)
λ of length c as follows :

g0
t (LK

(t)
λ ) := LK

(t)
λ , g1

t (LK
(t)
λ ), g

2
t (LK

(t)
λ ), . . . , gc−1

t (LK
(t)
λ ),

and assigns

gjt (LK
(t)
λ ) to all users of LI

(t)
λ−jct

for each j = 0, 1, . . . , c− 1. Next, for each j the center constructs the (t− 1)-th left

cascade key chain from gjt (LK
(t)
λ ) of length c as follows:

g1
t−1(g

j
t (LK

(t)
λ )), g

2
t−1(g

j
t (LK

(t)
λ )), . . . , gct−1(g

j
t (LK

(t)
λ )),
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and assigns

git−1(g
j
t (LK

(t)
λ )) to all users of LI

(t−1)
λ−jct−(i−1)ct−1

for each i = 1, 2, . . . , c. This process ends when it hits the ground layer. These keys

to be assigned to a left section LI
(t)
λ are called the left section-keys of LK

(t)
λ .

Let Iα,λ be a left cascade interval and c
t < λ−α+1 ≤ ct+1. Then we define the

left cascade-key LK
(t)
α,λ corresponding to Iα,λ as follows :

LK
(t)
α,λ = he00 g

e1
1 · · · g

et−1
t (LK

(t)
λ ),

where λ− α+ 1− ct = [e0, e1, . . . , et].

Each user uκ receives LK
(t)
κ,λ’s for all possible λ’s and t’s. Moreover, for each s

with 1 ≤ s ≤ t, all possible LK
(t)
κs,λ
’s are also assigned to uκ, where κs = b

κ
cs+1cc

s−1.

Therefore, each user uκ eventually receives all the keys corresponding to all LI
(t)
λ ’s

containing uκ. These are the left section-keys.
Altogether, each user is assigned at most

2
d
∑

t=1

{(c− 1)(t+ 1)}+ C = d(d+ 3)(c− 1) + C

keys. The detail is discussed in §4.3.

Encryption and Decryption Encryption and decryption are basically the same as
in the C-basic chain scheme except that right and left cascade-keys are introduced.
In each session, the disjoint intervals in S(C; c -casc), which covers all non-revoked
users, are determined under the following rule :

• Starting from the leftmost non-revoked user, find all disjoint intervals as in the
basic scheme.

• To each such interval we apply the partitioning algorithm above to obtain at
most two intervals in S(C; c -casc).

The center then encrypts the session-key for each interval obtained in this way.
In encryption, the interval-keys, same as in the C-basic chain scheme, are used for
C-intervals, while the cascade-keys are used for cascade intervals.
If user uκ belongs to a C-interval, then uκ can decrypt the session key and

the message as in the C-basic chain scheme. Let uκ belong to a t-th right cascade
interval Iρ,β , where β− ρ+1− c

t = [e0, e1, . . . , et]. Recall that the right cascade-key

corresponding to Iρ,β is RK
(t)
ρ,β = he00 g

e1
1 · · · g

et−1
t (RK

(t)
ρ ). If κ − ρ + 1 < ct, then

uk knows RK
(t)
ρ from his/her user-key. So uk can compute the right cascade-key

RK
(t)
ρ,β . Otherwise, let κ−ρ+1− c

t = [a0, a1, . . . , at]. Then uκ finds the largest s for

which as < es and takes g
as
s g

es+1

s+1 · · · g
et−1
t (RK

(t)
ρ ) from his/her user-key. Applying

he00 g
e1
1 · · · g

es−as
s to this key, uκ obtains

he00 g
e1
1 · · · g

es
s · · · g

et−1
t (RK(t)

ρ ),
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which is the valid cascade-key RK
(t)
ρ,β . Finally, let uκ belong to a t-th left cascade

interval Iα,λ, where λ − α + 1 − ct = [e0, e1, . . . , et]. Recall that the left cascade-

key corresponding to Iα,λ is LK
(t)
α,λ = he00 g

e1
1 · · · g

et−1
t (LK

(t)
λ ). If λ − κ + 1 < ct,

then uk knows LK
(t)
λ from his/her user-key. So uk can compute the left cascade-key

LK
(t)
α,λ. Otherwise, let λ−κ+1− c

t = [b0, b1, . . . , bt]. Then uκ finds the largest s for

which bs < es and takes g
bs
s g

es+1

s+1 · · · g
et−1
t (LK

(t)
λ ) from his/her user-key. Applying

he00 g
e1
1 · · · g

es−bs
s to this key, uκ obtains

he00 g
e1
1 · · · g

es
s · · · g

et−1
t (LK

(t)
λ ),

which is the valid cascade-key LK
(t)
α,λ.

