Towards computationally sound symbolic analysis of key
exchange protocols
(extended abstract)

Prateek Gupta and Vitaly Shmatikov
The University of Texas at Austin

Abstract

We present a cryptographically sound formal method for imgporrectness of key ex-
change protocols. Our main tool is a fragment of a symbolitquol logic. We demonstrate
that proofs of key agreement and key secrecy in this logidyisimulatability in Shoup’s secure
multi-party framework for key exchange. As part of the logie present cryptographically
sound abstractions of CMA-secure digital signatures anestricted form of Diffie-Hellman
exponentiation, which is a technical result of independartest. We illustrate our method by
constructing a proof of security for a simple authenticaddtie-Hellman protocol.

Keywords: cryptographic protocol analysis, logic, computationalrsiness

1 Introduction

Cryptographic protocols are the fundamental building kéoof secure communication systems.
Key exchange protocols, in particular, are commonly useidhflementsecure sessionsSecure
session establishment is the main objective of widely degaloprotocols such as Kerberos [30],
SSL/TLS [22] and IKE [29]. Therefore, ensuring correctnassl security of key exchange is of
critical importance. Intuitively, a key exchange proto&kecure if it providesagreemen{upon
completion of the protocol, the parties correctly know eattier’s identity and agree on the value
of the established key) arkay secrecyfor anyone but the participants, the established key isind
tinguishable from a random value).

Design and analysis of provably correct key exchange potdédtas a long history [9, 23, 8,
10, 6, 35, 16, 17]. Cryptographic proofs of security for kegleange are usually carried out in the
so-calledsimulatability paradigm €.g, [5, 11]), using standard techniques for secure multiypart
computation [25]. Informally, this involves defining &feal functionalityfor key exchange which
is secure by design because, in the ideal functionalityusted third party generates the key as
a true random value and distributes it to protocol participa The actual, real-world protocol is
secure if there exists an efficiente(, probabilistic polynomial-time) simulator, that, with @ass
only to the ideal functionality, can “fool” any efficient agksary into thinking that the latter is
engaged in the real-world protocol. If the ideal-world slation and the real-world protocol are
indistinguishable, then no more information can be ex¢édtom real-world protocol sessions
than from the ideal functionality. Since the latter is sechy design, security of the real-world
protocol follows. Simulatability-based definitions argapling because they provide a natural way

of specifying the abstraction €., the ideal functionality) that the key exchange protocslipposed
to present to higher-level applications.

Constructing proofs of simulatability is, in general, a trpuial task. Validity arguments for
the simulator often rely on manual case analysis and inforessoning “by the logic of the pro-
tocol” (e.g, [35]). We show that, for a certain class of key exchangeqgoads, the simulator can
be constructed automatically. Validity of the simulatothien proved using a simple, purely sym-
bolic deductive system which does not involve probabgiti&uch symbolic inference systems for
reasoning about security are known in the literature aséipdao” models.

We use a fragment of therotocol composition logiof Durgin, Dattaet al. [24, 20], containing
abstract digital signatures, but not encryption. We alsmituce a formal abstraction of a particu-
lar usage of Diffie-Hellman exponentiation, namely, ddiom of a shared key from authenticated
Diffie-Hellman values. We prove that this fragment is “corgtionally” sound: even though the
logic represents cryptographic primitives as abstracttmfim terms, the existence of a symbolic
proof implies security in the standard cryptographic model

Our second contribution is symbolic, computationally sibariteria for proving security of key
exchange protocols in Shoup’s simulatability-based fraank [35] with static corruptions. Our ap-
proach thus combines the ease of reasoning (and possibiaatitn) provided by purely symbolic
deductive techniques with the strong security guarantaphbdd by simulatability. We illustrate our
approach by constructing a proof of security for an auticatgd Diffie-Hellman protocol.

Our choice of Shoup’s framework is somewhat arbitrary. Weevagtracted by its conceptual
simplicity, which allowed us to carry out symbolic reasanisolely on the basis of standard as-
sumptions about the underlying cryptography, namely, thei§lonal Diffie-Hellman assumption
and security of the digital signature scheme against exiateforgery. Shoup’s model does not
separate authentication from key exchange, thus avoitimgéed for hybrid ideal functionalities,
nor does it require the use of any specific cryptographialijor We believe that the techniques
developed in this paper can be applied to other simulatgliiised frameworks for key exchange.

Related work. The protocol composition logic used in this paper is due togid) Dattaet al.[24,
20]. Computational soundness foddferent complementary fragment of this logic (containing
encryption, but not signatures) is established in [21]. @ahniques are similar, but (i) we extend
the logic with axioms modeling the Decisional Diffie-Hellmassumption and the use of universal
hash functions for randomness extraction from joint Difieiman values, (ii) our cryptographic
definitions of security are simulatability-based, and thwisstantially different from the game-based
definitions considered in [21].

Bridging the gap between symbolic models and the compu@timodel used in modern cryp-
tography has been a subject of very active research [1, 333310ur proof techniques are inspired
by the work of Micciancio and Warinschi [33]. The results 82[33], however, simply show the
existence of a sound symbolic abstraction for protocolesan the presence of CCA2-secure en-
cryption, and cannot be used to demonstrate simulatabiliBiffie-Hellman-based protocols.

Canettiet al. [12, 13, 17, 18, 14] and Backes, Pfitzmann, and Waidner [34}] $roposed
simulatability-based definitions of security for cryptaghic primitives and protocols that are pre-
served under arbitrary or universal composition (UC). Wewbur work as complementary. Instead
of alternative definitions, we propose cryptographicatiyrsd symbolic methods for proving that a
protocol is simulatable in a particular ideal functionalit

Another important difference is that symbolic proofs caly mn UC cryptographic primitives

only if the primitives’ ideal functionalities are purely ‘@ev-Yao.” Informally, this means thatery
computation using a given cryptographic primitive mustédhasound symbolic abstraction, as is the
case.e.g, for the “universally composable cryptographic librang].[By contrast, we follow [21]

in requiring only that everyrovable symbolic theorem hold for the overwhelming majority of
computational instantiations. For a class of key estalesfit protocols based on authenticated
Diffie-Hellman, this enables us to obtain computationathyrsd symbolic proofsvithout coming

up with a general-purpose “Dolev-Yao” functionality forfide-Hellman exponentiation (which is a
challenging open problem).

Limitations of our approach are as follows. We only considesmall class of protocols, in
which Diffie-Hellman exponentiation is used solely for kegrigation. If our symbolic criteria can-
not be proved for a particular protocol, this does not mean titie corresponding computational
criteria do not hold (unlike UC definitions, our criteria dotrprovide an exact characterization).
This is inevitable in any expressive deductive system. IFin@ our model, the adversary is not
allowed to corrupt participants in the middle of protocogention. Therefore, symbolically proved
simulatability is not necessarily preserved under aryittcamposition. This is the price we pay for
extending computational soundness results to cryptograpimitives such as Diffie-Hellman with
standard (non-UC) definitions of security. In the future,phan to investigate symbolic proof meth-
ods for stronger notions of composability, such as seciritiie presence of adaptive corruptions.

Canetti and Herzog proposed a symbolic criterion for usialy composable key exchange [15],
while Backes and Pfitzmann [2] proposed an alternative syimbrterion for key secrecy. Both
papers consider classes of protocols which are substarditierent from ours, with cryptographic
primitives that include encryption, but not Diffie-HellmaiVe view this paper, along with [21],
as one of the first steps towards development of cryptografhisound proof methods for criteria
such as those proposed in [15, 2].

We are not aware of other computational soundness resulpsdtocols using Diffie-Hellman.
A computational soundness result for symbolic digital atgnes appears in [19]. Although [19]
claims to rely on standard CMA security [26], the reductinfli9, p. 21] makes a stronger assump-
tion that the adversary cannot compute a valid signatureiwhad not been previously produced
by an honest party. By contrast, our model for digital sigreg only assumes CMA security, and
thus permits the adversary to forge new signatures on phkamtvhich had been previously signed
by a honest party.

Organization of the paper. We explain the cryptographic assumptions in section 2, tlefime
the symbolic protocol model in section 3, and the computalionodel in section 4. In section 5,
we give the fragment of the protocol composition logic of §inr Dattaet al. that we are using in
this paper, and the associated inference system in secti&e@ion 7 contains the main result of
the paper: automated construction of the simulator and slimproof of validity, illustrated by the
example in section 8. We describe future research direstiosection 9.

2 Cryptographic background

Our cryptographic definitions are standard. We discuss thenore detail in section A.

A digital signature scheme consists of a key generationriéfgo /C which produces a pub-
lic/private key pair, a signing algorithr&, and a verification algorithnv. The signature scheme
is assumed to be secure against existential forgery undeadaiptive chosen-message attack [26].

Informally, this means that is computationally infeasitdethe adversary to produce a signature on
any message which had not been previously signed by an heigast.

We formalize the Decisional Diffie-Hellman (DDH) assumptias a game. LB be a group
of large prime ordeq and letg € G be a generator. LePP" denote a “Diffie-Hellman oracle.”
In the learning phasethe adversary can make a polynomial number of distinctigsi@f the form
(i,j) (0 #]). Inresponse to a query, the oracle returns (i g, g¢%), wherex;, x; are chosen
uniformly at random fronZq. In thetesting phasgthe adversary makes a single query of the form
(i,j) (i # 1), where(i,]) is different from any pair used in the learning phase. A ramdut b is
chosen by the oracle. if = 0, then the tupldg®, g9, g*%) is returned, else the tuplg®, g9, g%)
is returned, wherg; is random. The DDH assumption says that no efficient advwersar compute
b with probability that is greater tha%m by more than a negligible amount.

Finally, letH be analmost universafamily of hash functions mappingo, 1}" to {0,1}' and
indexed by a sef, i.e, for everyx,y € {0,1}", x # vy, the probability that;(x) = h;(y) for an
elementh; € H selected uniformly fronH is at most) + 5. LetX c {0,1}", | X |> 2. The
leftover hash lemma [28] states that the distribut{d(x)} is statistically indistinguishable from
the uniform distribution for a uniformly random hash fulctiindexi.

Definition of security for key exchange.We adopt Shoup’s model of secure key exchange [35] due
to its conceptual simplicity. It is specific to key exchangelike general-purpose models, such as
universal composability [13, 17] and reactive simulaifp[¥], that aim to give new definitions for
cryptographic primitives and multi-party protocols whigte preserved under general composition.
It also allows us to demonstrate the power of symbolic reiagodirectly, and to avoid the difficul-
ties inherent in coming up with a universally composable ehad Diffie-Hellman exponentiation.

Shoup’s framework is based on the standard notion of maltiyssimulatability. Here we give
a concise summary of [35]. A more detailed exposition carobed in appendix E. For simplicity,
we consider the case of two-party protocols. Firstjdaal-world models defined, in which key
exchange is carried out with the help of a trusted third pajled thering masterin [35], but
perhaps better referred to as ibdeal key exchange functionalityn the ideal world, the adversary
may instruct the ideal functionality to create a truly ramdkey (“create” operation), chosen by the
ideal key exchange functionality, and to securely distghtne created key to both user instances
(“connect” operation). Clearly, this ideal-world key extiye is secure by definition, since the key
is a random value which is known to both user instances butenidrom the adversary. In this
paper, we limit our attention tstatic corruptions, and only permit the ideal-world adversary to
compromise user instances that are engaged in a protosibisegth a corrupt user.

