
FOX Algorithm Implementation: a hardware design

approach

Colm O’Keeffe ∗ Emanuel Popovici ∗

Abstract — Encryption algorithms are becoming
more necessary to ensure data is securely transmit-
ted over insecure communication channels. FOX is
a recently developed algorithm and its structure is
based on the already proven IDEA (International
Data Encryption Algorithm) cipher.

FOX is a symmetric (private key) block cipher. Its
top-level structure uses the Lai-Massey scheme and
the round functions used in the scheme are substitu-
tion permutation networks (SPN). Its flexibility lies
in the fact that it can be efficiently implemented in
hardware and software. We report some of the first
results of implementing the cipher on an FPGA.

1 INTRODUCTION

Over the last number of decades there has been
rapid development in communication technology
and in computer processing power, which in turn
has lead to a huge increase in data passing between
companies, individuals and organizations. Encryp-
tion algorithms are used to provide the secure trans-
mission of this data across insecure channels, such
as telephone lines and ISDN, while maintaining its
integrity. Attacks on transmitted data by unwanted
third parties exploit weakly designed algorithms
and these attacks can be either passive (listening
on transmissions) or active (modifying the trans-
mitted data).

In communications the original message before
encryption is referred to as the plaintext (P) and is
usually of a fixed length. Encrypting a message re-
quires the algorithm to operate upon the plaintext
using an encryption key (Ke) to produce the cipher-
text (C ). After transmission the original plaintext
(P) is reconstructed at the receiving side from the
ciphertext using the decryption algorithm and a de-
cryption key (Kd). Ke and Kd are pseudo-random
data patterns that are generated by a separate key-
scheduling algorithm.

Plaintext P Algorithm
Decryption

Plaintext PAlgorithm
Encryption 

KdKe
Encryption Key Decryption Key

Ciphertext C

Figure 1: Cipher Process

∗Department of Microelectronic Engineering, University
College Cork, Ireland, email: colm.okeeffe@mars.ucc.ie,

e.popovici@ucc.ie

Ciphers refer to the encryption/decryption pro-
cess and there are two possible types. One cipher
type is called a symmetric cipher (private-key), in
which Ke and Kd are the same and are known only
to the sender and receiver. The second type is an
asymmetric cipher (public-key) in which different
keys are used for the encryption and decryption
process [2]. Private key algorithms can be either
block ciphers, where the plaintext is a fixed length
block, or stream ciphers, in which case the plain-
text is broken down into individual bits. This paper
will investigate the implementation on hardware of
a new private-key block cipher called FOX.

Section 2 overviews FOX’s construction. Section
3 goes into detail about the high-level structure
of FOX and the primitive components used in its
round functions. Section 4 explains the finite field
arithmetic used in the round functions and finally
section 5 discuss some of the architectures used and
the synthesized results.

2 FOX Algorithm

FOX is a symmetric block cipher that was devel-
oped to have a high security level and large imple-
mentation possibilities [1,7]. A new key-scheduling
algorithm was developed to increase this security
level.

FOX’s top level scheme is based on the Lai-
Massey scheme which is the same used for the IDEA
cipher [3,4]. Previous ciphers such as DES, Triple
DES and Blowfish were based on the Feistel scheme.
This scheme proved that if the round functions are
random, then a 3-round Feistel cipher will look ran-
dom to any chosen plaintext attack. For the Lai-
Massey scheme it was proved that a similar result
could be obtained if an orthomorphism function
was added. The orthomorphism used is a Feistel
scheme with an identity function as its round func-
tion [3].

Most modern ciphers are based on Claude Shan-
non’s principles of diffusion and confusion. Confu-
sion is the obscuring of the relationship between the
plaintext and the ciphertext and can be achieved
through substitution. FOX uses a non-linear 8-bit
to 8-bit mapping using constructs called s-boxes.
However confusion is not enough to provide secu-
rity for a cipher and must be coupled with diffu-



f32

OR

32−Bits 32−Bits

32−Bits 32−Bits

64−Bit Round Key

Figure 2: Imor64 Scheme

sion. To achieve diffusion, patterns that occur in
the plaintext must be spread out so that they are
undetectable in the ciphertext. For diffusion to oc-
cur a change in a single bit of the plaintext should
result in changing the value of many ciphertext bits.
Linear multipermutations are used in FOX to em-
ploy diffusion.

3 FOX Construction

There are four members of the FOX family
as shown in Table 1. FOX64 and FOX128
are the generic members while FOX64/k/r and
FOX128/k/r are variants of the cipher in which
the key size k can be of lengtht 0 to 256 bits and r,
the number of encryption/decryption rounds, can
be any where from 12 to 255 iterations. The stan-
dard number of rounds used in the generic version
is sixteen but twelve is the minimum for acceptable
security levels.