4.3 Performance

In this subsection, we analyze efficiency - the transmission overhead, the computa-
tion cost and the storage size - of the cascade chain scheme with parameters c and
C = `c.

Transmission Overhead We can easily bound the transmission overhead by 2r
since each interval between two revoked users can be covered by at most two disjoint
subintervals in S(C; c -casc). But we can do better.
It is clear that in any given session of the cascade chain scheme (C; c-casc),

we can partition the set L of all users into disjoint blocks of types B(1, 1) and
B(1, 2), whose minimum lengths are 2 and C + 2, respectively, the last interval of
the non-revoked users possibly remained in the end, and revoked users in between.
Here, B(1, 1) is a block consisting of a subintervals in S(C; c -casc) and a revoked
user following immediately, and B(1, 2) is a block consisting of two subintervals in
S(C; c -casc) and a revoked user following immediately. The minimum length of B(1, 1)
is attained by the block ◦× and the minimum length of B(1, 2) is attained by the
block consisting of a C-interval followed by ◦×, where the first non-revoked user
of the block is not in R1 and the last non-revoked user of the block is not in L1.
Because we are considering the worst case, we may assume that no revoked users
are consecutive, that is, there are no revoked users between blocks. We may further
assume that the first and the last users are non-revoked.
Let x and y be the numbers of blocks of types B(1, 1) and B(1, 2), respectively.

Then we have

x+ y = r and N ≥ 2x+ (C + 2)y + 1 = 2r + Cy + 1,

which implies TO = x+ 2y + 1 = r + y + 1 ≤ r + N−2r−1
C + 1 ≤ (1− 2

C )r +
N
C + 1.

Hence, if r = s1 :=
N

C+2 , then TO = 2s1 + 1. But this is an upper bound and the

real TO should be 2s1. If r = s2 :=
N
2 , then TO = s2 + 1. So we may put

TO(C; c -casc) =











2s1 − 1

s1
r + 1 if 0 ≤ r ≤ s1

s2 − 2s1 + 1

s2 − s1
r +

s1(s2 − 1)

s2 − s1
if s1 ≤ r ≤ s2.
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The graph is piecewise linear and consists of two line segments. One is the line
connecting (0, 1) and (s1, 2s1) whose slope is close to 2, and the other is the line
connecting (s1, 2s1) and (s2, s2 + 1) whose slope is close to 1. Note that if take
C = 1000, then the revoked ratio r/N when r = s1 is about 0.001.

Storage Size To compute the storage size of the cascade chain scheme is rather
complicated. But we can do it by counting the right section-keys for each user.

Proposition 4.

SS(C; c -casc) = 2
d
∑

t=1

(t+ 1)(c− 1) + C = d(d+ 3)(c− 1) + C.

Proof. Let κ = [κ0, κ1, . . . , κd], where 0 ≤ κi < c. Then the user uκ receives every
right section-key assigned to the right sections

RI
(d)

κdcd
, RI

(d−1)

κdcd+κd−1cd−1 , . . . , RI
(1)

κdcd+···κ1c
, RI

(0)

κdcd+···κ1c+κ0
.

At most c−1 right section-keys from d-th layer are assigned to the section RI
(d)

κdcd
. To

RI
(d−1)

κdcd+κd−1cd−1 , two kinds right section-keys are assigned : at most c−1 right section-

keys cascading from d-th layer right section-keys and at most c−1 right section-keys
from (d−1)-th layer. So, at most 2(c−1) right section-keys are assigned to the section

RI
(d−1)

κdcd+κd−1cd−1 . In general, at most (d− t+1)(c−1) right section-keys are assigned

to the section RI
(t)

κdcd+···κtct
unless t = 0, in which case the maximum number of

right section-keys assigned is d(c − 1). So altogether,
∑d−1

t=0 (t + 1)(c − 1) + d =
∑d

t=1(t+ 1)(c− 1) right section-keys are assigned to uκ. Since the same number of
left section-keys are also assigned, we have the formula in the proposition, where C
is the number of C-interval keys on the ground layer coming from the C-basic chain
scheme. ut

If we take c = 100, C = 1000 and d = 4 (so ` = 10, N = 100 billion), then the
storage size is mere 3.8C.

Computation Cost For a C-interval, at most C − 1 computations of h0 are re-
quired. For a t-th right cascade interval, (t+1)(c−1) computations of gt, gt−1, . . . , g0
are required. The same holds for a t-th left cascade interval. So,

CC(C; c -casc) = max{ (d+ 1)(c− 1), C − 1 }.

Since ` > d+ 1 in most cases, the computation cost is bounded by C − 1.