In thereal-world model there is no trusted third party and keys are establishecédguting the
actual key exchange protocol. For both the real-world aedligvorld adversaries, a transcript is
created, recording all observable events as they happen.

A key exchange protocol is correct in this framework if it lthe properties ofermination
liveness andsimulatability Termination requires that any real-world user instancmiteate after
a polynomially bounded number of messages are deliverdd tdvieness requires that, for every
efficient real world-adversaryl, whenever the adversary faithfully delivers all messagsw/den
the two user instances, both user instances successfiityntte the protocol and generate a ses-
sion key. Simulatability requires that, for every real-WordversaryA, there exists an ideal-world
simulatorS such that their transcriptRealWorld.4) andldealWorld S), respectively, are compu-
tationally indistinguishable.

Identities id = X (variable name) A (constant name)

Indices ix = i (index of a hash function family)

Terms t = x (variable)| c (constant) id (identity)| r (random)|
ix (index)| (t,t) (pair)| d(r) (exponential") |
d(r,r) (exponentialy’") | {t}i4 (signature ofid)

Internal terms it = t (term)| h;(.) (unary hash function)

Actions a:= e(null) | (vx) (generate nonce) (vi) (generate index) (t) (send ternt) |
(t) (receive ternt) | x = x (equality test) (t/t) (pattern matching)
(create) (“key created”)| (connect) (“key agreement reached”)

AList &= €| a,AList
Thread ::= (i d, sessionld
Role ::= [ALiSt]Thread

Figure 1: Syntax of the symbolic model

3 Symbolic model

Our symbolic protocol model is essentially the same as irptbéocol composition logic of Datta
et al. [20]. Therefore, we only give the main definitions and intiicavhere our model differs
from [20]. Informally, protocolll is a set of roles, each describing a sequence of actions to be
executed by a participant in a protocol session. A role catihtweght of as atrandin the Strand
Space Model [36]. In this paper, we focus on two-party prolsc

Protocol syntax is given in fig. 1. Note that terms represgnsignatures have labels which
are used to differentiate between different signaturefiersame plaintext. (Recall that CMA secu-
rity does not guarantee uniqueness of signatures, andtgaimiadversary to forge new signatures
on plaintexts previously signed by honest participantd)e Termd(x, y) denotes Diffie-Hellman
exponentiatiorg®Y for some basg (generator of some large cyclic groGunder multiplication).
Note thatd(x, y) is same ag(y, x) since multiplication is commutative. We abuse notation @ad
fer to both terms byi(x, y). We also use the same symbalor (syntactically different) generation
of new random nonce§&’x) and generation of new indicési) for the universal family of hash
functions.

To simplify the logic for the purposes of this paper, we omitryption. Internal terms are used
in the internal computations of protocol participants amzdude, in addition to normal terms, hash
functions. Participants are not allowed to send terms @a@nghash functions as part of protocol
messages (but they are crucial in proving secrecy of theatbkey).

Actions include special annotatiorisreate) and (connect), which mark, respectively, the
point in the protocol where, according to the specificatibie, key is first computed by an honest
participant and the point after which both participants supposed to share the computed key.
These are further explained in section 7.1.

A symbolic trace of protocdll is a sequence of steps denoting, in the order of executibn, al
honest participants’ actions and send/receive actionkeittacker. Formally, this is modeled as
a symbolicexecution strand ExecStrapd::= Start(Init), AList, wherelnit is some initial con-
figuration, andAList is the sequence of actions. Thedversarial viewof a symbolic trace is a
projection which lists, in the order of execution, send aeckeive actions. For a symbolic trace
ts € ExecStrangd, IetAd\i(’H’ A)(ts) (or simply Ad\V(ts)) denote the corresponding adversarial view.

4 Computational model

To link the abstract symbolic model described in sectiontBédull computational model, in which
cryptographic primitives are implemented as actual comtfrial algorithms, we (i) instantiate the
abstract actions of honest protocol participants to coatfmutal actions and the abstract symbolic
terms sent by honest participants to corresponding litgtriand (ii) construct symbolic abstrac-
tions for all messages generated by the computational salyer

We emphasize that, unlike other work on computational sness of symbolic models [33, 13,
3], we donotclaim that every computational trace has a sound symbafditrattion (this is difficult
to achieve in the presence of malleable Diffie-Hellman exptiation). Our computational sound-
ness is a weaker condition: any property tbah be provedn the symbolic model using the logic
of section 5 is guaranteed to hold in the computational modhis is the same general approach
as in [21], but the properties considered in this paper abstantially different. Weakening the
soundness requirement allows us to handle key exchangecptetbased on Diffie-Hellman.

As in [33, 21], we fix the protocdll, adversaryA, security parametey, and some randomness
R of size polynomially bounded in, which is divided into the randomness used by honest patrtici
pants and that used by the adversary. The symbolic protaeslé&on is converted into a concrete
execution by mapping every abstract symbol into the coarding bitstring and instantiating every
abstract action of the honest participants with the comedimg computational action.

Details of this mapping are given in appendix B. For exampignbolic termsr denoting
random values are mapped into the bitstrings drawn from pipeopriate part of randomne$s
Diffie-Hellman symbolic termd(x), d(x, y) are mapped into elemerd$, g*¥ € G whereG belongs
to a family of large cyclic groups (indexed by the securitygmaetern) of prime orderq whose
generator ig), and so on. Symbolic actions are instantiated similacly, (vx) is instantiated in the
concrete model as generation of a random nonce using raressRn

The only difficult part is defining a symbolic abstraction foessages sent by the adversary. As
in [33], this is done by parsing them and replacing evenyttiiig which is neither an instantiation of
a symbolic constant, nor generated by an honest participémta new symbol, denoting an adver-
sarial nonce. We handle terms of the foghas follows. Whenever an honest participant receives
a value representing® for somex which is known to the recipient, we abstract the correspandi
term asd(x) (because the recipient can compgteand check if it matches the received value)x If
is not known, we create a new symbolic tediix’') wherex is a new symbolic name.

Informally, the resulting symbolic abstraction of Diffieebiman terms is1ot “Dolev-Yao.” Be-
cause Diffie-Hellman exponents are malleable, the adwecsar convert somg’ sent by an honest
participant intog”, and this computation does not have a symbolic equivalerdte Nhowever,
that our theorem 1 guarantees computational soundnesdoudyoperties that arprovablein the
symbolic logic. As we demonstrate below, a symbolic proafdgreement in a Diffie-Hellman-
based key exchange protocol only goes through if the prb&mrsures non-malleabilitye(g, all
Diffie-Hellman terms are signed), and fihis class of protocols the symbolic abstraction is sound.

A computational tracér 4(n, R) (for some fixed protocdll, adversaryA, security parameter
n and randomnesB) is defined as a tuplés, f, R), wherets € ExecStrang is the corresponding
symbolic tracef is the function fronVar(ts) U Const(whereVar(ts) denotes the set of variables oc-
curring ints andConstis the set of symbolic constants) to bitstrings (of size polyially bounded
in). We denote byCExecStrang the set of all computational (concrete) traces of the paitbc

Given a concrete trade we denote byR(t) = (R4, Rrr) the randomness usedtinWe say that

a = Send(P,m) | Receive(P,m) | New(P,t) | Verify(P,t)

¢ = a | Has(P,t) | Fresh(P,t)| Honest(P) | Contains(ty,ts) |
IndistRand(it) | ¢ A¢ | ¢ | IXp| Start(P) | &¢ | O¢
Y I ppp

Figure 2: Syntax of the protocol logic

a concrete track is an implementation ofs (or inversely,ts is an abstraction aof.), denoted by
tc = Exec?n A) (ts), iff tc = (ts,f, R(tc)). The adversarial view of a computational tragedenoted

asAd\/gH,) (o) (simply Adv(tc)), is given byExec?H,) (AdU(ts)) wherete = (ts, T, R(tc)).

5 Protocol logic

The syntax of the logic is given in fig. 2, whepadenotes a role (see fig. 1), whiteandP denote a
term and a thread, respectively. The only substantial isthdib [20] is theIndistRand predicate.

In the rest of this paper, we ugeand+ to indicate predicate formulas antto denote a generic
term called a “message.” A messageés a 4-tuple (source, destination, session id, contenticesi
we model the network as controlled by the adversary, theceoand destination fields may not
denote the real identities of the principals and may beedtéy the adversary at will.

Action formulas refer to honest participants’ actions. &xample Send(P, m), Receive(P,m),
New(P,t), Verify(P, t) mean that the last action taken in the protocol execution reapectively,
sending, receiving, generating a new value and verifyinigaasure by the ager® on message
m. FormulaHas(P, t) means that threaB knows termt, while Fresh(P, t) means that term is
freshly generated in thred®and has not been sent out in an outgoing message:st(P) means
that partyP is honest at the start of the protocol and remains honesighmut the execution of the
protocol (we only consider static corruptions). Formtdatains(t, to) means that the termy, is
contained in the term;. Formulass e and©y are temporal formulas which say, respectively, that
 was true sometime or immediately before in the p&start(P) simply says that th® has not
performed any actions in the past. Finally, the modal foed{R]x is in the style of Floyd-Hoare
logic and states that in a threadafter actionsR are executed, starting from a state in which the
formulad was true, formulap is true in the resulting state.

For the purposes of this paper, the definition of the subtefationC defined on terms coincides
with the definition ofclosure, i.e, t1 C t, iff t; € closure(ts), where the closure of termis
defined as the least set of terms derivable using the follpwites:

t € closure(t), t € closure((t,s)),s € closure((t, s)),
d(x,y) € closure(d(y,x)), t € closure({t};)
r € closure(s) A s € closure(t) = r € closure(t)

Symbolic semantics.Symbolic semantics is the same as previously publishedin J®e give it in
appendix C. Formule is true in a symbolic trac® € ExecStrang of the protocolll, denoted as
IIR | ¢ or R(II) |= ¢, if ¢ holds true at the end of the traBe TraceR may be a complete or an
incomplete trace in which some of the parties have not camegbldne protocol. For a given protocol
IT, let init(II) denote the set of all possible initial configurations. Thegatisfiesp, denoted by
IT = p, if R= ¢, VR € ExecStrangd.

Computational semantics. We now define what it means for a formutato hold over the set of

concrete computational trac@sf protocolIl. Our definitions follow closely those of [33, 21]. For
all formulasnot involving IndistRand, we define semantics on a single concrete trace. We say
that a concrete execution tratef a protocolll satisfies a formulg if 3t € ExecStrang such
thatt = Exec?H,A) (ts) andts satisfiesp, i.e., ¢ is true (in the symbolic semantics) on the symbolic
abstraction of the concrete trace.