Name Block Key Round No
FOX64 64-bits 128-bits 16
FOX128 128-bits 256-bits 16

FOX64/k/r 64-bits k r
FOX128/k/r 128-bits k r

Table 1: FOX family members

3.1 Top Level Structure

FOX64 and its variant is based on the top-level Lai-
Massey scheme shown in Figure 2. This scheme
called Imor64 is used in the encryption process and
contains the orthomorphism function called OR
that is based on a Feistel structure. For decryption
the Imio64 scheme is used, but the orthomorphism

used is the inverse of the OR function called IO (In-
verse OR).For encryption and decryption, Imor64
and Imio64 are used for (r -1) iterations, where r is
the number of rounds used. On the final round the
function Imid64 is used. The difference between
this and the previous functions is that it contains
no orthomorphism function. All three schemes use
the same SPN called f32.

OR Function IO function

16−Bits 16−Bits

16−Bits

16−Bits 16−Bits

16−Bits16−Bits16−Bits

Figure 3: One-round Feistel Schemes

FOX128 uses an Extended Lai-Massey scheme
with the SPN f64. Elmor128 and Elmio128 are the
(r -1) iterated encryption and decryption schemes
respectively. They use the same OR and IO ortho-
morphism as FOX64. Elmid128 is used for the final
round and contains no orthomorphism.

3.2 Substitution Permutation Network

Two SPN’s are used named f32 and f64. The input
to the SPN’s are broken into equivalent byte values
to be operated upon. The FOX128 SPN, f64, is
structurally the same as FOX64’s f32 except an
extended version. Eight byte values are operated
upon in f64, while f32 has four byte operands. For
each round a different key called a round-key (RK )
is used. These round-keys have been put in place
by the key-scheduling algorithm.

An SPN in FOX consists of three stages, the
round key addition part, a substitution part and
a diffusion part. The round key addition is sim-
ply the bit-wise addition of the round key with the
data at various stages through the network. This
bit-wise addition is performed using an XOR op-
eration. The substitution phase is a bijective 8-bit
to 8-bit mapping with each different input mapping
to a different output. FOX uses three small s-box’s
to achieve this. These s-boxes are arranged into
a three round Lai-Massey scheme. The “small” s-
boxes themselves are 4-bit to 4-bit mappings but
when arranged in the scheme result in the 8-bit
to 8-bit mapping. Diffusion is achieved through



a linear-multipermutation. This multipermutation
multiplies the data by predefined matrices. For dif-
fusion in FOX64, referred to as mu4, a 4x4 matrix
is used due to the fact that there are four 8-bit
operands. Each operand is multiplied by a matrix
column. For FOX128 an 8x8 matrix is used for the
eight byte operands used in f64.

sbox sbox sboxsbox

mu4

sbox sbox sboxsbox

RK(32 MSB’s)

RK(32 MSB’s)

RK(32 LSB’s)

Confusion

Diffusion

Confusion

Figure 4: The FOX Substitution Permutation Net-
work

4 Finite Field Arithmetic

Multiplication of the matrix used for diffusion is
performed using finite field arithmetic [5]. The field
used is GF(2m). In this case m is 8 which gives
a field containing 256 byte elements. Operations
in a finite field are beneficial to a hardware design
because the result of all calculations of the field
will be represented using a constant number of bits
(for our implementation it will be 8 bits). Elements
can be represented as polynomials with the highest
degree of (m-1) with coefficients in GF(2).

Multiplication in GF(28) corresponds to the mul-
tiplication of polynomials modulo an irreducible
polynomial of degree 8. In FOX the irreducible
polynomial is

P (x) = x8 + x7 + x6 + x5 + x4 + x3 + 1 (1)

For the hardware design a Mastrovito multiplier
is used, which is easily implemented using a net-
work of AND gates and XOR gates [5].

5 Architectures

5.1 Design Implementation

Two architectural versions of both the generic
FOX64 and FOX128 were implemented. The first is
a pipeline architecture that uses registers between
each round to pipeline the data through the design
as efficiently as possible. A one-shot purely combi-
national design is the second version. The pipeline
design is the most efficient for data throughput.
Power consumption is minimized in the one-shot
design as no clock is used which reduces switching.

One entity can be used for both the encryption
and decryption process as both use the same struc-
ture except for the orthomorphism function. A en-
crypt/decrypt signal is used to select the required
orthomorphism function depending on the process.
The sixteen round-keys are held in on-chip registers
and provided for each round.