4.4 Remark

If we adopt left cascade key chains, then user addition is not easy because new
left cascade keys from the newly added users should be assigned to the current
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users. However, if we use only right cascade key chains, then user addition as in
the previous schemes is available. In this case, the storage overhead is reduced to
d(d+3)(c−1)/2+C and the computational cost remains the same. The transmission
overhead also remains unchanged when r > s1, but it increases when r ≤ s1. More
precisely, the graph of the transmission overhead is piecewise linear passing through
(ct + ct−1, (d− t+ 2)r + 1) for t = 1, 2, . . . , d− 1 and (s1, 2r + 1).

5 Skipping and Cascade Combined

In this section, we combine the skipping chain scheme and the cascade chain scheme.
The skipping chain scheme reduces the transmission overhead remarkably when r is
not very small while the cascade chain scheme performs comparable to SD (in the
transmission overhead) when r is very small. Combining the two schemes, we reduce
the transmission overhead even further down for very small r.

5.1 Combined Chain Scheme

The combined chain scheme adopts punctured intervals and skipping chains on top
of the cascade chain scheme. To be more precise, let C, c and p be the parameters
introduced in the skipping chain scheme as well as in the cascade chain scheme. For
the combined chain scheme with these parameters, denoted by (C; c, p-comb), we
enlarge S(C; c -casc) to

S(C; c,p -comb) := S(C; c -casc) ∪ S(C; c,p -skip) = S(C-basic) ∪ S(c -casc) ∪ S(c,p -skip).

Since S(C; c -casc) ⊂ S(C; c,p -comb), one can make the number of disjoint subintervals
in S(C; c,p -comb), whose union covers all non-revoked users, not bigger than that of
disjoint subintervals in S(C; c -casc), whose union also covers all non-revoked users, in
any given session. Thus, it is obvious that the transmission overhead of the combined
chain scheme is less than or equal to that of the cascade chain scheme. In order to
avoid unnecessary complication, we describe the scheme for p = 1 only.

Partitioning Algorithm The partitioning algorithm of intervals in the com-
bined chain scheme is basically the same as that in the cascade chain scheme.
But additional steps are necessary to take care of punctured intervals. Note that
(1−)punctured c-intervals are included in S(C; c,1 -comb). This partitioning algorithm
can cover a set of consecutive users including at most one revoked user with at most
4 subintervals in S(C; c,1 -comb).
Starting from the leftmost non-revoked user, we find two revoked users uγ and

uβ+1. If γ = β or γ ≥ α + C + c, partition Iα,γ−1 according to the partitioning
algorithm of the cascade scheme in §3.3, respectively. If β > γ and γ < α + C +
c, then we apply the following algorithm to Iα,β;γ to find the left most interval
in S(C; c,1 -comb). Then we reset α, γ, and β + 1, and repeat the process. In the
following algorithm, we denote by α0 and γ0 the first digits of α and γ in their c-ary
representation, respectively.

• Step 1 : If β − α + 1 ≤ c, do not partition the interval as Iα,β ; γ ∈ S(c,1 -skip). If
β − α+ 1 > c, then go to Step 2.
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• Step 2 : If γ < α+ c− 1 then take







Iα,α−α0+c−1 ; γ if γ < α− α0 + c− 1 and β ≥ α+ 2c
Iα,γ−1 if γ = α− α0 + c− 1 and β ≥ α+ 2c
Iα,α+c−1 ; γ if γ > α− α0 + c− 1 or β < α+ 2c

as one partition. Note that Iα,α−α0+c−1;γ , Iα,α+c−1;γ ∈ S(c,1 -skip) and Iα,γ−1 ∈
S(C-basic). If γ ≥ α+ c− 1, then go to Step 3.

• Step 3 : If α+ c− 1 ≤ γ < α+ C + c, then take







Iα,α−α0+C+c−1 ; γ if γ < α− α0 + C + c− 1 and γ ≥ α+ C
Iα,γ−1 if α0 = 0, γ0 = 0 or γ ≤ α+ C
Iα,α+C−1 ; γ otherwise

as one partition.

In the above algorithm, at each step, we take the interval in S(C; c,1 -comb) of
maximum possible length except for the following case:

γ < α− α0 + c− 1 and β ≥ α+ 2c,

in which case we take Iα,α−α0+c−1;γ instead of Iα,α+c−1;γ to use a right cascade
interval next time.
Under this algorithm, it is clear that Iα,β+1 ; γ can partitioned into at most four

subintervals.

Key Generation Each user is assigned all keys from key chains of three types : C-
basic chains, skipping chains of length at most c and right/left cascade chains. The
key generation for the three types of key chains are exactly the same as described
in §2.3, §3.2 and §4.2, respectively.

Encryption and Decryption Encryption and decryption are basically the same
as in the cascade chain scheme except that 1-punctured interval-keys are introduced.
In each session, the disjoint intervals in S(C; c,1 -comb), which covers all non-revoked
users, are determined under the following rule :

• The first interval starts from the leftmost non-revoked user and each of the
following intervals start from the first non-revoked user, say uα, after the previous
interval.

