
Security Proof of ”Efficient and Leakage-Resilient
Authenticated Key Transport Protocol Based on RSA”

SeongHan Shin, Kazukuni Kobara, and Hideki Imai

Research Center for Information Security, AIST,
1-18-13, Sotokannda, Chiyoda-ku, Tokyo 101-0021 Japan

seonghan.shin@aist.go.jp, {kobara,imai}@iis.u-tokyo.ac.jp

May 16th, 2006

Abstract. In this paper, we prove the security of the RSA-AKE protocol [9] in the random oracle
model. The proof states that the RSA-AKE protocol is secure against an adversary who gets the
client’s stored secret or the server’s RSA private key.1

To our best knowledge, the RSA-AKE protocol is the most efficient among their kinds (i.e., RSA
and password based AKE protocols). The other security properties and efficiency measurements
of the RSA-AKE protocol remain the same as in [9].

1 The protocol is the same as [9], but we corrected the security proof partially. The attacks appeared in [10]
are no longer available in the proof since the adversary has access to either the client’s stored secret or the
server’s private key, not both of them.

2

1 The Model and Security Definitions

In this section we introduce an extended model building on [1, 5] and security definitions for the LR-AKE
security and perfect forward secrecy.

We denote by C and S two parties that participate in a key exchange protocol P . Each of them may
have several instances called oracles involved in distinct, possibly concurrent, executions of P where we
denote C (resp., S) instances by CI (resp., SJ), or by U in case of any instance. For the j-th session
in our protocol, the party C remembers a low-entropy secret pw drawn from a small dictionary of
password DPassword, whose cardinality is D, and holds another secret αj on insecure devices along with
the counterpart’s RSA public key (e,N). On the other hand, the party S stores a verification data pj

and its RSA private key (d,N). Here we suppose a far more powerful adversary (rather than an active
one, considered in [3, 6, 1], who has the entire control of the network) by giving additional access to
the Leak oracle that simulates insecure devices of the party C and imperfect server S. Let us show the
capability of adversary A each query captures:

– Execute(CI ,SJ): This query models passive attacks, where the adversary gets access to honest
executions of P between the instances CI and SJ by eavesdropping.

– Send(U,m): This query models active attacks by having A send a message to instance U . The
adversary A gets back the response U generates in processing the message m according to the
protocol P . A query Send(CI , Start) initializes the key exchange protocol, and thus the adversary
receives the initial flow the party C should send out to the party S.

– Reveal(U): This query handles the misuse of a session key (e.g., use in a weak symmetric-key
encryption) by any instance U . The query is only available to A if the instance actually holds a
session key and the latter is released to A.

– Leak(U): This query handles the leakage of ”stored” secrets by any instance U . The adversary A
gets back the secrets (αj , (e,N) and (d,N)) where the former (resp., the latter) is released if the
instance corresponds to CI (resp., SJ). The query is available to A since the stored secrets might
be leaked out due to a bug of the system or physical limitations in the sense that they should be
stored on insecure devices all the time.

– Test(U): This oracle is used to see whether or not the adversary can obtain some information on
the challenge session key by giving a hint on the latter. The Test-query can be asked at most once
by the adversary A and is only available to A if the instance U is ”fresh” (see below). This query is
answered as follows: one flips a private coin b ∈ {0, 1} and forwards the corresponding session key
SK (Reveal(U) would output) if b = 1, or a random value except the session key if b = 0.

Definition 1 (Freshness) We say that an instance is fresh (or has a fresh session key) if the following
conditions hold: (1) the instance has computed and accepted a session key; (2) no Corrupt-query has
been asked by A before the session key is accepted; and (3) no Reveal-query has been asked to the party
C nor its partner S in the instance.

The aim of the adversary is to break the privacy of the session key (a.k.a., semantic security) in
the context of executing P . The LR-AKE security is defined by the game Gamelr−ake(A, P), in which
the adversary A is provided with random coin tosses, some oracles and then is allowed to invoke any
number of queries as described above, in any order. When playing this game, the ultimate goal of the
adversary is to guess the bit b in Test-query by outputting this guess b′. We denote LR-AKE advantage,
by Advlr−ake

P (A) = 2Pr[b = b′] − 1, as the probability that A can correctly guess the value of b. We
formally define the LR-AKE security; this will be necessary for stating meaningful results about our
protocol.

Definition 2 (LR-AKE Security) A protocol P is said to be LR-AKE secure if, when adversary A
(with access to Leak oracle) asks qs queries to Send oracle and passwords are chosen from a dictionary
of size D, the adversary’s advantage Advlr−ake

P (A) in attacking the protocol P is bounded by

O(qs/D) + ε(·), (1)

for a negligible function ε(·) in a security parameter. The first term represents the fact that the adversary
can do no better than guess a password during each query to Send oracle.

