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Abstract

We show that if a set of players hold shares of a value a ∈ Zp for some prime p (where
the set of shares is written [a]p), it is possible to compute, in constant round and with
unconditional security, sharings of the bits of a, i.e. compute sharings [a0]p, . . . , [aℓ−1]p such

that ℓ = ⌈log
2
(p)⌉, a0, . . . , aℓ−1 ∈ {0, 1} and a =

∑ℓ−1

i=0
ai2

i. Our protocol is secure against
active adversaries and works for any linear secret sharing scheme with a multiplication
protocol.

This result immediately implies solutions to other long-standing open problems, such
as constant-round and unconditionally secure protocols for comparing shared numbers and
deciding whether a shared number is zero.

The complexity of our protocol is O(ℓ log(ℓ)) invocations of the multiplication protocol
for the underlying secret sharing scheme, carried out in O(1).

1 Introduction

Assume that n parties have shared values a1, . . . , aℓ from some field F using some linear secret
sharing scheme, such as Shamir’s. Let f : F

ℓ → F
m. By computing f with unconditional security

on the sharings we mean that the parties run among themselves a protocol using a network with
perfectly secure point-to-point channels. The protocol results in the parties obtaining sharings of
(b1, . . . , bm) = f(a1, . . . , al), while leaking no information on the values a1, . . . , aℓ or b1, . . . , bm.
The question which functions can be computed with unconditional security on sharings, using a
constant round protocol is a long-standing open problem.

However, a number of functions are known to have unconditionally secure, constant round
protocols. The most general class with known solutions are functions with a constant-depth
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arithmetic circuit (counting unbounded fan-in addition and unbounded fan-in multiplication as
one gate towards the depth).

The only non-trivial part needed in these solutions is unbounded fan-in multiplication b =∏ℓ
i=1 ai. If all ai are guaranteed to be non-zero this can be done in constant round using the

techniques by Bar-Ilan and Beaver [BB89], which can also handle the case of general ai when
the size of F is polynomial. When F is large and the ai can be arbitrary a technique by Cramer
and Damgård is needed [CD98].

However, a number of functions do not have small constant-depth arithmetic solutions. Con-

sider e.g. the function
?
<: Fp × Fp → Fp, where (a

?
< b) ∈ {0, 1} and (a

?
< b) = 1 iff a < b (where

a and b are considered as residues a, b ∈ {0, 1, . . . , p − 1}). This function has a huge number of
zeros and is not constant zero. Therefore we cannot hope for an efficient arithmetic solution to

computing
?
< (the function can of course be expressed as a polynomial over the field, and thus

a constant-depth circuit, but the circuit would have a number of gates proportional to the size
of the field).

On the other hand a number of results are known where if the inputs are given in a particular
form, then any function which can be expressed by a binary Boolean circuit with g gates and
depth d, can be computed unconditionally securely in constant round, by evaluating a constant-
depth arithmetic circuit with O(2dg) gates.

If in particular the input a is delivered as bitwise sharings [a0]p, . . . , [aℓ−1]p and b = f(a) can
be computed using a binary Boolean circuit with depth d and g gates, then sharings of the bits of
b = f(a) can be computed with complexity1 O(2dm), unconditionally secure in constant round.
This can e.g. be done using Yao’s circuit scrambling technique with an unconditionally secure
encryption scheme — an observation first made by [IK02]. This would e.g. allow to compute

the function
?
<: (Fp)

ℓ × (Fp)
ℓ → Fp, ((a0, . . . , aℓ−1), (b0, . . . , bℓ−1)) 7→ ∑ℓ−1

i=0 ai2
i

?
<

∑ℓ−1
i=0 bi2

i

unconditionally securely in constant round.
So, different representations of the inputs allow different classes of functions to be computed

unconditionally securely in constant round — at least with our current knowledge of the area.
It would therefore be very useful to be able to change representations efficiently. Previously it
was not known how to do this. For instance, this was the reason why the protocols of Cramer
and Damgård [CD98] for linear algebra in constant round could not handle handle fields with
large characteristic without assuming that the input was shared bitwise to begin with, which
limits the applicability of those protocols. In this paper, we therefore investigate the problem
of changing between sharings modulo a prime p and bitwise sharings.