• If the first revoked user uγ after uα is followed by another revoked user uγ+1,
then partition Iα,γ−1 into at most two subintervals in S(c -casc) ⊂ S(C; c,1 -comb).

• If the first revoked user uγ after uα is followed by a non-revoked user, then take
the subinterval in S(C; c,1 -comb) from Iα,β ; γ as described in the above algorithm,
where uβ+1 is the next revoked user after uγ .

Once the center determines these disjoint intervals, the rest of encryption and de-
cryption process is just the combination of those of the cascade chain scheme and
the skipping chain scheme.
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5.2 Performance

In this subsection, we analyze efficiency - the transmission overhead, the computa-
tion cost and the storage size - of the combined chain scheme (C; c, 1-comb), where
C = `c.

Transmission Overhead It is clear that the transmission overhead of the com-
bined chain scheme is bounded above by 2r, which is an upper bound of the trans-
mission overhead of the cascade chain scheme, when r > 0. We prove that the
transmission overhead reduces to roughly 3r

2 , to r, and then eventually to
r
2 as r

grows, which is an upper bound of the transmission overhead of the skipping chain
scheme with p = 1. (For general p, the transmission overhead reduces to r

p+1 as r
grows.) In order to prove this, we introduce several types of blocks. In the following,
we regard, for convenience, any interval consisting of less than c consecutive non-
revoked users and one revoked user at the end also as a 1-punctured interval and
include such intervals in S(C; c,1 -comb) as we did in §3.3. A block of type B(a, b) in
the combined chain scheme (C; c, 1-comb) consists of b intervals in S(C; c,1 -comb) and
possibly a revoked user at the end, containing a revoked users altogether.

• B(2, 4) : a block consisting of 4 intervals in S(C; c,1 -comb) containing 2 revoked
users.

• B(2, 3) : a block consisting of 3 intervals in S(C; c,1 -comb) containing 2 revoked
users.

• B(1, 1) : a block consisting of a 1-punctured interval in S(C; c,1 -comb) or a non-
punctured interval in S(C; c,1 -comb) followed by a revoked user.

• B(2, 1) : a block consisting of a 1-punctured interval in S(C; c,1 -comb) and another
revoked user at the end.

• B(3, 4) : a block consisting of 4 intervals in S(C; c,1 -comb) containing 2 revoked
users and one more at the end.

• B(3, 3) : a block consisting of 3 intervals in S(C; c,1 -comb) containing 2 revoked
users and one more at the end.

• B(2, 2) : a block consisting of 2 intervals in S(C; c,1 -comb) containing a revoked
users and one more at the end.

In any given session, we can partition the set L of all users into disjoint blocks
of the above types and possibly another block of type B(0, 1), B(1, 2) or B(1, 3) in
the end, together with those revoked users located between the blocks. Since our
purpose is to compute the transmission overhead in the worst case, we may assume
that there are no revoked users between the blocks. One may wonder why we allow
B(0, 1), B(1, 2) and B(1, 3) to appear only in the end. The reason is simple. For
example, the minimum length of B(1, 2) is C + 2, which is attained by a C-interval
followed by ◦×. This yields the transmission overhead 2r for 0 < r ≤ N

C+2 . But
this type of blocks cannot be neighbors as we can see later. So if we look at B(2, 4)
instead of two B(1, 2), then we can improve the bound of the transmission overhead
because the minimum length of B(2, 4) is c2 + C + c + 2, which is much longer
than 2(C + 2). In this way, we can prove that the transmission overhead is 2r for
0 < r ≤ 2N

c2+C+c+2
and 3r

2 for
2N

c2+C+c+2
< r ≤ 2N

C+2c .
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The disjoint blocks can be determined uniquely according the following algo-
rithm :

• Step 1 : Using the partitioning algorithm described in the previous subsection,
find disjoint subintervals I ′1, I

′
2, . . . , I

′
m ∈ S(C; c,1 -comb) whose union covers all

non-revoked users. Note that we enlarged S(C; c,1 -comb) by inserting all those
intervals each of which consists of less than c consecutive non-revoked users and
one revoked user at the end. For each I ′j , we define Ij by including the first
revoked user immediately following, if exists.

• Step 2 : Set µ = 0, b1 = b2 = · · · = b7 = 0, where b1, b2, . . . , b7 denote the num-
bers of B(2, 4), B(2, 3), B(1, 1), B(2, 1), B(3, 4), B(3, 3) and B(2, 2), respectively.
Here µ represents the index of the disjoint subintervals I1, I2, . . . , Im.

• Step 3 : Set r = 0, I = ∅ and i = 0. Here r is the number of revoked users and i
is the number of subintervals in current block I.