For the security notion of perfect forward secrecy, one has to account for a new type of query, the
Corrupt-query, which models the compromise of the involving parties by adversary A.

3

– Corrupt(U): This oracle is used to see whether or not the disclosure of ”long-term” secrets of the
involving parties does compromise the semantic security of session keys from previous sessions (even
though that compromises the authenticity and thus the security of new sessions). With Corrupt-query
to instance U , the adversary A gets back the long-term secrets (pw and its relevant secret pj) but
does not get any internal data.

Definition 3 (Perfect Forward Secrecy) Suppose an adversary A with the ability to make the
Corrupt-query as well as the other queries described above. A protocol P is said to provide perfect
forward secrecy if the adversary’s advantage, denoted by Advpfs−ake

P (A) = 2Pr[b = b′] − 1, in attacking
P is negligible in a security parameter.

1.1 Computational Assumption

Next we define the standard RSA function on which the underlying computational assumption holds.

Definition 4 (RSA Function) An RSA generator RSAKeyGen with associated security parameter l
is a randomized algorithm that takes no input and returns a pair ((e,N), (d,N)) such that (1) p, q are
distinct and odd primes with each being about l/2 bits long, (2) N = pq where 2l−1 ≤ N < 2l and (3)
e, d ∈ Z

�
ϕ(N) are integers satisfying ed ≡ 1 mod ϕ(N). We call N an RSA modulus, (e,N) the public

key and (d,N) the private key. The RSA function is a family of functions RSAN,f : Z
�
N → Z

�
N defined

by RSAN,f (w) ≡ wf mod N for all w ∈ Z
�
N . That is, the encryption function RSAN,e is defined by

RSAN,e(x) = y ≡ xe mod N and the decryption function RSAN,d is RSAN,d(y) = x ≡ yd mod N both
of which are permutations on Z

�
N and inverses of each other.

The computational assumption of the RSA function is equivalent to one-wayness (non-invertibility)
of RSA: given (N, e, y = RSAN,e(x)) it is hard to compute x. Formally,

Definition 5 (One-wayness of RSA) Suppose that the RSA function is defined by Definition 4 and
an adversary I is given the RSA instance (N, e, y = RSAN,e(x)). The RSA function is said to be one-way
if the success probability of I, defined as

Succow
RSA(I) = Pr[x = x′|x′ ← I(N, e, y)], (2)

is negligible in the security parameter l.

2 Our Protocol

Before presenting an efficient and leakage-resilient RSA-based AKE (for short, RSA-AKE) protocol, we
will start by giving a considered situation and some notations to be used.

2.1 Considered Situation

Consider the following situation where a client is communicating with many disparate servers2. In
particular, we focus on unbalanced wireless networks where the client has easy-to-be-lost/stolen devices
(e.g., mobile phones or PDAs) with very-restricted computing power but some memory capacity itself,
on the other hand, each server has its database and enormous computing power enough to generate
a pair of RSA keys and to perform the RSA decryption function. Here, we do not assume that each
server is completely secure against possible attacks (e.g., virus, hackers or insider attacks). In addition,
neither PKI nor TRM is available.

2 For the sake of simplicity, we assign the servers consecutive integer i ≥ 1 where Si can be regarded as the
i-th server.

4

Client C (Mobile Device) Server Si (i ≥ 1)

[Initialization]

αi1
R← Z

�
N , pi1 ≡ αi1 + pw mod N

(e, N)� (e, N), (d, N) ← RSAKeyGen(1l)

pi1 �

1, αi1, (e, N) 1, pi1, (d, N)

Fig. 1. The initialization of RSA-based AKE (RSA-AKE) protocol where the enclosed values in rectangle rep-
resent stored secrets of client and server, respectively

2.2 Notations

Let k and l denote the security parameters, where k can be thought of as the general security parameter
for hash functions (say, 160 bits) and l (l > k) can be thought of as the security parameter for RSA
(say, 1024 bits). Let D be a dictionary size of passwords (say, 36 bits for alphanumerical passwords with
6 characters). Let {0, 1}� denote the set of finite binary strings and {0, 1}k the set of binary strings of
length k. If A is a set, then a

R← A indicates the process of selecting a at random and uniformly over
A. Let ”||” denote the concatenation of bit strings in {0, 1}�.

Let us define secure hash functions. While G : {0, 1}� → Z
�
N\{1} denotes a full-domain hash (FDH)

function, the other hash functions are denoted Hj : {0, 1}� → {0, 1}k for j = 1, 2, 3 and 4. Here G
and Hj are distinct random functions one another. Let C and S be the identities of client and server,
respectively, with representing each ID ∈ {0, 1}� as well.

2.3 The RSA-AKE Protocol

Here we propose an efficient and leakage-resilient RSA-based AKE (RSA-AKE) protocol suitable for the
above-mentioned situation. The whole protocol is illustrated in Fig. 1 and 2.