1.1 Our Results

Given a prime p, let ℓ = ⌈log2(p)⌉. We will show how to compute, unconditionally secure and in
constant round, [a0]p, . . . , [aℓ−1]p from [a]p such that a =

∑ℓ−1
i=0 ai2

i. The complexity is bounded
by O(1) rounds and O(ℓ log2(ℓ)) invocations of the multiplication protocol.

The only assumptions we need about the underlying secret sharing scheme are the following:
1) the secret sharing scheme is linear (i.e. given sharings [a]p and [b]p the parties can compute a
sharing [a + b mod p]p without interaction) and 2) there exists a multiplication protocol for the
secret sharing scheme (i.e. given sharings [a]p and [b]p the parties can securely compute a sharing
[ab mod p]p by interacting). If the multiplication protocol (and the secret sharing scheme) is
secure against active adversaries, our protocol will be actively secure too. The assumption on

1For the rest of the paper we measure the complexity of protocols by the maximal number of invocations of
the multiplication protocol, which is typically the dominating term in the communication complexity. The exact
communication complexity then depends on the communication complexity of the multiplication protocol used.
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multiplication implies that the adversary structure must be Q2 which in the standard threshold
case means we need honest majority.

This result immediately imply that we can also in constant round compute a single shared
bit containing the result of a comparison between two shared numbers, or containing the result
of asking whether a shared number is zero. This last function was exactly what was missing
in [CD98] in order to handle large characteristic fields.

We note that, while unconditional security is typically defined by requiring that the informa-
tion leaked by the protocol is exponentially small in some security parameter κ, our protocols
obtain a slightly stronger notion, which has also been considered in the literature. In particular,
our protocols are perfectly secure except with probability 2−κ — i.e. with probability 1 − 2−κ

no information is leaked at all. Furthermore, the parties will be able to detect when a run of the
protocol is in progress which would leak information if completed, and have the power to abort
such a run. This yields a perfectly secure protocol, except that with probability 2−κ it might
terminate with some abort symbol ⊥.2

1.2 Related Work

There has been a considerable amount of previous work on unconditionally secure constant-
round multiparty computation with honest majority, see for instance [BB89, FKN94, CD98,
IK00, IK02]. As mentioned, this work has shown that some functions can indeed be computed
in constant round with unconditional security, but this has been limited to restricted classes of
functions, such as NC1 or non-deterministic log-space.

In [ACS02] Algesheimer, Camenisch and Shoup also present a protocol for securely computing
([a0]p, . . . , [aℓ−1]p) = DB([a]p). It however only works when a is guaranteed to be noticeably
smaller than p. Furthermore, it is only passive secure and is not constant round.

In concurrent independent work, Eike Kiltz sets out to solve essentially the same set of prob-
lems we look at here [Kil05], using a quite different technique more along the lines of [ACS02].
The protocol from [Kil05] is however only passive secure and appears to be considerably less
efficiently than the protocol we present here.3

1.3 Organization

In Section 2 we give some technical preliminaries. In Section 3 we give the high-level protocol
for bit decomposition, assuming a number of results from subsequent sections, in particular
that it is possible to add bitwise-shared numbers and compare bitwise-shared number within
certain complexities. In Section 4 we then list some known results and simple observations. In
Section 5 we give a protocol for comparing two bitwise-shared numbers and in Section 5 we give
the protocol for adding two bitwise-shared numbers.

2Choosing between unconditional (but imperfect) termination, correctness or privacy, we find that settling for
imperfect termination but perfect correctness (on termination) and perfect privacy is the better choice. Simply
because the other unconditional notions can be obtained from such a solution. To get perfect termination and
perfect correctness but only unconditional privacy, when the protocol aborts, reconstruct the inputs and compute
the results. This yields a protocol which is perfect except that it leaks information with probability 2−κ. To
get perfect termination, perfect privacy but only unconditional correctness, when the protocol aborts, simply
return with some dummy guess at the results. This yields a protocol which is perfect except that it is incorrect
with probability 2−κ. Finally, to get a perfect protocol rerun the protocol when it aborts. This gives a perfectly
secure protocol. It, however, only runs in expected constant round, as the protocol is run c times with probability
(2−κ)c−1.