The semantics of a formula over asetof computational trace$ is defined as the subset
T’ C T whose elements satisfy the formuta We say that a formula holds for protocoll in the
computational model, denoted By = ¢, if the semantics of the formula is an overwhelming
subset of all possible traces of the protoEbl More precisely, given a formula and a protocol
IT, we associate witlp the setip]f; C CExecStrang of traces in which the formule is satisfied.
Now, IT = o, if, by definition, | [¢] | / | CExecStrand |> 1 — v(n), wherer is some negligible
function in the security parametgr

Computational semantics for timdistRand predicate is quite subtle because it cannot be
defined for a single concrete trace. It can only be defined famailies of traces (a similar issue
arises when modeling real-or-random indistinguishabdit values under encryption [21]). Before
we can define the computational semantic3mfistRand, we define a mappinBand : it — it.
Intuitively, Rand maps an internal termto a “random” termRand(u) that has the same structure.

Definition 1. LetRand(u) denote a random term of the same structure as the (intereaf) . We
defineRand(u) by induction over the term structure as follows (assumird title renamed variables
are unique up tax-renaming):

- Nonce:Rand(r) = ¢’

- Pairing: Rand((u1,us)) = (Rand(uy),Rand(uy))

- Signature:Rand({u}i4) = {Rand(u)}}i,

- Exponential:Rand(d(r)) = d(z')

- Diffie-Hellman valueRand(d(r;, r2)) = d(z')

- Hash function:Rand(h; (u)) = r

- Default: Rand(u) = u

We now define the computational semantics of ThéistRand predicate. For a protocdl,
let ts € ExecStrang denote the symbolic trace according to the protocol speatific and let
t, = Ad\(ts) be the corresponding adversarial view (recall that the @dvial view contains only
observable actions). L&f[t — u] denote a view in which every occurence of the (internal) term
is replaced by. For a symbolic view, and randomnesR, let condt,) denote the corresponding
computational viewj.e., condt,) = (t,,f,R), wheref is the concretization function defined in
section 4.

We say that protocoll satisfiesIndistRand(u) in the concrete model, denoted by |=;
IndistRand(u), if two families (over randomnedR) T, T’ are computationally indistinguishable,
where

e T ={condty),f(u)}r
e T’ = {condt,[Vt.t Cu:t — Rand(t)]),f(Rand(u))}r

For technical reasongndistRand needs to be defined over a family of computational traces.
Instead, we definEndistRand over a family of computationaliews(recall that a view is a projec-
tion of a trace on observable actions), and sayIhdt stRand holds for a family of computational
tracesff it holds over the corresponding family of computationalwse

8

AL glaloa

AA2 Fresh(X,t)[a]x&(a A ©Fresh(X,t))

AN2 o[vn)xHas(Y,n) = (Y = X)

AN3 ¢[vn|xFresh(X,n)

ARP ©Receive(X,p(x))[(a(x)/q(t))]xSReceive(X,p(t))

ORIG ¢New(X,n) = Has(X,n)

REC &Receive(X,n) = Has(X,n)

TUP Has(X,X) AHas(X,y) = Has(X, (X,Y))

PROJ Has(X,(X,y)) = Has(X,X) A Has(X,y)

VER Honest(X) A Verify(Y,{t}3) AX #Y =
3X.3m. II'(&Send(X,m) A Contains(m, {t}}))

N1 SNew(X,n) A &New(Y,n) = (X =Y)

N2 After(New(X,ny),New(X,n2)) = (N # ng)

F1 &Fresh(X,t) A &Fresh(Y,t) = (X=Y)

CON1 Contains((X,Y),X) A Contains((X,Y),Y)

CON2 Contains({t}},t)

After(a,b) = &(b A OSa)
ActionsInOrder(ai,...,a,) = After(aj,as)A... A After(ay—1,ay)

Figure 3: Basic axioms and axioms for protocol actions

Let us now examine the definition. Intuitively, it says tHa set of concrete instantiations of the
symbolic viewt, is computationally indistinguishable from the set of comapional instantiations
of the symbolic viewt], in which every subterm af has been replaced by the corresponding random
term. Note that in the proof system of sectionifdistRand(u) appears only when the termis
the established key, or the joint Diffie-Hellman value frorieh the key is derived.

We emphasize that, when satisfied, this definition of ingligtishability guarantees thahy
(pptime-computable) usage of the established key is saguhe sense of simulatability (see sec-
tion 2). In the proof of theorem 2, we use it to show that theeaslry cannot distinguish between
the transcript of the real-world protocol, and the (simeditideal-world transcript in which all op-
erations involving the key have been performed using a eindom value instead. Even if one of
the honest participants outputs the key in the clear aftesgtbeen established (note that the key is
explicitly appended to the adversary’s view of the protanaur definition), the adversary has only
a negligible probability of correctly telling the differea between the real world, where this leaked
key is a pseudo-random number extracted from the joint Difidiman value, and the ideal world,
where the leaked key had been generated as a true randommumbe

6 Symbolic proof system

Our proof system is based on the proof system in the originatbpol logic of Dattaet al. [24,
20, 21], but we omit the axioms for encryption and extend diggcl with several new axiom&/ER
(signature verification axiompDH1 andDDH2 (Diffie-Hellman axioms), andlHL (leftover hash
lemma, for reasoning about hash functions). We prove tlehtdw axioms are computationally
sound under standard cryptographic assumptions.

P1 Persist(X,t)[@xPersist(X,t)

P2 Fresh(X,t)[@xFresh(X,t), wheret aora # (m)

P3 HasAlone(X, n)[axHasAlone(X, n), wheren ¢, aora # (m)
F 0[(m)]x—Fresh(X,t), where(t C (m))

F2 Fresh(X,s) = Fresh(X,t), wheresC t

Persist € {Has, &},
HasAlone(X,t) = Has(X,t) A (Has(Y,t) = (X=Y))

Figure 4: Preservation and freshness loss axioms

TL S(pAY) = SpNoY

T2 S(pVy)=>opVoy

T3 o= -0y

AFO Start(X)[]x—¢a(X,t)

AF1 fla;...an|xAfter(as,as) A... AAfter(ap_1,ap)

AF2 (@(bl (X, t1) A @Fresh(X, t)) A @bQ(Y, tz)) =
After(bs(X,t1), (ba(Y,t2)), wheret C t, andX # Y

Figure 5: PLTL axioms and temporal ordering of actions

DDH1 Fresh(Y,y) A NotSent(Y,d(x,y)) AHonest(Y) A (IX. (X # Y) A Honest(X)
AFresh(X, X)) A NotSent(X,d(x,y)) = IndistRand(d(x,y))
DDH2 IndistRand(d(x,y))[@xIndistRand(d(x,y)), where ifa = (t) then
d(x,y), X,y & closure(t)
LHL IndistRand(d(x,y)) A 3X.Honest(X) A &[vi]x = IndistRand(hi(d(X,Y)))

NotSent(X,t) =Va.(aAa= (m) = t & closure(m)

Figure 6: Diffie-Hellman and hash function axioms

G1 if IT |= 6[P]x andII |= 8[P]x% thenlI = O[P]x¢ A ¢
G2 if T |= 8[P]xp andé’ = # andy = ' thenTl |= @'[P]x¢’
G3 if IT = ¢ thenIl |= 0[P]x¢

TGEN ifII |:) thenII): ST
HON if IT |= Start[|xe andV P € SII),II |= ¢[P]x¢
thenII = Alive(X) A Honest(X) = ¢

whereS(IT) denotes all possible starting configurationdlodnd
Alive(X) means that thread has not completed the protocol yet.

Figure 7: Rules for the proof system

10

Our symbolic inference system is given in figs. 3-7. $hy- ¢ if ¢ is provable using this
system.
Note Existential quantification oveX on the right-hand side of implication in théER axiom
simply means that there exists an instance of the protot®k.o

Theorem 1 (Computational soundness)LetII be an executable protocol anda formula. If the
protocol is implemented with a digital signature schemechlig secure against existential forgery
under the adaptive chosen message attack and assuming timddal Diffie-Hellman assumption
holds, thend

MEe=1IEc¢

The proof follows from computational soundness of all axsaand inference rules of the logic,
which is proved in appendix D.

7 Proving simulatability

We now show how to automatically construct the simulator $boup’s framework for key ex-
change [35], and prove its validity using the purely symbddigic described in sections 5 and 6.
Since our main goal is establishisgcurityof key exchange, we focus only on the simulatability
requirement, and omit termination and liveness for the gsep of this paper.

We emphasize that the simulator and deenputationalproof of its validity are essentially the
same as in Shoup’s original paper [35]. The proofs in [35}yéwer, are hand-crafted and based on
informal reasoning that “follows easily from the logic oftlprotocol” (seee.g, [35, p. 25]). Our
contribution is to take a rigorously defined, computatibnabund protocol logic and show that a
simplesymbolicproof in this logic implies the computational proof of [35hus opening the road
to automated formal proofs of security for key exchangequuis.

7.1 Construction of the simulator

The complete algorithm for constructing the simulator iwegi in appendix F, and summarized
here. As in [35], the ideal-world simulator runs the realdd@adversary4 as a subroutine, simu-
lating execution of real-world honest participants to hifile simulator computes the appropriate
connection assignmentse, it figures out which ideal-world user instances to connesteld on
which user instances are talking to each other in the redijyaxcept that in the ideal world the
ideal functionality substitutes computed real-world keyth random ideal-world keys. Whenever
S compromises an ideal-world user instance, it does so bylyaagphe session key extracted from
the real-world user instance thétis simulating to the real-world adversad. Any record placed
in the real-world transcript by the real-world adversargapied bysS to the ideal-world transcript.
Finally, anyappl i cat i on operation, which in Shoup’s framework models arbitrarnyjheiglevel
protocols or applications making use of the exchanged kegyaluated in the real world using the
computed real-world key, and in the ideal world using thedoan ideal-world key.

7.2 Validity of the simulator

To prove that the simulata$ is valid, it is necessary to establish that the connecti@igaments
made byS are legal and that the substitutions of real-world keys watidom ideal-world keys are

11

not detectable. We demonstrate that tsyonbolicconditions — one modeling agreement between
the participants, the other modeling key secrecy — are grififor thecomputationabalidity of the
simulator.

Agreement in the symbolic model.Following [8], our definition is based on matching records of
runs, which is slightly weaker than usual. The signatureived by one party may be different
from that sent by the other party, as long as it's on the samiatpkt. For a symbolic tracR of

a two-party protocoll, a record ofR by an honest party (i € [1,2]) consists of a sequence of
actions performed bg; duringR.

Definition 2. Messages; ,m, containing terms, t,, respectively arenatchingin the two records

if my is incoming for one record, gis outgoing for the other record,e., the sourcefield of one
matches thalestinationfield of other, and the terms; and t, in the two records, matchp-to-
randomnes the following sense:

- If t1 andt, do not contain a subterm which is a signature, then they meselatly.