Initialization During the initialization phase, client C registers a verification data to one of the dif-
ferent servers Si (i ≥ 1). At first, server Si sends its RSA public key (e,N), which is generated from
RSAKeyGen(1l), to the client. The latter picks a secret value αi1 randomly chosen in Z

�
N and registers

securely a verification data pi1 to server Si:

pi1 ≡ αi1 + α0 mod N (3)

and sets the term α0 = pw where pw is the client’s password3. Since both αi1 and pi1 are in the set of
the same length, each is a share of (2, 2)-threshold secret sharing scheme for α0 [7].

Then client C remembers his password pw and additionally stores the secret value αi1 and the
RSA public key (e,N) on insecure devices (e.g., mobile devices or smart cards) which may happen to
leak αi1 and (e,N). The server Si also stores the verification data pi1 and its RSA private key (d,N)
on its databases both of which may be leaked out. Finally, they set a counter j as 1. Note that this
initialization is done only once.

j-th Protocol Execution When client C wants to share an authenticated session key securely with
server Si, they run the j-th (j ≥ 1) execution of the RSA-AKE protocol as follows. At the start of the
j-th protocol execution, client C and server Si hold (j, αij , (e,N)) and (j, pij , (d,N)), respectively, where
pij ≡ αij + pw mod N . The client C should recover the verification data pij by adding the secret value
αij stored on devices with the password pw remembered in his mind. Then the client chooses a random
value x from Z

�
N and sends (C, j, z) to server Si after calculating z using a mask generation function as

the product of an encryption of x under the RSA public key (e,N) with a full-domain hash of (j, pij). If
the received counter j is correct, the server divides z by a hash of the counter and its verification data
3 The password pw is drawn from password space DPassword according to a certain probability distribution.

5

Client C (Mobile Device) Server Si (i ≥ 1)

[j-th Protocol Execution (j ≥ 1)]

j, αij , (e, N) j, pij , (d, N)

pij ≡ αij + pw mod N , W ← G(j, pij)

x
R← Z

�
N , y ≡ xe mod N

z ≡ y · W mod N C, j, z �

W ← G(j, pij)

If j is incorrect, then reject.

Otherwise, y′ ≡ z · W−1 mod N ,

x′ ≡ (y′)d
mod N ,

and VSi ← H1(C||Si||j||z||pij ||x′).Si, VSi�
If VSi �= H1(C||Si||j||z||pij ||x), then reject.

Otherwise,

VC ← H2(C||Si||j||z||pij ||x),

SKij ← H3(C||Si||j||z||pij ||x),

αi(j+1) = αij + H4(C||Si||j||z||pij ||x),

and accept.

VC �
If VC �= H2(C||Si||j||z||pij ||x′), then reject.

Otherwise, SKij ← H3(C||Si||j||z||pij ||x′),

pi(j+1) = pij + H4(C||Si||j||z||pij ||x′),

and accept.

j + 1, αi(j+1), (e, N) j + 1, pi(j+1), (d, N)

Fig. 2. The j-th protocol execution of RSA-AKE protocol where the enclosed values in rectangle represent stored
secrets of client and server, respectively

pij , and then decrypts the resultant value under its RSA private key (d,N) so as to obtain x. Then,
server Si computes and sends its authenticator VSi

to client C.
Upon receiving (Si, VSi

) from the server, client C computes his authenticator VC and a session key
SKij , as long as H1(C||Si||j||z||pij ||x) is equal to VSi

, and sends VC to server Si. If the authenticator
VC is valid, server Si actually computes a session key SKij that will be used for their subsequent
cryptographic algorithms (e.g., AES or HMAC).

At the end of the j-th protocol execution, client C refreshes the secret value αij to a new one αi(j+1)

without changing his password4. In the same way, server Si also refreshes the verification data pij to
a new one pi(j+1). Finally, client C stores

(
j + 1, αi(j+1), (e,N)

)
on his devices and server Si stores(

j + 1, pi(j+1), (d,N)
)

on its databases for the next session.

3 Security

In this section we show the RSA-AKE protocol of Fig. 2. is provably secure in the random oracle model
[2]5, under the assumption that inverting an RSA instance is hard, by Definition 2.

3.1 Security Proof

In order to simplify the security proof, we omit the index i and only consider the first two flows of the
j-th protocol execution (unilateral authentication of S to C). The latter is due to the well-known fact
that the basic approach in the literature for adding authentication to an AKE protocol is to use the
4 Notice that the frequent change of passwords might incur the risk of password to be exposed, simply because

people tends to write it down on somewhere or needs considerable efforts to remember new passwords.
5 Note that security in the random oracle model is only a heuristic: it does not imply security in the real world

[4]. Nevertheless, the random oracle model is a useful tool for validating natural cryptographic constructions.
Security proofs in this model prove security against adversaries that are confined to the random oracle world.