3After personal communication Eike Kiltz and the authors of the present paper all acknowledge that our
different solutions are concurrent and independent.
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2 Preliminaries

In this section with introduce some notation.
We assume that n parties are connected by perfectly secure channels in a synchronous net-

work.
We use F to denote a finite field, and we let f = ⌈log(|F|)⌉, where we let log = log2 for

the rest of the paper. By [a]F we denote a secret sharing of a ∈ F over F. We assume that the
secret sharing scheme allows to compute a sharing [a+b]F from [a]F and [b]F without interaction,
and that it allows to compute [ab]F from a ∈ F and [b]F without interaction. We also assume
that the secret sharing scheme allows to compute a sharing [ab]F from [a]F and [b]F in constant
round and unconditionally secure. We will measure round complexity in the number of rounds
of invocations of the multiplications and we will measure communication complexity by the
number of invocations of the multiplication protocol.

If our protocols should be actively secure, the secret sharing scheme and the multiplication
protocol should be actively secure. This in particular means that the adversary structure must
be Q2. By the adversary structure we mean the set Γ of subset C ⊂ [n] which the adversary
might corrupt; It is Q2 if it holds for all C ∈ Γ that [n] \ C 6∈ Γ.

We assume that all parties have access to uniformly random coins c ∈R Zn for any integer
n. This is not to disable perfect security because of the simple fact that no finite computation
can sample a uniformly random c ∈ Zn given only uniformly random coins c′ ∈ Z2, unless n is
a power of 2. We will e.g. need to sample uniformly random numbers modulo a large prime n.

3 Bit-Decomposition

Let p be a prime p ∈ [2ℓ−1, 2ℓ]. We look at the bit-decomposition function BD : Fp → (Fp)
ℓ, a 7→

(a0, . . . , aℓ−1) given by a0, . . . , aℓ−1 ∈ {0, 1} ⊆ Fp and a =
∑ℓ−1

i=0 ai2
i, where a ∈ Fp is considered

a residue a ∈ {0, 1, . . . , p − 1}.
Below we show how to securely generate a random solved instance

[b]p, [b0]p, . . . , [bℓ−1]p ,

where b is a uniformly random b ∈ Fp and (b0, . . . , bℓ−1) = BD(b). This can be done using 21
rounds and 96ℓ invocations of the multiplication protocol.

Below we use [x]B = [x0]p, . . . , [xℓ−1]p to denote a bitwise sharing of an integer x, and we
use [z]B = [x]B + [y]B to denote computing a bitwise sharing of x + y from the bitwise sharings,

[x]B and [y]B, of integers x and y. Finally we use [x
?
< y]p to denote computing a sharing of the

bit (x
?
< y) ∈ {0, 1}, where (x

?
< y) = 1 iff x < y, starting from the bitwise sharings, [x]B and

[y]B, of integers x and y.
In Section 6 it is shown how to add bitwise sharings unconditionally secure in constant round.

When x, y ∈ {0, . . . , 2ℓ − 1} the complexity 37 rounds and 55ℓ log(ℓ) invocations. In Section 5
it is shown how to compare bitwise sharings unconditionally secure in constant round. The
complexity is 19 rounds and 22ℓ invocations.

The bit decomposition of [a]p proceeds as follows. First the parties generate a random solved
instance [b]p and [b]B. Then the parties compute

[a − b]p = [a]p − [b]p

and reveal
c = a − b mod p .
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This leaks no information as b is uniformly random.
Let (c0, . . . , cℓ−1) = BD(c). Then using Section 6 the parties compute a bitwise sharing

[d]B = [d0]p, . . . , [dℓ]p ,

of d = b + c ∈ {0, . . . , 2ℓ+1 − 1}. Clearly d = a + qp, where q ∈ {0, 1}. Using Section 5 the
parties compute a sharing

[q]p = [d
?
< p]p .

Then the parties compute a bitwise sharing [g]B = [g0]p, . . . , [gℓ−1]p of (2ℓ − qp) mod 2ℓ as
follows. Let (f0, . . . , fℓ−1) = BD(2ℓ − p) and for i = 0, . . . , ℓ − 1, compute

[gi]p = fi[q]p .

The parties now have the followings bitwise sharings

[d]B = [a + qp]B

[g]B = [(2ℓ − qp) mod 2ℓ]B .

Using again Section 6 they compute

[h]B = [d]B + [g]B .