-lfty = {s}}4i, thent; matches any term, which is a signature of the same term under the same

private key (maybe with a different labelg., t, = {s}};i for some .
- All subterms of; match up-to-randomness with the corresponding subtermsg. of

We say that two recordsatchif their messages can be partitioned into sets of matchingr me
sages with one message from each record in each set, suclmdsstages originated by either
participant appear in the same order in both records.

Key secrecy in the symbolic modelTo model key secrecy, we say that the key should be indistin-
guishable from a random numbeeg., we require thalndistRand(t) hold, wheret is the symbolic
term representing the key derived by the participants. Mamally, let Realandldeal denote the
real- and ideal- world views, recording the interactiontadf adversary with the honest participants
and the simulator, respectively. In the ideal-world vieW,oacurences of the established key are
replaced by a random number. [R¢alKeyandldealKeydenote the key in the real and ideal world,
respectively. The adversary is given eithkte@lldealKey or (RealRealKey depending on the
value of a secret bib (0 or 1). The adversary wins the game if he can correctly giesdth a
probability non-negligibly greater thaéq

The main step of the proof of theorem 2 below involves showirad a distinguisher between
the real-world and ideal-world transcripts in Shoup’s feavork can be used to win the above game.

Theorem 2. LetII be a protocol. If there exists a symbolic proof of agreemecbeding to def-
inition 2 and a symbolic proof of thendistRand(t) formula wheret is the symbolic term rep-
resenting the key, then the simulator constructed by theriigm of section 7.1 is valid for an
overwhelming subset of all possible executionH of

The validity argument rests on the following two conditior$) if two user instances share a
key in the ideal world, then the corresponding real-worldrisstances must agree upon the same
value for the key, (2) the keys generated in the ideal worltlthe real world are computationally
indistinguishable. We shall refer to the first conditiorkag agreemerdand to the second condition
asindistinguishability

Supposdl violates key agreement. By assumption, there exists a siargroof of agreement
for IT in the logic. From the computational soundness of the ldbiedrem 1), a proof of agreement
in the symbolic model implies a proof of agreement in the cetecmodel. Hence, a contradiction.

12

We now consider the case whHrviolates indistinguishability. We separate two casesb(ih
parties are honest, (2) one of the parties is (staticallyjupd. If both parties are honest, then the
ideal-world key is a random value, and indistinguishapitf the real-world key from a random
value follows from the computational soundness of the paddhdistRand(t).

Now suppose one of the participants is corrupt. Accordinidpéoconstruction of the simulator,
the simulatorS in this case simulates the other (honest) real-world ppéit to the real-world
adversary. The simulator faithfully executes all actiofishe honest participant according to the
protocol specification and then extracts the generated rkey this participant. He then uses the
extracted key to “compromise” the ideal-world user inseaoorresponding to the honest real-world
participant (intuitively, this is valid because in the r@alrld protocol, an honest participant who is
talking to a corrupt participant will end up generating kelyieh is known to the adversary). Thus,
the key generated in the ideal world is exactly the same dmeingal world. Hence, a contradiction.

To establish simulator validity, it remains to show that eersary can tell the difference be-
tween the real-world transcript and the simulated idealldvtranscript except with a negligible
probability. In addition to observable protocol actiongranscript may contain records added via
anappl i cat i on operation, which in Shoup’s framework models any usage efetablished
key.

Suppose thalndistRand(t) holds, but there exists a distinguishBrbetween the real- and
ideal-world transcripts. We obtain a contradiction by ¢omgting another distinguished, which
wins theIndistRand game (see section 5) with a non-negligible probability. dlethat in this
game, A receives a pair consisting of a view and a key, and must daterwhether they come from
a real-world or ideal-world protocol.

Since the view contains all observable actions, and the aedl ideal-world views are indistin-
guishable (becauskndistRand(t) holds), the only additional information in the transcrighioh
allows B to distinguish between the real and ideal worlds must be tegemce of some application
operation. Amappl i cat i on operation is a polynomially computable function of the KElgere-
fore, all application operations can be efficiently compuig .4, enabling it to usé as a resource
to win the IndistRand game. A runs a copy ofB3 internally, applies the functions used in the
appl i cati on operations to the key he received as a challenge ilidestRand game, creates
a transcript, gives t#, and use®’s answer as his own answer in thedistRand game.A’s prob-
ability of winning the game is the same B% probability of distinguishing real- and ideal-world
transcripts. Hence, a contradiction.

8 Example: DHKE protocol

We illustrate our method by proving security of the two-maughenticated Diffie-Hellman protocol
(DHKE). The symbolic specification of the protocol appears in fig. 8

Let A; denote the initiator of the protocol ard the responder. Assume that the certificates for
public signature verification keys are known and not sentagh the protocol. Recall thatr eat e
andconnect are special markers denoting, respectively, the pointsaptotocol execution where
the key is first derived by one (respectively, both) partiais.

We prove agreement for the initiator role of the protocolefinoof for the responder is similar.
The property is proved using the formulatipre [actions] postwherepreis the precondition before
the actions in thactionslist are executed angostis the postcondition.

13

Init = {(A; A)[(vX).(A1, Az, d(x), {d(x),Ag},lA’?.
(A2, A1, d(x), ,k,z).(z/{d(x),)/,k,Al}Az) (connect)|a, }
Resp = {(A1 A)[(vy).(vK).(A1, A, X, 2). (Z/{X’,Ag},lAll)(create).

<A27 Ala Xla d(Y)a ka {Xla d(Y)a ka Al },]&2;>]A2}
wherek is a hash function index;
the derived key i$(g) for hash functiorh indexed byk.

Figure 8: Symbolic specification of the DHKE protocol.

pre := Fresh(Ay,X)
actions = [Init]a,
post := Honest (Ag) = FAs.ActionsInOrder(

Send(Ar, {A1, Az, d(x), {d(x), A} 2t })

Receive(As, {Ar, Ao, X, {X, As}3i)})

Send(Ag, {A27 Ala Xla d(Y)v kv {le d(Y)v ka At },lAi; }) ,

Receive(Ar, {As, A, d(x), Y,k {d(x),Y, k ALk }),
wherex' = d(x) andy = d(y).

The actions in the formula are the actions of thi¢ role of theDHKE protocol. The precon-
dition specifies thak is freshly generated by before sending or receiving any messages. The
postcondition captures the notion of agreement for théatoit role of the protocol (according to
definition 2). The symbolic proof of this property is givendppendix G.

In fig. 9, we give a symbolic proof of key secrecy (in the serfgeal-or-random indistinguisha-
bility) for the initiator role of the protocol under the assption that both parties are honest. The
key secrecy property is specified as:

pre = Honest(A;) A Fresh(Aq,X)
actions = [Init]a,
post := JAg.Honest(A2) A &[vK|a, = IndistRand(hg(d(x,y)))

wherehy is some hash function amddenotes a random term

Here the postcondition specifies thatAif is honest, too, then the value of the derived key is
indistinguishable from a random value. According to theo& these two conditions are sufficient
for the existence of a valid simulator for the DHKE protoaoiShoup’s model [35].

9 Future directions

This paper is but a first step towards development of comipagty sound symbolic methods for
proving correctness of key exchange protocol. The nextistpfind symbolic criteria (and appro-
priate deductive systems for proving them) that would pesyrinbolic proofs of simulator validity
for key exchange with adaptive corruptions [35] and weakem§ of universally composable key
exchange. In appendix H, we show that symbolic proofs in codehimply simulatability in the
relaxed key exchange functionality of Canetti and KrawciAyK.

Another challenge is to extend the method proposed in thema key exchange protocols that
use encryption in addition to signatures. This would regjestablishing computational soundness
for a fragment of the symbolic protocol logic that includesmryption. Logical characterization of

14

P2 Fresh(Ay, X)[Init |a, Fr esh(Aq, X) (1)
Agreement Fresh(Ay, X)[Init |a, Honest(Az) =
JAs.ActionsInOrder(
Send(Ar, {A1, Az, d(x), {d(x), A} 2t })
Receive(Az, {Ar, A, d(x), {d(x), A },1A11 H
Send(A27 {A27 A17 d(X), d(Y)a ka {d(X), d(Y)v kv A };22})
Receive(Ala {AQ, A, d(X), d(Y), k, {d(X), d(Y)a ka A },1A22 })> (2)

HON Honest(As) A Send(Ag, {As, Ar,d(x), Y, k, {d(x), Y, k, A }22 })

= 3y.(y = d(y) A Fresh(A,y) ®3)
(2-3) Fresh(Ay, X)[Init |a, Honest(Az) =

JA2.3y.(Y = d(y) A Fresh(As,Y)) 4)
NotSent defn Fresh(Aq, X)[Init |a,NotSent(44,d(x,y)) (5)
NotSent defn (2) Fresh(Ay, X)[Init |a,Honest(Az) = 3 As.(NotSent(As,d(x,y))) (6)
(1),(4-6) Honest(A;) A Fresh(Ay, X)[Init o, JHonest(A;) A Fresh(Ag, X)A

ANotSent (A1, d(x,y)) A (Honest(A2) =

JAy. 3y.Fresh(Ay,y) A NotSent(Ag,d(x,y))) (7)
DDH1-2,(7) Honest (A1) A Fresh(Ay, X)[Init o,] 3 Ac.Honest(A2) =

IndistRand(d(X,Y)) (8)
LHL ,(8) Honest(A;) A Fresh(Ay, X)[Init o,] 3 Ae.Honest(A2) A &[vilx =

IndistRand(hj(d(X,Y))) 9)

Figure 9: Proof of key secrecy for DHKE protocol

real-or-random indistinguishability of values under gption is a nontrivial task, although progress
has been recently made by Dattzal. [21].

10 Acknowledgments

We are very grateful to the anonymous reviewers of the 3rd AGBdkshop on Formal Methods in
Security Engineering for their insightful comments, coti@ens, and suggestions that have greatly
improved this paper.

References

[1] M. Abadi and P. Rogaway. Reconciling two views of cryptaghy (the computational sound-
ness of formal encryption)]. Cryptology 15(2):103-127, 2002.

[2] M. Backes and B. Pfitzmann. Relating symbolic and crympgic secrecy. IfProc. IEEE
Symposium on Security and Privapages 171-182. IEEE, 2005.

[3] M. Backes, B. Pfitzmann, and M. Waidner. A composable wygmaphic library with nested
operations. IProc. 10th ACM Conference on Computer and CommunicatiotisriBe(CCS)
pages 220-230. ACM, 2003.

15

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

M. Backes, B. Pfitzmann, and M. Waidner. A general comjpmsitheorem for secure reactive
systems. InProc. 1st Theory of Cryptography Conference (TC@lume 3378 ofLNCS
pages 336—354. Springer-Verlag, 2004.

D. Beaver. Secure multiparty protocols and zero-knaolgte proof systems tolerating a faulty
minority. J. Cryptology 4(2):75-122, 1991.

M. Bellare, R. Canetti, and H. Krawczyk. A modular appmbao the design and analysis of
authentication and key exchange protocolsPtac. 30th Annual ACM Symposium on Theory
of Computing (STOCpages 419-428. ACM, 1998.