6

– For a hash-query Hi(q) (resp., H′
i(q)), such that a record (i, q, r) appears in ΛHi (resp., ΛH′

i
), the answer

is r. Otherwise one chooses a random element r
R← {0, 1}ki , answers with it, and adds the record (i, q, r) to

ΛHi (resp., ΛH′
i
).

� Rule H(1)

Nothing to do. % To be defined later
– For a hash-query G(j, q), such that a record (j, q, r, �, �) appears in ΛG , the answer is r. Otherwise the answer

r is defined according to the following rule:
� Rule G(1)

Choose a random element r
R← Z

�
N . The record (j, q, r,⊥,⊥) is added to ΛG .

Note: the fourth and fifth components of the elements of this list will be explained later.

Fig. 3. Simulation of the hash functions: G and Hi oracles

distributed Diffie-Hellman key or the shared secret to construct a simple ”authenticator” for the other
party [1, 5]. Therefore, the security proof with unilateral authentication can be extended to one with
mutual authentication by simply adding the authenticator of C (the third flow) as in Fig. 2. However,
this makes a proof more complicated.

Here we assert that the RSA-AKE protocol distributes semantically-secure session keys and provides
unilateral authentication for the server S.

Theorem 1 (LR-AKE/UA Security) Let P be the RSA-AKE protocol of Fig. 2., where passwords
are chosen from a dictionary of size D and the client’s stored secret (i.e., αij , (e,N)) is provided through
the Leak-query. For any adversary A within a polynomial time t, with less than qs active interactions
with the parties (Send-queries), qp passive eavesdroppings (Execute-queries), and asking qg and qh hash
queries to G and any Hi respectively, Advlr−ake

P (A) ≤ 4ε and AdvS−auth
P (A) ≤ ε, with ε upper-bounded by

3qS
D

+ 10Succow
RSA

(
q2
h, t + 2q2

hτlaw

)
+

qC
2k1

+
6qS + (qC + qp)2 + (qg + qh)2

2l+1
, (4)

where qC and qS denote the number of C and S instances involved during the attack (each upper-bounded
by qp + qs), k1 is the output length of H1, l is the security parameter, and τlaw is the computational
time needed for modular multiplication or modular division.

Informally speaking, an adversary who knows the client’s stored secret cannot determine the correct
password through off-line dictionary attacks since generating the valid authenticator after computing z
falls into on-line dictionary attacks (which can be easily prevented and detected).

Proof 1. In this proof, we incrementally define a sequence of games starting at the real game G0

and ending up at G5. We use Shoup’s lemma [8] to bound the probability of each event in these games.

Game G0: This is the real protocol in the random oracle model. We are interested in the following
two events:
– S0 (for semantic security) which occurs if the adversary correctly guesses the bit b involved in

the Test-query;
– A0 (for S-authentication) which occurs if an instance CI accepts with no partner instance SJ

with the same transcript ((C, j, z), (S, VS))

Advlr−ake
P (A) = 2Pr[S0] − 1 ,AdvS−auth

P (A) = Pr[A0] . (5)

In any game Gn below, we study the event An and the restricted event SwAn = Sn ∧ ¬An.

Game G1: In this game, we simulate the hash oracles (G,H1,H3 and H4, but as well additional hash
functions H′

i : {0, 1}� → {0, 1}ki (for i = 1, 3, 4) that will appear in the Game G3) as usual by
maintaining hash lists ΛG , ΛHi

and ΛH′
i

(see Fig. 3). We also simulate all the instances, as the
real parties would do, for the Send, Execute, Reveal, Leak and Test-queries (see Fig. 4). From this
simulation, we can easily see that the game is perfectly indistinguishable from the real attack.

7

Send-queries to C
We answer to the Send-queries to a C-instance as follows:

– A Send(CI , Start)-query is processed according to the following rules:
� Rule C1(1)

Compute pj ≡ αj + pw mod N .
� Rule C2(1)

Generate (x, y ≡ xe mod N), and compute W ← G(j, pj) and z ≡ y × W mod N .
Then the query is answered with (C, j, z), and the instance goes to an expecting state.

– If the instance CI is in an expecting state, a query Send(CI , (S, VS)) is processed by computing the alleged
authenticator, the session key and the refreshed secret. We apply the following rules.

� Rule C3(1)

Compute the expected authenticator and the session key
V ′
S ← H1(C||S||j||z||pj ||x), SKC ← H3(C||S||j||z||pj ||x).

� Rule C4(1)

Compute the refreshed secret αj+1 = αj + H4(C||S||j||z||pj ||x).
If V ′

S = VS , the instance accepts. In any case, it terminates.
Send-queries to S

We answer to the Send-queries to a S-instance as follows:
– A Send(SJ , (C, j, z))-query is first processed by checking that j is the correct counter, and in the case of

correct j it is processed by computing the authenticator, the session key and the refreshed secret. We apply
the following rules:

� Rule S1(1)

Compute W ← G(j, pj), y
′ ≡ z × W−1 mod N and x′ ≡ (y′)d mod N .