It is easy to see that h = a + q2ℓ. So, by dropping the sharing [hℓ]p of the most significant bit
the parties obtain a bitwise sharing [a]B, as desired.

As for the complexity we generated one solved instance, had two applications of Section 6 and
one application of Section 5. This yields a total complexity of 114 rounds and 110ℓ log(ℓ)+118ℓ
invocations. Assuming that log(ℓ) ≥ 4, meaning that we compute on at least 16-bit numbers,
the number of invocations can be bounded by 140ℓ log(ℓ).

3.1 Generating Random Solved Instances

This whole thing hinged on our ability to generate a random solved instance

[b ∈R Fp]p, [b]B = [b0]p, . . . , [bℓ−1]p ,

where b0, . . . , bℓ−1 ∈ {0, 1} and b =
∑ℓ−1

i=0 bi2
i. This is done as described below.

First the parties generate

[b0 ∈R {0, 1}]p, . . . , [bℓ−1 ∈R {0, 1}]p ,

i.e. sharings of ℓ uniformly random bits. We show in Section 4 how to do this with 2 rounds and
2ℓ invocations. Then using Section 5 the parties compute and reveal

[

ℓ−1∑

i=0

2ibi

?
< p]p .

If
∑ℓ−1

i=0 2ibi < p, then they compute

[b]p =
ℓ−1∑

i=0

2i[bi]p .
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If
∑ℓ−1

i=0 2ibi ≥ p, then the protocol aborts. This clearly yields a uniformly random b ∈ Fp when
the protocol does not abort.

Overall, this costs 21 rounds and 24ℓ invocations.
In case one is able to control the choice of the prime p, an optimal choice would be to let p

be a Mersenne prime p = 2ℓ − 1 for some ℓ > κ. In that case the probability that b ≥ p is less
than 2−κ. Though the Mersenne primes soon become sparse, this would work for small values of
ℓ. At the time of writing p = 224036583 − 1 is the largest p for which we know this works. Other
primes close to the powers of two work almost as nicely.

In the worst-case, where we have no control over p, our only guarantee is that p ∈ [2ℓ−1, 2ℓ]
for some ℓ. In that case the probability that b ≤ p when b ∈R Z2ℓ can be as large as 1/2. Using
a Chernoff bound it can be seen that if one generates n = 12κ candidates, then the probability
that less that n/4 of them satisfy b < p is upper bounded by 2−κ. This means that the amortised
complexity for generating one solved instance goes up to 21 rounds and 96ℓ invocations.

4 Some Simple Observations

In this section we list some known techniques and simple observations.

Linear Functions. We assumed that it is possible to compute additions without any commu-
nication. This means that given c0, c1, . . . , cl ∈ F it is possible to compute [c0 +

∑ℓ
i=1 ciai]

from [a1], . . . , [al] by the parties doing local computations. We write this computation as
c0 +

∑ℓ
i=1 ci[ai].

Random Elements The parties can share a uniformly random, unknown field element. We
write [a ∈R F]F. This is done by letting each party Pi deal a sharing [ai ∈R F]F, and letting
[a]F =

∑n
i=1[ai]F. The communication complexity of this is given by n dealings, which we assume

is upper bounded by the complexity of one invocation of the multiplication protocol.
If passive security is considered, this is trivially secure. If active security is considered and

some party refuses to contribute with a dealing, the sum is just taken over the contributing
parties. This means that the sum is at least taken over ai for i ∈ H, where H = [n]\C for some
C ∈ Γ. Since Γ is Q2 it follows that H 6∈ Γ. So, at least one honest party will contribute to the
sum, which is sufficient to argue privacy.

Random Bits. It is possible to efficiently generate a sharing [a]F of a uniformly random
a ∈ {0, 1} ⊆ F unconditionally secure in constant round. Here we treat the case where F does
not have characteristic 2. Since we will later restrict our study to F = Fp for an odd prime p,
this is sufficient. If F has characteristic 2, a slightly different technique is needed.