• Step 4 : µ← µ+1. If µ ≤ m, then I ← I∪Iµ, i← i+1 and compute the number
r of the revoked users in I. Otherwise goto Step 6

• Step 5 : Case 1: i = 1
If r = 0 then goto Step 4.
If r = 1 then b3 = b3 + 1 and goto Step 3.
If r = 2 then b4 = b4 + 1 and goto Step 3.

Case 2: i = 2 (in this case r 6= 0 because B(0, 2) cannot exist.)
If r = 1 then goto Step 4.
If r = 2 then b7 = b7 + 1 and goto Step 3.

Case 3: i = 3
If r = 1 then goto Step 4.
If r = 2 then b2 = b2 + 1 and goto Step 3.
If r = 3 then b6 = b6 + 1 and goto Step 3.

Case 4: i = 4 (in this case r 6= 1 because B(1,4) cannot exist.)
If r = 2 then b1 = b1 + 1 and goto Step 3.
If r = 3 then b5 = b5 + 1 and goto Step 3.

• Step 6 : If r = 0 then B(0, 1) is left.
If r = 1 and i = 2 then B(1, 2) is left.
If r = 1 and i = 3 then B(1, 3) is left.

Note that above algorithm covers all possible cases because each subinterval has
0,1, or 2 revoked users. Roughly speaking, the algorithm first checks whether a
given interval I = I1 is a block of the above types. If yes, then the algorithm resets
I ← I2 ; and if not, then it resets I ← I ∪ I2. The algorithm then checks the same
for the new I. If yes, then the algorithm resets I ← I3 ; and if not, then it resets
I ← I ∪ I3. The algorithm then checks the same for the new I, and so on.

In the following, we determine the shortest length for each type of the blocks
described above. To this end, we first introduce two types of intervals, named T1
and T2.

• T1 : Iα,β ; γ with uα /∈ U1 such that C + 2 ≤ |Iα,β ; γ | ≤ C + c and

α+ C < γ ≤ λ ≤ β < α+ C + c,

where λ := α+C+c−α0−1 and α0 is the first c-ary digit of α. So T1 consists of a
C-interval followed by a 1-punctured interval. Note that uλ ∈ L1 and uλ+1 ∈ R1.
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• T2 : Iρ,σ ; δ with uρ ∈ R1 and c
2 + 2 ≤ |Iρ,σ ; δ| ≤ c2 + c such that

ρ+ c2 < δ ≤ σ < ρ+ c2 + c.

So, T2 consists of a long interval Iρ,ρ+c2−1 of length c
2 followed by a 1-punctured

interval.

Consider T1 ∪ T2, where T1 = Iα,β ; γ and T2 = Iρ,σ ; δ with ρ = λ+ 1. Then we
need exactly four subintervals in S(C; c,1 -comb) to cover Iα,σ ; γ,δ. The four subintervals
are :

Iα,α+C−1, Iα+C,λ ; γ , Iρ,ρ+c2−1, Iρ+c2,σ ; δ.

We now consider T1 ∪ T1, which is another candidate for B(2, 4). More precisely,
let Iα,β ; γ , is followed by Iα′,β′ ; γ′ with α′ = β + 1. Then we can cover Iα,γ′−1 ; γ by
exactly three subintervals in S(C; c,1 -comb). The three subintervals are :

Iα,α+C−1, Iα+C,λ ; γ , Iλ+1,γ′−1.

So, counting uγ′ at the end, this is a B(2, 3) block of minimal possible length 2C+4.
In this way, one can easily check that no B(2, 4) block can be shorter than those
intervals of the form T1 ∪ T2. So, min|B(2, 4)| = c2 + C + c+ 2.
Next, let a T1, say Iα,β ; γ of length C + c, be followed by a 1-punctured interval

Iα′,β′; γ′ of length c with α′ = β+1. Such an interval requires exactly three subinter-
vals in S(C; c,1 -comb) to be covered. This is clearly the shortest among B(2,3) blocks
B(2, 3) and hence min|B(2, 3)| = C + 2c.
Any 1-punctured c-interval is a block of type B(1, 1) with minimal length c while

◦×× is the block of type B(2, 1) with minimal length 3.
The minimum length of B(3, 4) blocks is min|B(3, 4)| = c2 + C + 5 and this

occurs when a T1 of length C + 2 is followed by a T2 of length c2 + 2 and then
by a revoked user at the end. In other words, This is the case when a C-interval is
followed by ◦×, a long interval of length c2, and ◦×× in order.
The minimum lengths of B(3, 3) blocks and B(2, 2) blocks are min|B(3, 3)| =

C+c+3 and min|B(2, 2)| = C+3. They occur when a T1 of length C+c is followed
by ◦×× and a C-interval followed by ◦××, respectively.
Summarizing the above, we obtain :







































min |B(2, 4)| = c2 + C + c+ 2
min |B(2, 3)| = C + 2c
min |B(1, 1)| = c
min |B(2, 1)| = 3
min |B(3, 4)| = c2 + C + 5
min |B(3, 3)| = C + c+ 3
min |B(2, 2)| = C + 3.