� Rule S2(1)

Compute the authenticator and the session key
VS ← H1(C||S||j||z||pj ||x′), SKS ← H3(C||S||j||z||pj ||x′).

� Rule S3(1)

Compute the refreshed secret pj+1 = pj + H4(C||S||j||z||pj ||x′).
Finally the instance accepts, and the query is answered with (S, VS).

Other queries

– An Execute(CI ,SJ)-query is processed using successively the above simulations of the Send-queries:
(C, j, z) ← Send(CI , Start), (S, VS) ← Send(SJ , (C, j, z)), Send(CI , (S, VS)), and then outputting the tran-
script ((C, j, z), (S, VS)).

– A Reveal(U)-query returns the session key (SKC or SKS) computed by the instance U (if the latter has
accepted).

– A Leak(CI)-query returns the stored secret (αj , (e, N)) by the instance CI .
– A Test(U)-query first gets SK from Reveal(U), and flip a coin b. If b = 1, we return the value of the session

key SK, otherwise we return a random value drawn from {0, 1}k3 .

Fig. 4. Simulation of the RSA-AKE protocol

Game G2: For an easier analysis in the following, we first forward any query to Hi to G:
� Rule H(2)

The query q is parsed as q = C||S||j||z||pj ||x, then one queries G(j, pj).
The number of queries to G thus becomes q′g ≤ qg + qh. Furthermore we exclude games in which
some events (Coll2) are unlikely to happen:
– collision of the partial transcript (C, j, z): any adversary tries to find out at least one pair (j, z),

coinciding with the challenge transcript, involving the honest party C, and then obtain the
corresponding session key (i.e., the same as the challenge session key) using the Reveal-query;

– collision on the output of G.
Both probabilities are bounded by the birthday paradox:

Pr[Coll2] ≤
(qC + qp)2 + q′2g

2l+1
. (6)

Game G3: In order to make the authenticators and the session keys unpredictable to any adversary,
we compute them using the private oracles H′

1 and H′
3 (instead of H1 and H3), respectively, so that

the values are completely independent from the random oracles as well as G. We reach this aim by
using the following rules:

8

� Rule C3/S2(3)

Compute the authenticator
VS ← H′

1(C||S||j||z).
Compute the session key

SKC/S ← H′
3(C||S||j||z).

We also use the private oracle H′
4 (instead of H4) so that the refreshed secrets are unpredictable to

any adversary as well. We modify the simulation by using the following rules:
� Rule C1(3)

Choose two random elements (βj , γj)
R← (Z�

N)2, and set αj ← βj and pj ← γj .
� Rule C4/S3(3)

Compute αj+1 = αj + H′
4(C||S||j||z) and pj+1 = pj + H′

4(C||S||j||z).
Since the secret x = x′ = RSAN,d

(
z × W−1

)
depends on (e,N), z and the parties (the common

secret pj), the games G3 and G2 are indistinguishable unless some specific hash queries are asked,
denoted by event AskH3 = AskH13 ∨ AskH3w13 ∨ AskH4w133, where W = G(j, pj):
– AskH13:

(C||S||j||z||pj ||RSAN,d

(
z × W−1

))
has been queried by A to H1 for some transcript

((C, j, z), (S, VS));
– AskH3w13:

(C||S||j||z||pj ||RSAN,d

(
z × W−1

))
has been queried by A to H3 for some transcript

((C, j, z), (S, VS)), where some party has accepted, but event AskH13 did not happen;
– AskH4w133:

(C||S||j||z||pj ||RSAN,d

(
z × W−1

))
has been queried by A to H4 for some transcript

((C, j, z), (S, VS)), where some party has accepted, but both AskH13 and AskH3w13 events did
not happen.

After this modification, we do no longer need to know the value x nor to compute the value x′

either. Thus we can simplify the corresponding rules:
� Rule C2(3)

Generate a random pair (x̂, z = RSAN,e(x̂)).
� Rule S1(3)

Do nothing.
Finally, one can notice that the actual password is not used any more. By the isomorphic property
of RSAN,f from Z

�
N to Z

�
N , the new value z is perfectly indistinguishable from before, since there

exists a unique pair (x, y),
x = RSAN,d

(
z × W−1

)
= x̂ × RSAN,d

(
W−1

)
y = RSAN,e(x) such that z = y × W .

The authenticator is computed with a random oracle that is private to the simulator, then one can
remark that it cannot be guessed by the adversary, better than at random for each attempt, unless
the same partial transcript (j, z) appeared in another session with a real instance CI . But such a
case has already been excluded (in Game G2). Similarly, this can be applied to the session key.