M. Bellare and P. Rogaway. Introduction to modern crgpéphy. Lecture notes &t t p:
[/ ww«+ cse. ucsd. edu/ users/ m hir/cse207/ cl assnotes. htnl .

M. Bellare and P. Rogaway. Entity authentication and #isgribution. InProc. Advances in
Cryptology — CRYPTO 19980lume 773, pages 232-249. Springer-Verlag, 1993.

R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutton, R.I\¢ and M. Yung. Systematic
design of two-party authentication protocols. Pmoc. Advances in Cryptology — CRYPTO
1991 volume 576 olLNCS pages 44-61. Springer-Verlag, 1991.

S. Blake-Wilson, D. Johnson, and A. Menezes. Key agergmrotocols and their security
analysis. InProc. 6th IMA International Conference on Cryptography andding pages
30-45, 1997.

R. Canetti.Studies in secure multiparty computation and applicatidPisD thesis, The Weiz-
mann Institute of Science, 1995.

R. Canetti. Security and composition of multiparty miggraphic protocols.J. Cryptology
13(1):143-202, 2000.

R. Canetti. Universally composable security: a newagagm for cryptographic protocols. In
Proc. 42nd Annual Symposium on Foundations of Computen&eig-OCS)pages 136-145.
IEEE, 2001. Full version &ttt p: // epri nt.iacr. org/ 2000/ 067.

R. Canetti. Universally composable signature, cegifon, and authentication. Proc. 17th
IEEE Computer Security Foundations Workshop (CSHlyes 219-233. IEEE, 2004. Full
version athtt p: / /eprint.iacr.org/ 2003/ 329.

R. Canetti and J. Herzog. Universally composable syimlamalysis of cryptographic pro-
tocols (the case of encryption-based mutual authentitatiod key exchange).htt p:
[leprint.iacr.org/ 2004/ 334,2005.

R. Canetti and H. Krawczyk. Analysis of key-exchangetpcols and their use for building
secure channels. I[Rroc. Advances in Cryptology - EUROCRYPT 200dlume 2045 of
LNCS pages 453-474. Springer-Verlag, 2001.

R. Canetti and H. Krawczyk. Universally composableiowg of key exchange and secure
channels. IfProc. Advances in Cryptology - EUROCRYPT 20@#ume 2332 o£NCS pages
337-351. Springer-Verlag, 2002. Full versionhdtt p: // eprint.iacr.org/ 2002/
059.

16

[18] R. Canetti and T. Rabin. Universal composition witmjostate. InProc. Advances in Cryp-
tology — CRYPTO 20Q%olume 2729 of.NCS pages 265-281. Springer-Verlag, 2003.

[19] V. Cortier and B. Warinschi. Computationally soundt{amated proofs for security protocols.
In Proc. 14th European Symposium on Programming (ES@&tyme 3444 olLNCS pages
157-171. Springer-Verlag, 2005.

[20] A. Datta, A. Derek, J.C. Mitchell, and D. Pavlovic. A dextion system for security protocols
and its logical formalization. IfProc. 16th IEEE Computer Security Foundations Workshop
(CSFW) pages 109-125. IEEE, 2003.

[21] A. Datta, A. Derek, J.C. Mitchell, V. Shmatikov, and Muifiani. Probabilistic polynomial-
time semantics for a protocol security logic. Pnoc. 32nd International Colloquium on Au-
tomata, Languages and Programming (ICALP) - to app28a05.

[22] T. Dierks and C. Allen. The TLS protocol Version 1.0.dntet RFCht t p: / / www. i et f .
org/rfc/rfc2246. txt,January 1999.

[23] W. Diffie, P. van Oorschot, and M. Wiener. Authenticatiand authenticated key exchange.
Designs, Code, and CryptograpH(2):107-125, 1992.

[24] N. Durgin, J.C. Mitchell, and D. Pavlovic. A compositial logic for proving security proper-
ties of protocols.J. Computer Securifyl1(4):677-722, 2003.

[25] O. Goldreich. Foundations of Cryptography: Volume Il (Basic Applicasdn Cambridge
University Press, 2004.

[26] S. Goldwasser, S. Micali, and R. Rivest. A digital sitma scheme secure against adaptive
chosen-message attacklAM J. Computingl7(2):281-308, 1988.

[27] R. Impagliazzo, L. Levin, and L. Luby. Pseudorandomegation from one-way functions.
In Proc. 21st Annual ACM Symposium on Theory of Computing ($,Tg2@es 12—24. ACM,
1989.

[28] R. Impagliazzo and D. Zuckerman. How to recycle randats. dn Proc. 30th Annual Sym-
posium on Foundations of Computer Science (FO@&)es 248-253. IEEE, 1989.

[29] C. Kaufman (ed.). Internet key exchange (IKEv2) prolodnternet draft:ht t p: / / www.
ietf.org/internet-drafts/draft-ietf-ipsec-ikev2-17.txt,September
2004.

[30] J. Kohl and C. Neuman. The Kerberos network authemtinaservice (V5). Internet RFC:
http://ww.ietf.org/rfc/rfcl510.txt,September 1993.

[31] P. Laud. Symmetric encryption in automatic analyses@mfidentiality against active adver-
saries. InProc. IEEE Symposium on Security and Privgagges 71-85. IEEE, 2004.

[32] D. Micciancio and B. Warinschi. Completeness theoréonshe Abadi-Rogaway language of
encrypted expressiond. Computer Securifyl12(1):99-130, 2004.

17

[33] D. Micciancio and B. Warinschi. Soundness of formalrgption in the presence of active
adversaries. IfProc. 1st Theory of Cryptography Conference (TQ@Jume 3378 oLNCS
pages 133-151. Springer-Verlag, 2004.

[34] B. Pfitzmann and M. Waidner. A model for asynchronoustiga systems and its application
to secure message transmission.Phoc. IEEE Symposium on Security and Privapgges
184-200. IEEE, 2001.

[35] V. Shoup. On formal models for secure key exchange i@eré). htt p: // shoup. net/
paper s/ skey. pdf , November 1999.

[36] F. Thayer, J. Herzog, and J. Guttman. Strand spacesingrgecurity protocols correct].
Computer Security7(1), 1999.

A Cryptographic background

A.1 Security of digital signature schemes

Definitions in this section follow Bellare and Rogaway [7]. digital signature schem®S=
(K,S,V) consists of three standard algorithms, as follows. Theawanized key generation al-
gorithm K (which takes no input) produces a public/private key paihe Tandomized signing
algorithm S takes the private key and messadeo return the signature € {0,1}* U {L}. The
special valuel denotes that a signature for messagjavas not produced correctly. The deter-
ministic verification algorithm) takes a public key, messayk and a candidate signatuse# 1,
and produces a 1-bit outpdt If d = 1 (0) then the signature was correctly verified (respectively,
verification failed). As usual, it is required that the vexdfiion algorithm output for any signature

o #1 produced by the signing algorith8ion messagi.

We adopt the standard notion of security for signature selseithat is, security against exis-
tential forgery under the adaptive chosen-message a&tkThis notion of security is formalized
as a game in which the goal of the adversary is to forge a sighajy on a messag# of his
choice (which had not been previously signed by an honesegigWe first define a signing oracle
Sigrk(e) (which produces message signatures under the secretgsieynof participantX) and
give the adversary access to it. The actions of the adversarnbe viewed as divided into two
phases. In the first, “learning” phase, the adversary carydbe signing oracle a polynomial num-
ber of times (in the security parametgr In the second, “forgery” phase, the adversary is required
to produce a correct signature for his chosen messhgeovided that he did not query the signing
oracle onM in the first phase. The adversary wins the game if he can dothoawion-negligible
probability. The signature scherfisS is CMA-securéf no probabilistic polynomial-time adversary
can win the above game with a probability that is non-negléyin the security parameter

Remark.Note that we only have a signing oracle and not a verificatiagle, since itis assumed
that the public keys are known to everyone and, in partictethe adversary. Thus, the adversary
can verify any signature internally.

A.2 Decisional Diffie-Hellman assumption

Let G be a group of large prime orderand letg € G be a generator. Fay,gs, U, Uz € G,
define DHP§;, 02, U, Up) to bel if there existsx € Zq such thatu; = gf andu, = g3, and0

18

otherwise. The Decisional Diffie-Hellman (DDH) assumpti&iates that there is no probabilistic,
polynomial-time algorithm that computes DHP with negligilerror probability on all inputs.

Following [35], we adopt a slightly more restrictive defiait of the DDH assumption, which
states that the distributiofg, (g4 : 1 <i <n),(g@ : 1 <j<m), (@Y :1<i<nl<j<m)
and the distribution(g, (g4 : 1 < i <n), (@ :1<j<m),(g% :1<i<nl<j<m))are
computationally indistinguishable. Here, basand exponents;, y;, z; are random.

We formalize the notion of security in the form of a game pthpy the adversary. LedPH
denote a “Diffie-Hellman oracle.” Led be an adversary running in timieand allowed to make
at mostQ queries to the oracle. The adversary operates in two stdgebe learning phasehe
adversary can make at m@3tdistinct queries of the formi, j) (i # j). In response to the query the
oracle returns the 3-tupl@*, g, g%), wherex;, x; are chosen uniformly at random frafiy. In the
second phase, known as the testing phase the adversary asikgte query of the forrfi, j) (i # j)
subject to the constraint that he could not have asked fosdhee in the learning phase. A biis
chosen at random by the oracle not known to the adversaby=If0, then the tuplgg®, g9, g*%)
is returned, else the tuple®, g¥,g%) is returned, wherg; is random. At the end of the game the
adversary outputs a gueld'sof the bith. The advantage of the adversary is defined as the distance
from % of the probability that the guess is correct. The DDH assionptates that the advantage of
any probabilistic polynomial time adversary who can makaast a polynomial number of queries
in the learning phase is negligible. Our definition of the DB$$umption is slightly more general
and allows to prove security of Diffie-Hellman-based protedn the concurrent execution model.
In this setting, the adversary is allowed to perfosassion state reveafsr previously completed
sessions which reveal the session key for these sessiomsabdve definition of security implies
that revealing a polynomial number of previously computeds®n keys does not compromise
security of the current session.

A.3 Universal hash functions

Let D be a distribution on a finite s& We denote by)(s), for s € Sthe probability thaD assigns
tos. ForX C S let D(X) denote the probability that an element chosen accordimyisoin X. Let
the collision probabilityof D be the probability that two elements chosen independentprding
to D are the same. We sat that distributiddsand D’ are statistically indistinguishablevithin an
errore if, for every X C S | D(X) — D'(X) |< e. We say thaD is quasi-randonon S (within €) if

D is statistically indistinguishable from the uniform dibtrtion onS.

Leftover hash lemma. Let H be a family of functions mapping0, 1}" to {0, 1} indexed by a
setZ. We say thatl is universalor auniversal familyof hash functions if, for every,y € {0,1}",
X #y, the probability thaty(x) = hi(y), for an element; € H selected uniformly fronH, is at
most%. We say thaH is almostuniversal if, for every such pair, the aforementioned phbiliist is
at mostyr + .