Figure 6 illustrates B(2, 4), B(3, 4), B(2, 3), and B(3, 3) with minimal length.
Note that the minimal length of the block of type B(ε, δ) can be written as

|B(ε, δ)| = εC + ε(δ − 2)(c− 1) + ε+ 1,

where (ε, δ) = (0, 1), (1, 2) or (1, 3). A singleton consisting of one non-revoked user
is of type B(0, 1) with the minimal length 1. A block consisting of a C-interval
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B(2, 4) :

T1 T2
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• •
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B(2, 3) :

T1

B(3, 3) :

T1

Figure 6. Blocks of types B(2, 4), B(2, 3), B(3, 4) and B(3, 3) with minimal length

followed by ◦× is of type B(1, 2) with the minimal length C + 2. A block obtained
from B(3, 3) by removing the last two ×’s is of type B(1, 3) with the minimal length
C + c+ 1.
We now compute the transmission overhead in the worst case for each r. As a

matter of fact, we are going to compute a close upper bound of it and take that
upper bound as TO(r) = TO(C; c,1 -comb). It is clear that the worst case occurs when
all the blocks are of minimal lengths. Furthermore, we may assume that there are
only four types of blocks, namely B(2, 4), B(2, 3), B(1, 1), and B(2, 1) (and possibly
one block of type B(ε, δ) in the end) by replacing B(3, 4) by a B(2, 3) and a B(1, 1),
B(3, 3) by three B(1, 1)’s, and B(2, 2) by two B(1, 1)’s. We can do this because in
each replacement the sum of the minimal lengths of the replacing blocks is smaller
than the minimal length of the replaced block.
Let’s denote the numbers of B(2, 4), B(2, 3), B(1, 1), B(2, 1) and the last block

by x, y, z, w and ν, respectively, where ν = 0 or 1. Let a = c2 + C + c + 2 and
b = C + 2c. Then :







r = 2x+ 2y + z + 2w + εν
N ≥ ax+ by + cz + 3w + χν
TO = 4x+ 3y + z + w + δν,

where χ = |B(ε, δ)|. We set

r1 :=
2N

a
, r2 :=

2N

b
, r3 :=

N

c
and r4 :=

2N

3
.
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Case 1) r ≤ r1 :

The worst case occurs when all blocks are of type B(2, 4). So y = z = w = 0
and hence

TO = 4x+ δν = 2r − 2εν + δν ≤ 2r + 1.

We ignore the constant term 1 in the right hand side and take

TO(r) := 2r for 0 ≤ r ≤ r1.

Case 2) r1 < r ≤ r2 :

The worst case occurs when all blocks are of type B(2, 4) or B(2, 3). So z = w = 0
and hence

TO = 4x+ 3y + δν = 3(x+ y) + x+ δν

≤
3(r − εν)

2
+

1

a− b

(

N −
b(r − εν)

2
− χν

)

+ δν

≤

(

3

2
−

b

2(a− b)

)

r +
N

a− b
+ 2.

Again we ignore the constant term 2 in the last quantity and take

TO(r) :=

(

3

2
−

b

2(a− b)

)

r +
N

a− b
for r1 ≤ r ≤ r2.

This is the line connecting (r1, 2r1) and (r2,
3
2r2) whose slope is about

3
2 .

Case 3) r2 < r ≤ r3 :

The worst case occurs when all blocks are of type B(2, 4), B(2, 3) or B(1, 1). So
w = 0. Suppose x 6= 0. Then by replacing x by x′ = x − 1, y by y′ = y + 3 and z
by z′ = z− 4, we can construct a session that requires larger transmission overhead
with the same r. So we may conclude that x is also 0 in the worst case and hence

TO = 3y + z + δν = 2y + z + y + δν

≤ (r − εν) +
N − c(r − εν)− χν

b− 2c
+ δν

≤

(

1−
c

b− 2c

)

r +
N

b− 2c
+ 1.

So, we may take

TO(r) :=

(

1−
c

b− 2c

)

r +
N

b− 2c
for r2 ≤ r ≤ r3.

This is the line connecting (r2,
3
2r2) and (r3, r3) whose slope is about 1.

Case 4) r3 < r ≤ r4 :

Similarly to the previous case, we have x = y = 0 in the worst case. Hence

TO = z + w + δν =
z + 2w

2
+
z

2
+ δν

≤
r − εν

2
+

1

2c− 3

(

N −
3(r − εν)

2
− χν

)

+ δν

≤

(

1

2
−

3

4c− 6

)

r +
N

2c− 3
+ 1.
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So, we take

TO(r) :=

(

1

2
−

3

4c− 6

)

r +
N

2c− 3
for r3 ≤ r ≤ r4.