Pr[A3] ≤ qC
2k1

Pr[SwA3] =
1
2

. (7)

Since collision of the partial transcript has been excluded, the event AskH1 can be split in three
disjoint sub-cases:
– AskH1-Passive3: the transcript ((C, j, z), (S, VS)) comes from an execution between instances of

C and S (Execute-queries or forward of Send-queries, relay of part of them). In this case both
(j, z) and the RSA key pair have been simulated where the latter has been provided through
the Leak-query;

– AskH1-WithS3: the execution involved an instance of S, but (j, z) has not been sent by any
instance of C. This means that the RSA key pair has been simulated, but (j, z) has been
produced by the adversary;

– AskH1-WithC3: the execution involved an instance of C, but an instance of S has not been in-
volved during the attack. This means that both (j, z) and the RSA key pair have been simulated.

Game G4: In order to evaluate the above events, we introduce a random RSA instance (N, e, ρ), where
ρ is a uniformly distributed random element in Z

�
Ñ

(or equivalently, because of the isomorphism
property, σ is randomly drawn from Z

�
N and ρ = RSAN,e(σ)). We are looking for the value σ.

We introduce the instance (N, e, ρ) in the simulation of the oracle G, using again the homomorphic
property of RSA. Specifically, the simulation introduces values in the third and fourth elements
of ΛG : the pre-image of the answer by RSAN,e, but does not use it. We modify the simulation as

9

follows:
� Rule G(4)

Generate a random pair (u, v = RSAN,e(u)), and with a random bit b compute r ← v,
if b = 0, and r ← v · ρ, if b = 1. Then, the record (j, q, r, u, b) is added to ΛG .

The probability remains unchanged because of the homomorphic property.

Game G5: It is now possible to evaluate the probability of the event AskH (or more precisely, the
sub-cases). First, one can see that the password is never used during the simulation of G4. It doest
not need to be chosen in advance, but at the very end only. Then, an information-theoretic analysis
can be done which simply uses cardinalities of some sets. This is crucial that the entire simulation
is basically independent from the chosen password.
To this aim, we first exclude a few more games, wherein for some pair (j, z), involved in a commu-
nication between an instance SJ and either the adversary or an instance CI , there exist two distinct
values pj , and thus elements W , since W = G(j, pj) such that both the tuples (j, z, pj ,RSAN,d(z/W))
are in ΛH (which event is denoted CollH5):

|Pr[AskH5] − Pr[AskH4]| ≤ Pr[CollH5] . (8)

With the following lemma, the event CollH5 can be upper-bounded.

Lemma 1 For any pair (j, z) involved in a communication with an instance SJ , unless one can in-
vert the RSA instance, there is at most one valid element W obtained from G such that (j, z, pj ,RSAN,d

(z/W)) in ΛH:
Pr[CollH5] ≤ 2Succow

RSA(q2
h, t + 2q2

hτlaw) . (9)

Proof. We show the proof by contradiction. Here we assume that there exists (j, z) involved in a
communication, and W0 = RSAN,e(u0) · b0 · ρ and W1 = RSAN,e(u1) · b1 · ρ, both obtained from the
G oracle, such that the tuples (j, z, pji,RSAN,d(z/Wi)) are in ΛH, for i = 0, 1. Then,

Z
def=

RSAN,d(z/W1)
RSAN,d(z/W0)

= RSAN,d(W0/W1) . (10)

With probability of 1/2, the bits b0 and b1 involved in W0 and W1 are distinct. Without loss of
generality, we may assume that bi = i for i = 0, 1:

Z = RSAN,d

(
RSAN,e(u0)

RSAN,e(u1) · ρ
)

=
u0

u1 · RSAN,d(ρ)
=

u0

u1 · σ . (11)

As a consequence, σ = u0/(u1 · Z). By either guessing the two queries asked to the Hi or checking
for each pair the validity of the computed σ, one concludes the proof. �
In order to conclude the proof, let us study separately the three sub-cases of AskH1, and then
AskH3w1 and AskH4w13 (keeping in mind the absence of several kinds of collisions: for partial
transcripts, for G, and for pj in H-queries):
– AskH1-Passive: about the passive transcripts (in which both (j, z) and the RSA key pair have

been simulated), one can state the following lemma:
Lemma 2 For any pair (j, z) involved in a passive transcript, unless one can invert the RSA
instance, there is no valid element W such that (j, z, pj ,RSAN,d (z/W)) in ΛH:

Pr[AskH1-Passive5] ≤ 2Succow
RSA(qh, t + 2qhτlaw) . (12)

Proof. Assume that there exist (j, z) involved in a passive transcript and W = RSAN,e(u) · b · ρ
such that the tuple (j, z = RSAN,e(x̂), pj , Z

def= RSAN,d(z/W)) is in ΛH. Then, as above, with
probability of 1/2, b = 1:

Z = RSAN,d

(
RSAN,e(x̂)

RSAN,e(u) · ρ
)

=
x̂

u · RSAN,d(ρ)
=

x̂

u · σ . (13)