LetX c {0,1}", | X |> 2. Lete > 0, andH be an almost universal family of hash functions
mapping{0, 1}" to {0, 1}/ 28, The leftover hash lemma [27] states thati& drawn uniformly from
the setZ, x is drawn uniformly fromX, then the distributior{h;, h;(x)) is quasi-random (on the set
H x {0, 1}") within % In other words, the distributiofh;, hj(x)) is uniform ifi is chosen uniformly
at random from the index s&tandx is chosen uniformly from the domaik.

19

B Computational protocol model

Our computational protocol model is similar to other workscomputational soundness such as [33,
21]. Protocol messages are bitstrings as opposed to absgrabolic terms, and the adversary is a
probabilistic polynomial-time state machine.

To link the computational model with the symbolic model, wefide functionf which maps
atomic symbols to bitstrings. Without loss of generalitg assume that variable and nonce names
are unique for each protocol role (this can be easily ensbyeg-renaming). Below, we explain
how the mapping is built.

We fix the protocolll, adversaryA, security parameten, and some randomne$sof size
polynomially bounded im. We denote by5id the set all session ids for possible executions of the
protocol. Athreadis an instance of a protocol role executed by a participantieted as a pair
consisting in the participant’s identity and session idagen from Sid) of this protocol instance.
Each participant and each session is assigned a symbolie fiam the set C {0,1}"”. Some of
the principals are designated lasnestand the rest adishonestcorrupt). RandomnesR is split
into Rp = UR, for each honest participant | (for the random coin tosses performedipgndR 4
for the random coin tosses performed by the adversary.

Let G belong to a family of large cyclic groups (indexed by the siégwparametemn) under
multiplication of prime ordery. Let g denote the generator &. Denote byd(x), d(x,y) the
elementgy*, g*Y € G, for x,y chosen uniformly fronZ,. We abuse notation and wrigg¥ instead
of g*v.

We also assume the existence of some CMA-secure signatueens®S = (K, S, V). In the
initialization phase, public/private key pairs are getextdor each participant executing a role in the
protocol. The public keys of all participants are made amdd to the adversary. In addition, private
keys of the dishonest participants are also known to theradme We consider the case of static
corruptions only,.e, the participants that have initially been designated amesoremain honest
throughout the protocol execution. The adversary is algergihe identities of all the participants
and their role assignments.

The adversary is constrained to run in probabilistic poigied time. Once the randomness of
the adversary is fixed, we view the adversary as a determgisistte machine. As usual, we model
the network as adversarially controlleice., honest parties communicate by sending messages to
and from the adversary.

Computational instantiation of symbolic actions. We model honest parties as (stateful) oracles,
following [8]. In particular, an honest participaintrying to communicate with an honest participant
j in a protocol sessioais modeled as a stateful orad.

The state of the oracle is defined by the mapgdirfgpm atomic symbols to bitstrings and the
counterc, which is initially set to0 and increased by for each executed action in the thread.
The mapping for constants such as public keys and idenigtiégsed prior to the execution of the
protocol by mapping each name to the corresponding bigstfilhe mapping for pairs is defined by
simply concatenating the corresponding bitstrings. Thealo off can be extended to include the
set of all terms as shown below.

Each oracle proceeds in steps according to the sequencdimisam the role’s action list.
The oracles are activated by the adversary who communieatieshem by sending and receiving
messages. We omit the details of communication betweerdirersary and the oracles, and focus

20

on computational interpretation of symbolic protocol acfi. Leta be the current action in the
AList defining some role of participarntin sessions, i.e., the symbolic thread i$i’, ') where
i =f(i") ands = f(9).

We now give the computational interpretation for the adtiod a = (vx) (for thread(i’, s)),
then we updaté so thatf(x) = v wherev is some bitstring which is freshly generated using the
randomness of party Generation of a symbolic signatufe}%., wherel is a fresh random label,
is implemented in the computational model by running thaisig algorithmsS on the private key
of participantX, message and some randomnessdrawn fromR; so thatf(I) = r. Generation
of a Diffie-Hellman exponenéi(x) is done assuming access to exp function which, givenx,
computesy*. The joint exponend(x,y) can be computed by using a functifminexpwhich takes
as arguments, g¥ (or alternativelyy, g*). We omit the details for signature verification, pairing,
unpairing and equality test, which can be implemented amyil Pattern matching is simply a
composition of one or more simpler operations.

If a = (x) (for some threadi’, s')), then we simply sendl(x) to the adversary. Similarly for a
receive actior(x), we updatd so thatf (x) = m, wheremis the bitstring sent by the adversary.

Symbolic abstraction of computational messages.We now define an abstraction function
from bitstring messages in the computational traae, (nessages received by honest participants
from the network) to symbolic terms in the formal executi®@ince the randomness of all partic-
ipants in the protocols is already fixed, the mapping fromstamt bitstrings to constant symbols
is defined simply by canonically labelling these bitstringth the corresponding symbolic names.
Because we have already defined the functimom the set of symbolic terms to bitstrings for each
oracle(’)i? representing an honest participant, we only need to defimbglc abstraction for the
adversary’s messages, each of which can be viewed as a guang of the oracles.

As in [33], this is done by parsing the query sent by the acrgrand replacing every bitstring
which is neither an instantiation of a symbolic constant; generated by an honest participant
with a new symbol, denoting an adversarial nonce. The méfioulty is abstracting computational
terms of the forng*. Whenever an honest participant receives a value repregagitfor somex
which is known to the recipient, we abstract the correspanterm asi(x) (because the recipient
can computey® and check if it matches the received value).x 6 not known, we create a new
symbolic termd(x’) wherex' is a new symbolic name.

C Symbolic semantics of the protocol logic

We will use notatiorEVENT(R, X, P, fi, X) to describe a singleeaction step A reaction step denotes
that in some (partial) symbolic trad® threadX executes actionB, receiving datdi into variable
X. We useLAST(R, X, P, i, X) to denote that the last event Bfis EVENT(R X, P, i, X). Also,
for a symbolicR and a threa, let Rx denote a projection dR onto events observed By and
FreeVar(Ryx) denote the free variables in the trace. The semantics adgublogic are as follows:

Action formulas

II,R |= Send(A,m) if LAST(R, A, (m), ¢, ¢).

IT,R = Receive(A m) if LAST(R A, (X),m, X).

I, R |= New(A,m) if LAST(R, A, (vX),m, X).

II,R = Verify(A, m) if LAST(R A, m/{t}%, ¢, #) for somet, 1 andX.

21

Formulas
I1,R = Has(A, m) if there existd such thaHas;(A, m),
whereHas; is defined inductively as follows:
(Haso(A,m) if ((m € FreeVa(Ra)) VEVENT(R, A, (vX),m, X) VEVENT(R, A, (), m, X)
andHasj;1 (A, m) if Hasj(A,m) V (Hasi(Am)
V(Hasi(A,m') A Hasj(Am") A((m=nm',m") V (m = n",m')))
V(Hasi(A,m') Am = {m'}}) for some label
V(Hasi(A, a) A Hasi(A,d(b)) Am = d(a, b))
V(Hasi(A,d(a,b)) Am = d(b, a)).

II,R |= Fresh(A m) if II,R = (&New(Aym) V (&New(An) Am = g(n)))
A-(&Send(Aym’) Am C m').
I, R |= Honest(A) if A€ HONESTC) in some initial configuratior© of Rand
Ria is an interleaving of basing sequences of roleH in
IT,R = Contains(ty, ta) if to C t;.
IR |: ((,01 VAN (,02) if IT, R |: ®1 andIl, R): ©2.
ILRE —pif IR}~ .
II,R = Ixgpif II,R | (d/x)p for some d,
where(d/x)¢ denotes the formula obtained by substitutthfipr x in .
ILRE ¢y if II,R | ¢, whereR' is some prefix oR.
ILR[E 6y if II,R = ¢, whereR = Refor some evene.
IT, R = Start(X) if Ry is empty.

Modal formulas
IT, R = ¢1[Plaps if R= RyR1 Ry, for someRy, R; andR,, and
eitherP does not matcR; or P matches
Rija andIL, Ry = o1 impliesIl, RyRy [= o2,
whereo is the substitution matching to Ry |a.

D Computational soundness of the protocol logic

D.1 Soundness of axioms

AA1, AA2, AN2, AN3, ARP: Follows directly from definitions.

ORIG, REC, TUP, PROJ: Follows directly from the semantics #fs.

VER: LetII be a protocol and 1ePS = (K, S, V) be a signature scheme secure against existential
forgery,i.e.,, CMA-secure. We prove the axiom by constructing an attackre the security of the
signature scheme in case the axiom does not holdt.LetCExecStrangd denote a concrete trace
and letts € ExecStrang be the corresponding formal trace such that Exec?n’ AC)(ts), where

Ac denotes the concrete adversary.

The proof proceeds in two steps. In the first step, we show thatvery concrete tracg €
CExecStrang, there exists a symbolic tracg € ExecStrang obtained by fixing the randomness
R4 of the adversaryd; andRy; of the honest participants and consistently labeling allitstrings
with symbolic names such that theis an abstraction of the concrete trdgeThis step is defined

22

by the abstraction functiofp from section B.

We need to show that the resulting symbolic trace satisfe¥HR axiom with overwhelming
probability over the random coin tosses of the concreteradwg and the oracle environment. We do
this by demonstrating that if the axiom does not hold ovestmbolic trace, then the corresponding
concrete adversap. can be used to construct another concrete adveBsatyich attacks the CMA
security of the signature scher with a non-negligible probability.

The CMA adversary3 runs the concrete adversad in a “box,” i.e., it behaves as the oracle
environment fotd.. More formally, whenA. makes a querg while running as a subroutine fd,

B gets hold ofg and performs the desired action. For example, if the coaadversaryd. makes

a query to start a new instance of a protocol between pritcidand B, B simply starts a new
instance of the protocdl between “dummy” copies o0& andB and faithfully performs all actions
prescribed by the protocol specification on their behalfparticular, 3 generates the nonces to be
used by the parties, and computes signatures expectdd by invoking the corresponding signing
oracles.

SupposeVER does not hold over the constructed symbolic trace. Considesequence of
queriesqy, - - - , gy Made by the concrete adversady (running as a subroutine @) and the corre-
sponding abstract queri€y, . .., Q, made in the symbolic trace. Since the trace does not satisfy
the axiom, it is easy to see there must exist some qQ@emyhich contains the signaturg };, of
a termt under the private key of some honest parguch that no earlier message contains the
signature of the same termunder the same signing key (maybe with a different label At this
point, we stress that it is perfectly valid for the abstrastny to contain aifferentsignature of a
term+t under the private key of the honest pairif/the honest party itself had produced a signature
of the same term earlier (with a different label). Hence,dbgesponding concrete adversady
also produces a signature in the querywhich is a re-randomization of the honest participant’s
signature.