First some notation. Let F
∗ be the set of non-zero elements of F and let Q(F) ⊂ F

∗ be
the subset of squares. For a ∈ Q(F), let SQRT (a) = {b ∈ F

∗|b2 = a}. For each a ∈ Q(F)
we have that |SQRT (a)| = 2. Impose an arbitrary ordering > of the elements in F, e.g. the
lexicographical ordering on the bitstring representation of the elements. Define a map

√
:

Q(F) → F by
√

a ∈ SQRT (a) and
√

a ≥ −√
a. Notice that given any element b ∈ SQRT (a) we

can compute
√

a as the smaller element of b and −b.
Extend the map by

√
0 = 0 and let S : F → F be given by S(0) = 0, S(x) = 1 if x ∈ F

∗

and x =
√

x2, and S(x) = −1 if x ∈ F
∗ and x 6=

√
x2. Notice that it holds for all x ∈ F that

x = S(x)
√

x2.
It is straight-forward to verify that if a ∈R F

∗ is a uniformly random non-zero element, then
S(a) is uniformly random in {1,−1}. Furthermore, S(a) = a(

√
a2)−1.
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This suggests the following protocol. First the parties compute [a ∈R F]F. Then the parties
compute [a2]F = [a]F[a]F and reveal a2. Then the parties compute b =

√
a2. If b = 0, then abort,

and otherwise compute [c]F = b−1[a]F = [S(a)]F and then compute [d]F = 2−1([c]F + 1).
When the protocol does not abort, this clearly yields a uniformly random d ∈ {0, 1}. Fur-

thermore, no information is leaked on S(a), so no information is leaked on d.
If b = 0, then the protocol aborts. This happens with probability |F|−1. In the following

estimates we assume that |F|−1 ≤ 2−κ.
The complexity of generating [a ∈R F]F is bounded by the complexity of one multiplication.

Then one multiplication is needed to compute [a2]F. The rest is for free. The total complexity
is 2 rounds and 2 invocations.

If it is not the case that |F|−1 ≤ 2−κ, then, using that at least |F|−1 ≤ 1/2, it follows from a
Chernoff bound that by generating n = 12κ candidates, at least n/4 of them will be successful,
except with probability 2−κ. This means that we can always get the same amortised complexity,
except for a factor 4.

Random invertible elements. The parties can share a uniformly random, unknown, invert-
ible field element using [BB89]. We write [a ∈R F

∗]F.
This is done by first generating two elements [b ∈R F]F and [c ∈R F]F. Then the parties

compute and reveal [d]F = [b]F[c]F. If d ∈ F
∗, then (b, c) is a uniformly random element from

F
∗ × F

∗ for which bc = d, and thus b is a uniformly random element in F
∗ independent of d.

Therefore we can set [a]F = [b]F. Notice that at the same price we can compute [a−1]F as d−1[c]F.
If d 6∈ F

∗, then the algorithm aborts. This happens with probability less than 2/|F|. Again
we assume that this is less than 2−κ, but if it is not we can solve it as for random bits and suffer
only a factor 4 in the number of invocations. The complexity is 2 rounds and 3 invocations.

Unbounded Fan-In Multiplication. Using the technique from [BB89] it is possible to do
unbounded fan-in multiplication in constant round.

Assume first that we have inputs [a1]F, . . . , [aℓ]F, where ai ∈ F
∗. For 1 ≤ i0 ≤ i1 ≤ ℓ, let

ai0,i1 =
∏i1

i=i0
ai. We are interested in computing a1,ℓ, and the method allows to compute any

other ai0,i1 at the cost of one extra multiplication (we use A to denote the number of ai0,i1 which
we want to compute).

First use the above method to generate [b0 ∈R F
∗]F, [b1 ∈R F

∗]F, . . . , [bℓ ∈R F
∗]F, along with

[b−1
0 ]F, [b−1

1 ]F, . . . , [b−1
ℓ ]F, using 2 rounds and 3(ℓ + 1) invocations. For simplicity we will use the

estimate 3ℓ invocations.
Then for i = 1, . . . , ℓ compute and reveal [ci]F = [bi−1]F[ai]F[b−1

i ]F, using 2 rounds and 2ℓ
invocations.

Now we have that di0,i1 =
∏i1

i=i0
di = bi0−1(

∏i1
i=i0

ai)b
−1
i1

= bi0−1ai0,i1b
−1
i1

, so we can compute

[ai0,i1]F = [b−1
i0−1]Fdi0,i1[bi1 ]F, using 1 round and A invocations.

The overall complexity is 5 rounds and 5ℓ + A invocations.