As a consequence, σ = x̂/(u · Z). By either guessing the query asked to the Hi or checking the
validity of σ for each candidate, one concludes the proof. �

10

– AskH1-WithS: the above Lemma 1, applied to games where the event CollH5 did not happen (and
without G-collision), states that for each pair (j, z) involved in a transcript with an instance SJ ,
there is at most one element pj such that for W = G(j, pj), the corresponding tuple is in ΛH.
Thus, the probability for the adversary (who may have obtained αj in the Leak-query, denoted
by event Leak5) over a random password is upper-bounded by:

Pr[AskH1-WithS5] ≤ qS
2l

+
qS
D

. (14)

– AskH1-WithC: this may correspond to an attack where the adversary tries to impersonate S
to C (break unilateral authentication). But each authenticator sent by the adversary has been
computed with at most one pj . Thus, the above Lemma 2 also applies to this case:

Pr[AskH1-WichC5] ≤ 2Succow
RSA(qh, t + 2qhτlaw) . (15)

About AskH3w1 (when the above three events did not happen), it means that only executions with
an instance of S may lead to acceptance (and either C or the adversary). Exactly the same analysis
as for AskH1-Passive and AskH1-WithS leads to

Pr[AskH3w15] ≤ qS
2l

+
qS
D

+ 2Succow
RSA(qh, t + 2qhτlaw) . (16)

About AskH4w13 (when both of the events AskH1 and AskH3w1 did not happen), the same analysis
as for AskH3w1 leads to

Pr[AskH4w135] ≤ qS
2l

+
qS
D

+ 2Succow
RSA(qh, t + 2qhτlaw) . (17)

As a conclusion, we get an upper-bound for the probability of AskH5 by combining all the cases:

Pr[AskH5] ≤ 3qS
2l

+
3qS
D

+ 8Succow
RSA(qh, t + 2qhτlaw) . (18)

Combining equations (6), (7), (9) and (18), one gets either

Pr[A0] ≤ qC
2k1

+ ∆ Pr[SwA0] =
1
2

+ ∆ , (19)

where

∆ ≤ 2Succow
RSA

(
q2
h, t + 2q2

hτlaw

)
+ 8Succow

RSA (qh, t + 2qhτlaw) +
3qS
D

+
3qS
2l

+
(qC + qp)2 + q′2g

2l+1

≤ 3qS
D

+
6qS + (qC + qp)2 + q′2g

2l+1
+ 10Succow

RSA

(
q2
h, t + 2q2

hτlaw

)
. (20)

One can get the result as desired by noting that Pr[S0] ≤ Pr[SwA0] + Pr[A0].

Theorem 2 (LR-AKE/UA Security) Let P be the RSA-AKE protocol of Fig. 2., where the server’s
stored secret (i.e., (d,N)) is provided through the Leak-query. For any adversary A, with less than
qs active interactions with the parties (Send-queries), qp passive eavesdroppings (Execute-queries), and
asking qg and qh hash queries to G and any Hi respectively, Advlr−ake

P (A) ≤ 4ε and AdvS−auth
P (A) ≤ ε,

with ε upper-bounded by

qC
2k1

+
6(qp + qS) + 3(qC + qp)2 + 2(qg + qh)2

2l+1
, (21)

where qC and qS denote the number of C and S instances involved during the attack (each upper-bounded
by qp + qs), k1 is the output length of H1 and l is the security parameter.

Informally speaking, an adversary who knows the server’s RSA private key cannot perform even on-line
dictionary attacks since the authentication depends on the strong secret pj .

Proof. In this proof, we incrementally define a sequence of games starting at the real game G0 and
ending up at G4. Here we describe differences only from Proof 1.

11

Game G0: This is the same as G0 of Proof 1.

Game G1: In this game, we modify the simulations of the hash oracle G and the Leak query in Fig.
3 and 4, respectively, as follows:
– For a hash-query G(j, q), such that a record (j, q, r) appears in ΛG , the answer is r. Otherwise

one chooses a random element r
R← Z

�
N , answers with it, and adds the record (j, q, r) to ΛG ;

– A Leak(SJ)-query returns the stored secret (d,N) by the instance SJ .
The remaining is the same as G1 of Proof 1. From this simulation, we can easily see that the game
is perfectly indistinguishable from the real attack.

Game G2: This is the same as G2 of Proof 1.

Game G3: This is the same as G3 of Proof 1 except the sub-cases (AskH1-WithS and AskH1-WithC)
of AskH1:

– AskH1-WithS3: the execution involved an instance of S, but (j, z) has not been sent by any
instance of C. This means that the RSA key pair has been simulated and provided through the
Leak-query, but (j, z) has been produced by the adversary;

– AskH1-WithC3: the execution involved an instance of C, but an instance of S has not been in-
volved during the attack. This means that both (j, z) and the RSA key pair have been simulated
where the latter has been provided through the Leak-query.