We claim that3 can win in the CMA game with a non-negligible probability. #agme point in
the protocol execution3 “guesses” the query made by the adversdgywhich contains a signature
of a term under an honest party’s signing key such that a ijpgsdifferent) signature of the same
term was not produced by the corresponding signing oracleeaNote thatB does not know
at what stage in the protocol; will first produce the signature. But this is not a problemcsin
the number of messages used in the protocol and the totalerushiterms (including nonces) are
constant in the security parameterThus,B can guess in polynomial time the quegywhich first
contains a forged signature of tetirunder the secret key of some honest party, and output it as its
own output, thus winning the CMA game.

We consider two cases which leadfocorrectly guessing the output Wit In both cases, we
assume that the trace does not satisfy WiigR axiom. In the case wheB incorrectly guesses
the term which is being signed or the quegywhich first contains the invalid signaturB,simply
outputs a random guess of the bitvith probability % The other case is whd correctly guesses
the termt, messagen which contains the signature, and the positidim this message where
occurs. TherB correctly guessels. Each of the these probabilities is bounded by a polynonidial o
the security parametey. Let us denote bﬁdvg‘fggmathe advantage of the adversary in this game.
It can be easily shown that the probability that the corragpwy symbolic trace does not ob@ER
is less than a polynomial factor 8idv/ind—cMa Therefore, if the trace does not ob¢gR with non-
negligible probability, we derive a contradiction with aassumption that the signature scheme is
secure.

23

N1, N2, F1 Follows from the semantics of theoperator (nonce generation) and actities and
Fresh.

CONZ1-2 Follows directly from the semantics @bnt ai ns.

P1, P2, P3, F,F2Follow directly from definitions ofrr esh andHas.

T1, T2, T3: Follow from the semantics of PLTL.

AFO0, AF1, AF2: Follow directly from the semantics of logic.

DDH1-2: LetII be a protocol an@ be a member of a family of large cyclic groups (indexed by
n) under multiplication of prime ordeg and generatog. We prove computational soundness for
DDHZ1 (the proof forDDH2 is similar). As always, fix the randomneBs; of the computational
adversary 4. and Ry of the honest participants, and suppose DBH1 does not hold over the
overwhelming majority of computational tracesdf In this case, we demonstrate that the cor-
responding concrete adversady: can be used to used to construct another concrete adveéssary
who wins in the Decisional Diffie-Hellman game (as descrilmesiection A.2) with non-negligible
probability.

As usual,B runs the concrete adversa#y. in a “box,” i.e., it behaves as the oracle environment
for Ac. More formally, when4. makes a querg while running as a subroutine f@, B gets hold
of g and performs the desired action. For example, if the coa@adversaryd. makes a query to
start a new instance of a protocol between princigalndB, B simply starts a new instance of
the protocolll between “dummy” copies oh andB and faithfully performs all actions prescribed
by the protocol role on their behalf. In particular, it congmihonest participants’ Diffie-Hellman
values. For example, if an honest participant is requiresetad a fresh valug®, thenB chooses
a valuex uniformly at random fronZq and computeg using theexpfunction. Similarly, 3 can
compute a joint exponemf?y provided he hag andg’, ory andg.

We assume the existence of a DH ora@B" and let3 have access to the oracle. Initially,
simulates the learning phase fd;. We allow the adversaryl. to performsession state reveals
of previously completed sessions which reveal the valubefdint Diffie-Hellman value for these
sessions. We assume that these valuesy&abefor somex;, x; drawn uniformly fromZ,. Since
Ac is constrained to run in polynomial time, he can only ingiatpolynomial number of sessions.
In response to a reveal operatidf,hands the valug®* (for that particular session), which he
obtains from the oracl®® to A.. Intuitively, this means that having a polynomial number of
samples from the distributiofg®, g%, g%) does not give the adversary a non-negligible advantage
in distinguishing between the two distributiofs, g9, g*%) and(g*, g%, g%).

We now show how3 can win in the DDH game with a non-negligible advantage. $8pp
DDH1 does not hold over a hon-negligible fraction of computatldraces. This means that, given
some computational tradg the precondition oDDHL1 is true, but the postcondition is false. The
latter means thatl; can determine, with a non-negligible advantage vs. rande@ssing, whether
g" or g% has been used in this tracB.chooses the session corresponding to this trace as the “test
session”.

Because the precondition DIDH1 must be true ot valuesx andy either have not been sent
at all in this trace, or have only been sentgd®or ¢, respectively. Therefords is never required
to send the actual values wbr y when simulating, to Ac. At the start of the sessio, performs
a queryq = (i,]) to the oracle®P", and obtains the tuplég*, g%, g%) (where; is eitherxx; or a
randomz;) from ©PH in response.

WhenA. is ready,B gives it the valug to be distinguished froy” wherer is drawn uniformly
at random from(Z)q. If z; = %, then A; guesses this correctly with some probabil§y+ p

24

0<p< %), where (sinceDDHL1 fails, by assumptionp is a non-negligible function of. If
z; is itself random, themd. cannot do better than random guessing, it guesses correctly with
probability % B submits the value guessed by to OP" as its own guess of the oracle’s bit
b. Therefore,B wins the DDH game with probability} + 5 wherep is the advantage of the
computational adversarf. in invalidating theIndistRand(d(x,y)) predicate. Thus, iDDH1
is false on more than a negligible fraction of computatianates,3 wins the DDH game with a
non-negligible probability.

The proof ofDDHZ2 involves a similar argument and is left to the reader.

LHL . Let G be a member of a family of large cyclic groups (indexedjpyinder multiplication of
prime ordery with generatog. LetH be an almost universal family of hash functions maping
{0,1} (indexed by a sef). For anyi € Z, leth; denote a member ¢i. For anyi drawn uniformly
from Z andx drawn uniformly fromG, it follows from the leftover hash lemma that the distrilouti
(hi, hi(x)) is statistically indistinguishable from the uniform dibtrtion on the seH x {0,1}'.

We fix the protocoll and the concrete adversad. Lett. € CExecStrang denote a concrete
trace. To show that theHL axiom holds with overwhelming probability over random ctisses
of the concrete adversary and the oracle environment, wgosepthat this is not the case, and use
the concrete adversarf. to construct another adversafythat acts as a distinguisher between the
uniform distribution onH x {0, 1} and (h;, hi(x)). As usual, the adversa® runs the concrete
adversaryA. in a “box” and behaves as the oracle environmentAgy simulating the answer to
every query made by..

Before giving the construction of the distinguistgrwe need a few results. We first note that
there exists a bijectiohfrom the sefZ to the elements of the group. More formally,f : Zq — G
is a one-to-one function that mapg Zq to g € G. If x is drawn uniformly at random frord,
then the distributio{g*} is uniform onG.

We now construci3, assuming that the axiom does not hold for a non-negligitdetion of
concrete traces. This means that the preconditiati stRand(d(X, y)) holds, but the postcondition
IndistRand(he(d(x,y))) is false, where,y,r are chosen uniformly at random frody, andk is
some hash function index chosen uniformly fr@m

B proceeds as follows. It draws random values > uniformly from Z4 and {0, 1}', respec-
tively. It then gives the valuelg (g) andr, to the concrete adversasf.. Since we assumed that
the precondition is true, this implies that no efficient adegy can distinguish between the distri-
butionsg® andg" with a non-negligible advantage. Thu4, cannot distinguish betwedn(g™)
andhy(g®) with a non-negligible advantage. But, according to our agstion, A. can distinguish
between the valuels (g¥) andr, with a probability non-negligibly greater thah This implies
that.A. can distinguish betwedm(g') andr, with a probability non-negligibly greater th@ B
simply outputs the guess of; as its own guess. ThereforB,can distinguish between the distri-
bution (, h(...)) and the uniform distribution okl x {0, 1} with a non-negligible probability,
which contradicts the leftover hash lemma.

D.2 Rules

G1, G2, G3 Follow directly from Floyd-Hoare logic.
TGEN. Follows from semantics of PLTL.
Honesty. Follows from definition.

25

E Shoup’s model for key exchange protocols

We summarize the definition of security for key exchangequals proposed by Shoup in [35].
Following the standard approach in secure multi-party agaifon, the protocol is secure if no
efficient adversary can tell whether he is dealing with thed-veorld execution of the protocol, or
with a simulation in the ideal world where the ideal key exal@ functionality generates keys as
random numbers and distributes them securely to protocttipants.

We limit our attention to the case of static corruptions.

E.1 Ideal world

Let U; fori € {1,2,...} be a set of honest users and ligtdenote the user instances of the user
Ui (user instances are effectively different sessions of thtopol executed by the same user). The
ideal-world adversary interacts with the ideal key excleafugctionality (called the “ring master”
in [35]). The adversary may issue the following commands:

e (initialize user,i,IDj): This operation assigns the idently; to the usetJ;.

e (initialize user instance,i, |, rolej, PID;j): User instancdjj is specified along
with a valuerolej € {0, 1}, as well as a partner identi§ID;; (identity of the other party in
the protocol session). Usék must have been previously initialized, bytshould not have
been previously initialized.

e (abort session,i,j): This operation aborts the session with the active us¢éamesl;.

e (start session,i,j, connection assignmerke]): An active user instanch; is specified.
The connection assignment specifies how the sessioikkégr the user instanch; is gen-
erated. It can be one efreate, connect, compromise. create results in the generation of
a random bit string<;; by the ring masterconnect(i’,j’) instructs the ring master to skj
equal toKj/j/, compromise instructs the ring master to s&j to key.

Say that two initialized user instancisandl;/ arecompatibleif PIDj = IDj, PIDyj» = ID;
androlej # roley;. The connection assignmetbnnect is legal if user instances; and

lij are compatible antj is isolated (not active). The connection assignmeittpromise is
legal if PIDj is not assigned to a usere(, the ideal-world adversary may only assign a key
of his choice to an ideal-world user instance if the othetypar that protocol session isot
honest).

e (appli cati on,f): This models ararbitrary use of the key by higher level applications.
It returns the result of applying functidnto the session kel{j and a random inpuR. The
adversary can seleeny function f (even one that completely leaks the key!). If the key
exchange protocol is secure, no matter how the establiskekised (even if it is revealed
to the adversary), the adversary will not be able to detezmihether that key has been
generated in the real world or in the ideal world.

e (i mpl enment ati on,comment This is a “no op” which allows the adversary to record an
arbitrary bitstring in the protocol transcript. It is by teenulator to record messages of the
real-world protocol in the ideal-world transcript.

26

A transcript recording all actions of the adversary in theaidworld is generated. $is the
ideal-world adversary, ldteal(.A4) denote the ideal world transcript gf.

E.2 Real world

We now describe the execution model for the real world. Asleal world case, we have uséds
and user instance;. The model assumes the existence ofusted third party T(modeling the
PKI registrar) which generates the public/private keyp@K;, SK) for the parties. LetKr, SKr)
denote the (public, private) key pair ®f T may be online or offline. For simplicity, assume that
the user instances upon initialization obtain a publighig key pair fronil by a protocol-specific
action, which is stored as part of thang term statgLTS) information byA;.