5 Bitwise Less-Than

We show how to compare two bitwise-shared numbers in constant round. We first present two
sub-protocols.
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5.1 Symmetric Functions

Assume that we have inputs [a1]F, . . . , [aℓ]F and want to compute a symmetric Boolean function
on these.

A symmetric Boolean function can be written as f(x1, . . . , xℓ) = φ(
∑ℓ

i=1 xi) for some func-
tion φ : {0, 1, . . . , ℓ} → {0, 1}. This allows a particularly efficient secure computation. First
compute [a]F = 1+

∑ℓ
i=1[ai]F. Then a ∈ {1, . . . , ℓ+1}. So, we can compute [a]F, [a2]F, . . . , [aℓ+1]F

using an unbounded fan-in multiplication. After that we can compute for free [f(a)]F for any
f(X) =

∑ℓ+1
i=0 αiX

i ∈ F[X], as [f(a)]F = α0 +
∑ℓ+1

i=1 αi[a
i]F. In particular we can do this for the

polynomial f(X) of degree ℓ + 1 for which f(i) = φ(i − 1) for i = 1, . . . , ℓ + 1.
The complexity is 5 rounds and 6ℓ invocations.

5.2 Prefix-Or

Assume that we have inputs [a1]F, . . . , [aℓ]F and want to compute the prefix-or [b1]F, . . . , [bℓ]F,
where bi = ∨i

j=1aj.
We use the method by Chandra, Fortune and Lipton [CFL83a]. For notational convenience,

assume that l = λ2 for an integer λ. Index the bits ai as ai,j = aλ(i−1)+j for i, j = 1, . . . , λ. For

i = 1, . . . , λ, compute [xi]F = ∨λ
j=1[ai,j]F using λ parallel applications of the previous section.

Then for i = 1, . . . , λ compute [yi]F = ∨i
k=1[xk]F using another λ parallel applications of the

previous section. Now yi = 1 iff some block ai′,1, . . . , ai′,λ with i′ ≤ i contains a ai′,j = 1, i.e.
ai′,1, . . . , ai′,λ is not all-zero.

We had 2λ applications of the previous section, in two rounds and on problems of size λ.
This gives a total complexity until now of 10 rounds and 12ℓ invocations.

Let [f1]F = [x1]F and for i = 2, . . . , λ, let [fi]F = [yi]F − [yi−1]F. Now fi = 1 iff ai,1, . . . , ai,λ

is the first block containing a ai,j = 1. Let i1 be such that fi1 = 1. We can compute

[ai1,1]F, . . . , [ai1,λ]F by computing [ai1,j]F =
∑λ

i=1[fi]F[ai,j ]F. This can be done using ℓ multi-
plications in parallel.

We can then compute [bi1,1]F, . . . , [bi1,λ]F, where bi1,j = ∨j
k=1ai1,k, using λ parallel applica-

tions of the previous section on problems of size λ.
Now let [si]F = [yi]F − [fi]F. Then si = 1 iff i > i1. It follows that the results can be

computed as [ai,j]F = [fi]F[ai1,j]F + [si]F. This can be done using ℓ multiplications in parallel.
The total complexity is 17 rounds and 20ℓ invocations.

5.3 Bitwise Less-Than

Assume then that sharings [a0]F, . . . , [aℓ−1]F and [b0]F, . . . , [bℓ−1]F are given with a0, . . . , aℓ−1,

b0, . . . , bℓ−1 ∈ {0, 1}. Let a =
∑ℓ−1

i=0 ai2
i and b =

∑ℓ−1
i=0 bi2

i and let d = a
?
< b, where d ∈ {0, 1}

and d = 1 iff a < b. We want to compute [d]F.
First for i = 0, . . . , ℓ− 1 compute ci = ai ⊕ bi = (ai − bi)

2 in 1 round using ℓ multiplications.
Let c−1 = 1 and let i0 denote the largest −1 ≤ i ≤ ℓ for which ci = 1. Using the previous

section, it is straight-forward to compute [e0]F, . . . , [eℓ−1]F where ei = 1 if i = i0 and ei = 0
otherwise. This costs 17 rounds and 20ℓ invocations.