This is the line connecting (r3, r3) and (r4,
1
2r4) whose slope is about

1
2 .

Combining the four cases above, we obtain :

Proposition 5. In the combined chain scheme (C; c, 1-comb) with C = `c, ` ≥ 2
and c ≥ 4,

TO(C; c,1 -comb) =



































2r if 0 ≤ r ≤ r1
3r2 − 4r1
2(r2 − r1)

r +
r1r2

2(r2 − r1)
if r1 ≤ r ≤ r2

2r3 − 3r2
2(r3 − r2)

r +
r2r3

2(r3 − r2)
if r2 ≤ r ≤ r3

r4 − 2r3
2(r4 − r3)

r +
r3r4

2(r4 − r3)
if r3 ≤ r ≤ r4,

where

r1 =
2N

c2 + C + c+ 2
, r2 =

2N

C + 2c
, r3 =

N

c
and r4 =

2N

3
.

With c = 100, C = 10c = 1000 and N = c4 = 100000000, the transmission
overhead is approximately :

TO(1000; 100,1 -comb) =















2 r if 0 ≤ r ≤ 18000
1.44 r + 10000 if 18000 ≤ r ≤ 167000
0.90 r + 100000 if 167000 ≤ r ≤ 1000000
0.49 r + 500000 if 1000000 ≤ r ≤ 66667000.

In most known schemes, it is better to give the decryption key for each non-
revoked user once the number of revoked users exceeds N

2 . However, in our scheme
above, we can use the scheme until the number of revoked users reaches 2N

3 .

Storage Size and Computation Cost The storage size of the combined chain
scheme is the sum of those of the skipping chain scheme and the cascade chain
scheme, that is,

SS(C; c,1 -comb) =
(c− 1)(c− 2)

2
+ d(d+ 3)(c− 1) + C.

The computation cost is the larger than those of the two schemes. Hence

CC(C; c,1 -comb) = max{C − 1, (d+ 1)(c− 1)},

which is C − 1 in most cases since ` > d+ 1.
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6 Security and Efficiency

In this section, we analyze the security and efficiency of the proposed schemes. We
prove that the schemes are secure in the sense that revoked users cannot access to
any valid interval-key even though they all collude. We also compare the efficiency
of the schemes with that of SD and LSD.

6.1 Security

In order to prove the security of the proposed schemes, it suffices to show that
no revoked user can compute any interval-key. This was proved for the C-basic
chain scheme in §2.4, where neither punctured intervals nor cascade intervals are
involved. In fact, it is easy to see that the same proof works even if cascade intervals
are introduced because they are just long intervals.
So, let’s consider punctured intervals. Note that no user, revoked or not, can

access to the interval-keys of the other punctured intervals. Let Ii,j ;x1,...,xq be a
punctured interval and ux be a revoked user in the interval, where x = xt for
some t. The only way for ux to obtain the interval-key Ki,j ;x1,...,xq is to compute
it by using his/her user-key. But when the interval-key was made, the key chain
skipping the revoked users ux1 , . . . , uxt(= ux), . . . , uxq was used. Thus, ux cannot
compute Ki,j ;x1,...,xq unless he can invert the one-way permutations. Furthermore,
the interval-keys of previous sessions when ux was not revoked do not help at all in
the current session, in which he/she is revoked, because the revocation of him/her
results in a totally new key chain.

6.2 Comparison

We present a comparison of our proposed schemes with the best known schemes.
Table 1 compares the transmission overheads, the storage sizes and the computation
costs of our schemes, SD and LSD when N = 108. We assume that every key in a
user-key set is 128 bits. In each column, the minimum values are written in italic.
From the table, we can see that the cascade chain scheme (1000; 100-cascade) and
SD have the smallest TO when r′ approaches to 0, and the skipping chain scheme
(1000; 100, 1-skip) has the smallest TO when r′ increases, where r′ = 100r

N (%). How-
ever, the combined scheme (1000; 100, 1-comb) has the least TO all the time.