Data Input Register

Encrypt/Decrypt
Round

Round Register

Data Output Register

Encrypt/Decrypt
Round

Round Keys
16

Data_Out

clkEnc/Dec Data_In

Figure 5: Pipeline Architecture

5.2 Design Results

These designs were synthesized for Xilinx VirtexII
Pro technology and some results of implementation
are given in Table 2.

Design Clock Speed LUT Slices
F64 Pipe 29.8ns 2.1Gbs 13929 7173
F128 Pipe 33.9ns 3.7Gbs 30393 15668
F64 1Shot 421.8ns 152Mbs 9562 5343
F128 1Shot 487ns 263Mbs 25087 14107

Table 2: Synthesis Results

From the results, the pipelined architectures are
the most efficient, with FOX128 and FOX64 having



a throughput of 3.76 Gbits/s and 2.15 Gbits/s re-
spectively. The clock for both one-shot implemen-
tations is quite large which is to be expected as it is
a fully combinational design. This in turn has the
effect of reducing throughput to 152 Mbits/s and
263 Mbits/s for FOX64 and FOX128 respectively.
An increase in design area is a trade-off for the in-
creased throughput in these designs. The pipelined
design uses a greater amount of LUT’s and slices
in comparison to the one-shot designs. Also the
amount of flip-flops used is increased for pipelining
due to the use of registers. Pipelined FOX128 uses
4119 slice flip-flops while the pipelined FOX64 uti-
lizes 2067 flip-flops. Registers in FOX128 are twice
the width of FOX64 and is the reason behind the
greater number of flip-flops in FOX128. The re-
sults compare well with an FPGA implementation
involving AES [6].

5.3 Hardware versus Software

Encryption algorithms can be implemented in both
hardware and software. FOX was developed with
this flexibility in mind. It can be easily imple-
mented on 32 or 64-bit architectures. Round func-
tions can be implemented very efficiently in soft-
ware using a combination of look-up tables and
XOR operations [1,7]. On hardware round func-
tions use memory blocks for s-box mappings and
finite field arithmetic can be done using XOR and
AND gates.

Although software encryption is becoming more
prevalent today, hardware is still the embodiment
of choice for military and computationally intensive
commercial applications [2]. The main advantage
of using hardware is speed as these algorithms use a
lot of processing power for computation. Hardware
is also quite secure in relation to software. An algo-
rithm would need to be embedded deep in an oper-
ating system to be secure in software whereas hard-
ware can be manufactured in tamper-proof devices.
Software has the disadvantage of being slower but
its benefits include portability and flexibility.

6 Conclusion

Aspects which are crucial to a good design are per-
formance, size, cost and reusability. A fully param-
eterised hardware cryptographic design can save
both time and cost when implemented correctly.
In this paper different architectures are examined
and implemented for the generic versions of FOX.
The results showed that the FOX algorithm is suit-
able for FPGA implementation and some prelimi-
nary results are reported in this paper. Migration
to other FPGA technologies is possible and the de-

sign is open to implementation of the key schedul-
ing algorithm on-chip.

References

[1] P. Junod, S. Vaudenay, “FOX Specifica-
tions Version 1.1”, EPFL Technical Report
IC/2004/75, 24-11-2004.

[2] B. Schneier, “Applied Cryptography”, Second
Edition, John Wiley and Sons, Inc, 1996.

[3] S. Vaudenay, “On the Lai-Massey Scheme”,
In the Advances in Cryptology - ASIA -
CRYPT’99, Springer-Verlag, volume 1716 of
LNCS, pages 49-61, 2000.

[4] N. Sklavos, O. Koufopavlou, “Asynchronous
Low Power VLSI Implementation of the IDEA
Algorithm”, Proceedings of IEEE International
Conference on Electronics, Circuits and Sys-
tems, pages 1425-1428, 2001.

[5] E.D. Mastrovito, “VLSI Architectures for
Computation in Galois Fields”, PhD thesis,
Linkping University, Dept. of Electrical Eng.,
Linkping, Sweden, 1991.

[6] M. McLoone, J.V. McCanny “Generic architec-
tures and semiconductor intellectual property
cores for advanced encryption standard cryp-
tography”, Computers and Digital Techniques,
IEEE Proceedings, Volume: 150, pages 239-244,
18 July 2003.

[7] P. Junod, S. Vaudenay, “FOX: a New Family of
Block Ciphers”, Lecture Notes in Computer Sci-
ence, Springer-Verlag, Volume 3357, pages 114-
129, 2004.