We can then compute [d]F =
∑ℓ−1

i=0 [ei]F[bi]F in 1 round using ℓ invocations. Assume namely

that i0 = −1. Then a = b and
∑ℓ−1

i=0 eibi = 0, as desired. If i0 ≥ 0, then i0 is the index of the

most significant bit in which a and b differs, so the sought result is seen to be d = bi0 =
∑ℓ−1

i=0 eibi.
All in all we used 19 rounds and 22ℓ invocations.
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6 Bitwise Sum

We show how to add two bitwise-shared numbers in constant round. We first present a sub-
protocol.

6.1 Generic Prefix Computations

Assume that we have inputs [a1]B, . . . , [aℓ]B, where ai ∈ {0, 1}n. I.e. [ai]B = [ai,1]F, . . . , [ai,n]F
consists of n sharings of bits. Assume furthermore that an associative binary operator ◦ :
{0, 1}n × {0, 1}n → {0, 1}n is given and that we want to compute [b1]B, . . . , [bℓ]B, where bi =
◦i

j=1aj . Assume that it is possible to securely compute bℓ = ◦ℓ
j=1aj with complexity R rounds

and C(ℓ) invocations. Assume for notational convenience that ℓ = 2k for some k.
We use the method by Chandra, Fortune and Lipton [CFL83b]. For i = 1, . . . , k and j =

0, . . . , ℓ/2i − 1, let bi,j = ◦j·2i+2i

m=j·2i+1
am.

bk−2,0 bk−2,1 bk−2,2 bk−2,3

bk−1,1bk−1,0

1 ℓ
bk,0

There are ℓ−1 of the sums bi,j, one of length ℓ = 2k, two of length 2k−1, up to ℓ/2 of length two.

The complexity for computing all of them is thus R rounds and
∑k

i=1 2iC(ℓ · 2−i) invocations.
It is easy to see that each of the ℓ values bi can be computed as a sum of at most k of the sums

bi,j. This costs another R rounds and at most ℓC(k) invocations. Therefore the total complexity

is upper bounded by 2R rounds and
∑log(ℓ)

i=1 2iC(ℓ · 2−i) + ℓC(log(ℓ)) ≤ log(ℓ)C(ℓ) + ℓC(log(ℓ))
invocations.

6.2 Bitwise Sum

Assume we are given sharings [a0]F, . . . , [aℓ−1]F and [b0]F, . . . , [bℓ−1]F with a0, . . . , aℓ−1, b0, . . . , bℓ−1 ∈
{0, 1} . Let a =

∑ℓ−1
i=0 ai2

i and b =
∑ℓ−1

i=0 bi2
i and let d = a + b. Define d0, . . . , dℓ ∈ {0, 1} by

d =
∑ℓ

i=0 di2
i. We want to compute [d0]F, . . . , [dℓ]F.

For i = 0, . . . , ℓ, define the carry ci ∈ {0, 1} by ci = 1 iff
∑i−1

j=1 2j(aj + bj) > 2i. It is straight-
forward to verify that given a bitwise sharing of the carries we can compute a bitwise sharing
of the sum by computing [dℓ]F = [cℓ]F and computing [di]F = [ai]F + [bi]F + [ci]F − 2[ci+1]F for
i = 0, . . . , ℓ − 1. This costs no interaction, so we now focus on computing the carries.

We use the well-known carry set/propagate/kill algorithm. For each i = 0, . . . , ℓ − 1, define
bits si, pi and ki, where si = 1 iff a carry is set at position i (i.e. ai + bi = 2), and pi = 1 iff a
carry is propagated at position i (i.e. ai + bi = 1), and ki = 1 iff a carry is killed at position i,
(i.e. ai + bi = 0). We can compute these bits in 1 round using ℓ invocations, as [si]F = [ai]F[bi]F,
[pi]F = [ai]F + [bi]F − 2[si]F and [ki]F = 1 − [si]F − [pi]F.

We let each triple (si, pi, ki) represent an element ei ∈ Σ = {S,P,K} where ei = S iff si = 1,
ei = P iff pi = 1 and ei = K iff ki = 1. We define an operator ◦ : Σ × Σ → Σ by S ◦ x = S,
K ◦ x = K and P ◦ x = x. This is the carry-propagation operator and it is clearly associative.