Table 1. Performance comparison when N = 108, where r′ = 100r
N

(%). (In each column, the
minimum values are written in italic)

TO (Mbits) for r′(%) SS CC
Scheme

0.001% 0.01% 0.1% 1% 5% 10% 20% (KBytes) (Hashes)

(1000-basic) 12.9 14.1 25.6 141 652 1290 2570 1.60 999

(1000; 100, 1-skip) 12.9 14.0 24.3 128 380 695 1330 93.6 999

(1000; 100-cascade) 0.256 2.56 25.6 141 652 1290 2570 44.5 999

(1000; 100, 1-comb) 0.256 2.56 19.7 128 380 695 1330 122 999

SD 0.256 2.56 25.6 256 1280 2560 5120 11.7 27

LSD 0.512 5.12 51.2 512 2560 5120 10240 2.24 27
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Figures 7 and 8 compare the transmission overheads of our schemes (1000;100,1-
skip), (1000;100,2-skip), (1000;100-casc) and (1000;100,1-comb) with those of SD
and LSD, in the worst case and the average case, respectively. The small box
in Figure 7 is enlarged in Figure 9 to compare TO’s for small r′. The graph of
TO(1000;100,1-comb) follows the graph of TO(1000;100-casc) for r

′ ≤ r′1 ≈ 0.018 and the
graph of TO(1000;100,1-skip) for r

′ ≥ r′2 ≈ 0.167 while beats both for r
′
1 ≤ r′ ≤ r′2.

Note that TO(1000;100,2-skip) is the best for r
′ ≥ r′3 = 1.
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6.3 Practical Remarks

User Addition The skipping chain scheme possesses a remarkable feature that
user addition is possible at any time almost free. In SD or LSD, once the system has
launched, no user can be added without updating the user-keys. Thus, the maximum
possible number of users should be set when the system is designed and not more
than the preset number of users can join the system. On the other hand, the skipping
chain scheme (C; c, p-skip) allows any number of user additions without changing
the keys of the previous users. To add one new user to the system, the center places
him/her at the end of the line, computes the corresponding user-key and sends it
to the new user. This process requires neither interaction nor key update of other
users. Note that the cascade chain scheme does not possess this property and hence
the combined chain scheme does not, neither. Observe that, however, user addition
is still feasible unless left cascade key chains are introduced.

User Replacement User replacement is a much more complicated problem than
user addition. User replacement is to remove revoked users permanently, and add
new users at their positions. In general, user replacement is not possible without
user-key update, which is not allowed in many schemes. When user-key update
is allowed, the skipping chain scheme (C; c, p-skip) performs user replacement at
reasonably small cost : one user replacement requires user-key update of at most
2C − 1 users.
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Figure 9. The graph of TO(r) - an approximation, where r′ = 100r
N

Flexibility Our schemes possess flexibility with system parameters C, c and p,
which is a quite different feature from the tree based schemes. We can choose system
parameters in such a way that the transmission overhead is very small or in another
way that the storage size and the computation cost are very small. If the user
device provides limited storage like smart cards for example, then we may use the
C-basic chain scheme with small C which requires each user to store only C keys.
The computation cost is at most C − 1 computations of one-way permutations. For
example, if we take C = 20, then the storage size is only 20 keys for each user and
the computation cost is 9.5 computations of one-way permutations on average (at
most 19) while the transmission overhead is 9

10r +
N
20 . In fact, our schemes without

punctured intervals can fit in as good as any other schemes to log key restriction,
which was introduced in [8]. On the other hand, if the user device provides large
storage like set-top boxes, PC’s and CD or DVD players, and the transmission is
expensive, then one can use (C; c, p-skip) or (C; c, p-comb) with large c, in which
the transmission overhead approaches rapidly to r

p+1 .
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Traitor Tracing Traitor tracing is a method to find at least one of the colluders,
called traitors, who participated in construction of a pirate decoder. Assume that
a pirate decoder, consisting of (a part of) the user-keys of traitors, is acquired and
that the decoder correctly decodes with probability greater than the threshold, say
1
2 . Then our schemes, except the basic scheme, admit ‘black box’ tracing, the same
tracing algorithm using the subset tracing procedure as in the SD scheme. Moreover
in our schemes, we can divide each C-interval into two subintervals of almost equal
size, one of which is a subset containing from the first user to the dC2 e-th user and
the other is the rest. So the bifurcation value of our scheme is 1

2 , which is better
than that of SD. The number of iterations is also smaller than that of SD. For more
details, see [15].

7 Conclusion

In this paper, we proposed broadcast encryption schemes based on the idea ‘one key
per each partition’ after partitioning the users. They are the skipping chain scheme
(C; c, p-skip), the cascade chain scheme (C; c-casc), and the combined chain scheme
(C; c, p-comb). The scheme (C; c, p-skip) has very small TO (about r

p+1) if r is not

very small. Even when p = 1, the transmission overhead of the scheme has about 1
3

of that of SD. The scheme (C; c-casc) has smaller TO than SD when r is very small.
Combining the two scheme, we achieved the smallest TO for all r.
Moreover, our schemes may fit in to various broadcast environment by varying

system parameters. That is, we can optimize the transmission overhead, the com-
putation cost or the storage size by adjusting C, c and p suitably. Our schemes also
have a remarkable feature that user addition without key update of the current users
is feasible and cheap at any time unless we adopt left cascade key chains.
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