In the real world, a user instant¢gis a probabilistic state machine. As usual, it has access to
PKs, the long term informatio. TS, the rolerole; € {0, 1} (specifying whether it's the initiator
or responder in this session of the protocol) and his paitiesttity PID; (identity of the other
party in this session of the protocol). Upon starting in s@tate, the user updates his state upon
receiving a message and may generate a response messagey iddgtant, the state of a user is
one ofcontinue,accept,reject. These mean, respectively, that the user is ready to reeeive
message, has successfully terminated a protocol sessiowlgenerated a session kisy, or has
unsuccessfully terminated a protocol session without Igetimg a session key.

The real-world adversary may issue the following commands:

e (initialize user,i, ID;): This operation assigns the (previously unassigned)titgen
ID; to an uninitialized useu;.

e (regi ster,ID, registration requedt The adversary run$’s registration protocol directly
with the identityID and theregistration requestand obtains theegistration receipt This
operation allows the adversary to operate under varioasesi

e (initialize user instance,i,j,rolej, PIDj): A user instanceé; is specified along
with a valueroley € {0,1}, as well as a partner identi§iDj. It is required that used; must
have been previously initialized, bljtshould not have been previously initialized. After this
operation we say that the user instahgcés active

e (deliver nessage,i, j, InMsg): The adversary delivers a messdg#isg to an active
user instancé; .

e (appli cati on,f): Same as in the ideal world: models usage of the key by a higlel
protocol.

As in the ideal case, the transcript generated by the adyerseords all actions taken. For
technical reasons, the first record in the transcript is

(implementation,initialize system, PKy)

Let RealWorld.4) denote the transcript of the real-world adversdry

27

F Automatic construction of the simulator for Shoup’s framework

Input. Symbolic specification of the protoc®l annotated to indicate the places where the key
is “created” (one of the participants first computes it) arftere the parties are “connected” (both
participants have computed the key).

Output. SimulatorS, which is valid for an overwhelming subset of all possible@xtions of the
protocol, assuming there exist symbolic proofs of agredrand key secrecy.

Construction. The simulatorS in the ideal world runs the real world adversafyin a “box”
simulating the protocol execution to him. Intuitively, shineans tha$ faithfully performs the
actions according to the protocol specification on behalHmfest participants. We assume tl§at
has access to the signing oraSligm, (¢) for an honest participamt The description of is divided
into two cases.

Case | We assume that both participants are honest. In this afathfully performs all actions
according to the protocol specification. LRtdenote the randomness used$ywhich is divided
into randomnesk; for each honest participant Let a denote the current action in the role played
by participant.

¢ If a = (vx), thenS chooses a value uniformly at random from theRet

e If a = (t), thenS computes the value of the tertrand hands the messageontaining the
termt to A to be sent to the desired user. The terman be computed using one (or more)
of the following operations:

—join: Ax A — A: The symbolic term igt, t), which represents the pairing (con-
catenation) of terms.

- si g: AXR xK — A: The symbolic term is{t}k , which represents a digital signature
on termt under the private key of participantcreated using randomness chosen from
R and labeled by.. § can compute the signature using the signing or&aen, (e) for
honest participant

— exp: R — D: The symbolic term igi(x), which represents modular exponentiation of
the variablex for some baseg.

— DH: D x D — D: The symbolic term isi(x, y), which represents computation of the
Diffie-Hellman valueg®. Note thatS computesy® on behalf of an honest participant
if and only if the participanHas (knows) one of the exponent valuegrespectivelyy)
and the other exponentia(y) (d(x)).

e If a = (t), thenS matches the value of the received tetragainst the value specified in
the protocol. Signature verification is subsumed undeepatnatching. If the match fails,
the protocol execution is terminated. Equality test andepatmatching are also subsumed
under this case.

e If a = (create), thenS instructs the ideal functionality to “create” the randony ke the
corresponding ideal world user instance. This action desiibte position in the protocol when
i becomes the first participant to have computed the key.

28

e If a = (connect), thenS instructs the ideal functionality to “connect” two ideal Mebuser
instances, which causes the second honest user instaneartothe created random key.
Intuitively, this denotes the position in the protocol wééne other participant also computes
the key.

Case Il Suppose one of the participants has been corrupted atth®fthe protocol execution by
the real world adversamnd. The simulation proceeds as in Case |, except at the poithe iprotocol
specification where th& issues “create” and “connect” commands to the ideal funetity. In this
case, the simulator extracts the key computed by the sigtutaipy of the honest participant in the
real world, and instructs the ideal functionality to “coraprise” the corresponding ideal-world user
instance with the extracted key. In this case, the value@kdy in the ideal world is the same as
that computed in the real world,

For every action recorded in the real world transcript, timeutator makes a corresponding
request in the ideal world. However, every occurrence ofréa world key is replaced by the
random key generated in the ideal world in the ideal worlddcaipt. We argue below that this
change is not detectable by any efficient adversary if theist ®/mbolicproofs of agreement and
key secrecy.

G Proof of agreement for DHKE protocol

Fig. 10 contains the symbolic proof of agreement for the DHif&ocol.

H Connection with the Canetti-Krawczyk model

To demonstrate that our symbolic methods for proving keyharge protocols correct may find
application beyond Shoup’s framework, we outline the retabetween the model we use and that
of Canetti and Krawczyk [17].

One of the definitions of security for key exchange in [17pives arelaxedkey exchange func-
tionality, which is weaker than universally composable ke&ghange functionality and equivalent
to an earlier notion known as SK-security [16]. Roughly, hiniversally composable security
requires indistinguishability by an arbitrary environrhe®, the weaker definition only requires
indistinguishability by a particular environmeBtest. As in the standard UC framework, the envi-
ronment machine&yggstprovides inputs to the parties and activates either oneeolfitinest parties
or the adversary in every activation until it halts. In thalngorld, the honest parties, once activated,
carry out their actions faithfully according to the protbspecification, while in the ideal world the
honest parties are just dummy placeholders (same as in Shoogel).

Let Frke denote the relaxed session key exchange functionalitydrideal world and letV
denote the corresponding non-information oracle. llldie a protocol and\;, A, the parties exe-
cuting the initiator and responder roles, respectivelye &hvironmeniZrestis designed to test key
agreement and real-or-random indistinguishability. Mprecisely, Zrestoutputsl if at the end
of the protocol execution the adversafy(simulatorS) in the real world (ideal world, resp.) can
correctly tell the exchanged key from a random number. IipdugiesA;, A, complete the protocol
but disagree about the value of the key, tt&rstoutputs the bit chosen by adversary (this, how-
ever, can never happen if the symbolic proof of agreemenbpedefinition 2 holds). Otherwise,

29

AA2, P1
AAL,P1

AF1,ARP

(3)F1,P1,G2
VER

HON

(4-6),G1-3

(1)AF2

(1),AF2

(7-9)AF2

Fresh(Aq, X)[Init |a,
e(Send(Al, {Al, Ao, d(X), {d(X), Ag}kl }) A eFI‘eSh(Al, X))
Fresh(Aq, X)[Init |a,
Verify(Ar,{d(x),Y,k A}z
Fresh(Aq, X)[Init |a,
ActionsInOrder(
Send(Ar, {A1, Az, d(x), {d(x), Az} 3t })
Receive(Ar, {As, A1, d(x),Y,k {d(x),Y,k, Al},lé}))
Fresh(Ay, X)[Init]a, ~&Fresh(Ag, X)
Honest(Ay) A &Verify(A, {d(x),Y kAl}R2) =
3 Ao. Im. 314 (Send(As, m) A Contains(m, {d(x),Y, kA }32)
Honest(Az) = (((&Send(Az, M)A
Contains(m, {d(x), Y,k Ai}22) A ~&Fresh(Ag, X) =
(m = {AQ, Al’ d(X), ylv k, {d(x)v ylv k, Al},lAzg}/\
©(Send(A2, m) A ©Fresh(Az,Y)) A (Y = d(y))A
ActionsInOrder(
Receive(Ay, {Ar, As,d(x), {d(x), Ao} }),

Send(Ag, {A2, A, d(x), Y,k {d(x), ¥,k At} 1))
Fresh(Ag, X)[Init |o, Honest(Az) =

3 Ao (Send(Ag, {As, Ar, d(x),d(y), k, {d(x),d(y), k A2 }) A

©Fresh(Az,Y))A ,
After(Receive(Ay, {A1, Ag, d(x), {d(x), Ao }pl }), ’
Send(Ag, {As2, Ar, d(x),d(y), k {d(x),d(y),k, A} 2 }))
Fresh(Aq, x)[Init 4,
SReceive(Ay, {Ar, Ay, d(x), {d(x), Ao i }) =
After(Send(Ar, {Ar, Az, d(x), {d(x), Ao}, })
Receive(Ay, {Ar, A, d(x), {d(x), A} 2 }),
Fresh(Aq, X)[Init]a,
Send(Ay, {A2, Ar, d(x), d(y), k, {d(x), d(y),k, At} A
OFresh(Ag,y) = ,
After(Send(Ag, {As, Ar,d(x), d(y), k, {d(x),d(y), k, AL} }),
Receive(Ar, {Az, A, d(x),Y, k {d(x),Y, k A}2})
Fresh(Ag, X)[Init |o, Honest(Az) =
JAs.ActionsInOrder(
Send(Ar, {Ar, Az, d(x), {d(x), A} it }) ’
Receive(Ag, {Ar, A, d(x), {d(x), A} 2 }) ’
Send(Ag, {A2, Ar, d(x),d(y), k {d(x), d(y), k At} })
Receive(Ar, {As, A1, d(x),d(y), k {d(x),d(y), k, A1} 32 }))

Figure 10: Proof of mutual authentication for DHKE protocol

30

(1)
)

®3)
(4)

(®)

(6)

()

(8)

9)

(10)

Ztestoutputs0. The protocol is called a secure session key exchange ptdtdbe output of the
environment machin€restis the same in the real and ideal worlds.

We now sketch an informal argument why a symbolic proof ofahiziy conversations in our
model implies the existence of a valid simulator for the abgame. The simulator works as in
section 7.1 with a few differences, which we point out beld. illustrate by example, consider
the DHKE protocol from section 8, which is SK-secure, but bi@-secure. Suppos&rest ac-
tivates partiesd;, As with inputsx,y, respectively. Since both parties are honest (the readdwor
adversary is not permitted to corrupt the protocol sessiowhich Zrgstis trying to distinguish
real- and ideal-world adversaries), the simulation prdsess usual. It follows from the proof of
agreement in the symbolic logic and the computational seessl of the logic that, if the two par-
ties successfully complete the protocol, then their caatgzns match in the sense of definition 2.
Hence, the keys computed by both parties match (thus kegagmt). Moreover, it follows from
the computationally sound symbolic proof of key secrecy tha real-world adversaryl cannot
guess the correct value of the key with a probability nontigidy greater tharg. Similarly, in the
ideal world, the key is a random bit, thus the ideal-worldexdary can guess its value only with
probability%. Therefore Zrestoutputso in both cases.

31