First we compute f0, . . . , fℓ−1, where fi = ◦i
j=0ej , where again fi is represented by a triple

of bits (Si, Pi,Ki). We show below how to compute f = ◦ℓ
i=1ei with complexity 18 rounds and

27ℓ invocations. Using Section 6.1 this allows us to compute all f0, . . . , fℓ−1 with complexity 36
rounds and 54ℓ log(ℓ) invocations. It is straight-forward to verify that then we can then compute
the carries without interaction by letting c0 = 0 and letting ci = Si−1 for i = 1, . . . , ℓ.

All in all we used 37 rounds and 55ℓ log(ℓ) invocations.
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6.3 Unbounded Fan-In Carry Propagation

We show how to securely compute f = ◦ℓ
i=1ei with complexity 18 rounds and 27ℓ invocations.

Again, let ei be represented by (si, pi, ki) and let f be represented by (S,P,K). We clearly
have that [P ]F = ∧ℓ

i=1[pi]F, which we can compute in 5 rounds and 6ℓ invocations using Sec-
tion 5.2.

We have that K = 1 iff there exists some i such that ki = 1 and pℓ = 1, . . . , pi+1 = 1.
I.e. K = ∨ℓ

i=1(ki ∧ (∧ℓ
j=i+1pj)). Since ki and pi are never 1 simultaneously it can be seen that at

most one of the expressions ki∧(∧ℓ
j=i+1pj) equals one. This implies that K =

∑ℓ
i=1 ki ·∧ℓ

j=i+1pj .

From [p1]F, . . . , [pℓ]F we can compute [q1]F, . . . , [qℓ]F such that qi = ∧ℓ
j=i+1pj using Section 5.2.

This costs 17 rounds and 20ℓ invocations. We can then compute [K]F =
∑ℓ

i=1[ki]F[qi]F using 1
round and ℓ invocations. The overall complexity for computing [K]F is thus 18 rounds and 21ℓ
invocations.

Having computed [P ]F and [K]F we can compute [S]F = 1 − [P ]F − [K]F without further
interaction. Since we can compute P and K in parallel, the overall complexity for an unbounded
fan-in carry propagation is 18 rounds and 27ℓ invocations.

References

[ACS02] Joy Algesheimer, Jan Camenisch, and Victor Shoup. Efficient computation modulo
a shared secret with application to the generation of shared safe-prime products. In
M. Yung, editor, Advances in Cryptology - Crypto 2002, pages 417–432, Berlin, 2002.
Springer-Verlag. Lecture Notes in Computer Science Volume 2442.

[BB89] Judit Bar-Ilan and Donald Beaver. Non-cryptographic fault-tolerant computing in
constant number of rounds of interaction. In Proc. ACM PODC’89, pages 201–209,
1989.

[CD98] Ronald Cramer and Ivan Damgaard. Zero-knowledge proofs for finite field arithmetic,
or: Can zero-knowledge be for free. In Hugo Krawczyk, editor, Advances in Cryptology
- Crypto ’98, pages 424–441, Berlin, 1998. Springer-Verlag. Lecture Notes in Computer
Science Volume 1462.

[CFL83a] Ashok K. Chandra, Steven Fortune, and Richard J. Lipton. Lower bounds for constant
depth circuits for prefix problems. In Josep Díaz, editor, ICALP, volume 154 of Lecture
Notes in Computer Science, pages 109–117. Springer, 1983.

[CFL83b] Ashok K. Chandra, Steven Fortune, and Richard J. Lipton. Unbounded fan-in circuits
and associative functions. In Proceedings of the Fifthteenth Annual ACM Symposium
on Theory of Computing, pages 52–60, New York, NY, 1983.

[FKN94] Uri Feige, Joe Kilian, and Moni Naor. A minimal model for secure computation
(extended abstract). In Proceedings of the Twenty-Sixth Annual ACM Symposium
on the Theory of Computing, pages 554–563, Montréal, Québec, Canada, 23–25 May
1994.

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation
with applications to round-efficient secure computation. pages 294–304, 2000.

[IK02] Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via
perfect randomizing polynomials. In Proceedings of ICALP 2002, pages 244–256,
Berlin, 2002. Springer-Verlag. Lecture Notes in Computer Science Volume 2380.

10



[Kil05] Eike Kiltz. Unconditionally secure constant round multi-party computation for equal-
ity, comparison, bits and exponentiation. Cryptology ePrint Archive 2005/066, Febru-
ary 2005.

11