Game G4: Actually, we don’t need to introduce an RSA instance in the simulation of the oracle G
since the adversary knows the RSA private key through the Leak-query.
We first exclude an event (denoted by CollH4), wherein for some pair (j, z) there exist two distinct
values pj , and thus elements W , since W = G(j, pj) such that both the tuples (j, z, pj ,RSAN,d(z/W))
are in ΛH. As a result, the probability of CollH4 is bounded by the birthday paradox:

Pr[CollH4] ≤ q2
h

2l+1
. (22)

This implies that for each pair (j, z) there is at most one element pj such that, for W = G(j, pj),
the corresponding tuple is in ΛH.
In order to conclude the proof, let us evaluate separately the three sub-cases of AskH1, and then
AskH3w1 and AskH4w13 (keeping in mind the absence of several kinds of collisions: for partial
transcripts, for G, and for pj in H-queries):

– AskH1-Passive: about the passive transcripts (in which both (j, z) and the RSA key pair have
been simulated), the probability for the adversary over a random pj is upper-bounded by:

Pr[AskH1-Passive4] ≤ qp

2l
. (23)

– AskH1-WithS: this may correspond to an attack where the adversary tries to impersonate C to
S. But each z sent by the adversary has been computed with at most one pj . Thus,

Pr[AskH1-WithS4] ≤ qS
2l

. (24)

– AskH1-WithC: this may correspond to an attack where the adversary tries to impersonate S
to C (break unilateral authentication). But each authenticator sent by the adversary has been
computed with at most one pj . Thus,

Pr[AskH1-WichC4]
qC
2l

. (25)

About AskH3w1 (when the above three events did not happen), it means that only executions with
an instance of S may lead to acceptance (and either C or the adversary). Exactly the same analysis
as for AskH1-Passive and AskH1-WithS leads to

Pr[AskH3w14] ≤ qp + qS
2l

. (26)

12

About AskH4w13 (when both of the events AskH1 and AskH3w1 did not happen), the same analysis
as for AskH3w1 leads to

Pr[AskH4w134] ≤ qp + qS
2l

. (27)

As a conclusion, we get an upper-bound for the probability of AskH4 by combining all the cases:

Pr[AskH4] ≤ 3qp + 3qS + qC
2l

. (28)

Combining equations (6), (7), (22) and (28), one gets either

Pr[A0] ≤ qC
2k1

+ ∆ Pr[SwA0] =
1
2

+ ∆ , (29)

where

∆ ≤ 3qp + 3qS + qC
2l

+
q2
h + (qC + qp)2 + q′2g

2l+1
.

(30)

One can get the result as desired by noting that Pr[S0] ≤ Pr[SwA0] + Pr[A0].

It is of practical significance to note that in the real world applications the Leak-query is limited by
the physical power of an adversary which are usually much less, whereas the Send and Execute-queries
are directly relevant to interactions with the parties.

References

1. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated Key Exchange Secure against Dictionary At-
tacks. In Proc. of EUROCRYPT 2000, LNCS 1807, pages 139-155. Springer-Verlag, 2000.

2. M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm for Designing Efficient Protocols.
In Proc. of ACM CCS ’93, pages 62-73, 1993.

3. M. Bellare and P. Rogaway. Entity Authentication and Key Distribution. In Proc. of CRYPTO ’93, LNCS
773, pages 232-249. Springer-Verlag, 1993.

4. R. Canetti, O. Goldreich, and S. Halevi. The Random Oracle Methodology, Revisited. In Proc. of the 30th
ACM Symposium on Theory of Computing (STOC), pages 209-218, ACM, 1998.

5. D. Catalano, D. Pointcheval, and T. Pornin. Trapdoor Hard-to-Invert Group Isomorphisms and Their Ap-
plication to Password-based Authentication. Journal of Cryptology, 2006. The extended abstract appeared
at CRYPTO 2004. Available at http://www.di.ens.fr/∼pointche/pub.php? reference=CaPoPo06.

6. S. Halevi and H. Krawczyk. Public-Key Cryptography and Password Protocols. ACM Transactions on
Information and System Security, Vol. 2, No. 3, pages 230-268. ACM Press, August 1999.

7. A. Shamir. How to Share a Secret. In Proc. of Communications of the ACM, Vol. 22(11), pages 612-613,
1979.

8. V. Shoup. OAEP Reconsidered. Journal of Cryptology, Vol. 15(4), pages 223-249, September 2002.
9. S. Shin, K. Kobara, and H. Imai. Efficient and Leakage-Resilient Authenticated Key Transport Protocol

Based on RSA. In Proc. of ACNS2005, LNCS 3531, pages 269-284. Springer-Verlag, 2005.
10. Q. Tang and Chris J. Mitchell. Weaknesses in a Leakage-Resilient Authenticated Key Transport Protocol.

http://eprint.iacr.org/2005/173.

