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Abstract. We introduce VSH, very smooth hash, a new S-bit hash func-
tion that is provably collision-resistant assuming the hardness of finding
nontrivial modular square roots of very smooth numbers modulo an S-
bit composite. By very smooth, we mean that the smoothness bound is
some fixed polynomial function of S. We argue that finding collisions for
VSH has the same asymptotic complexity as factoring using the Number
Field Sieve factoring algorithm, i.e., subexponential in S.
VSH is theoretically pleasing because it requires just a single multipli-
cation modulo the S-bit composite per Ω(S) message-bits (as opposed
to O(log S) message-bits for previous provably secure hashes). It is rel-
atively practical. A preliminary implementation on a 1GHz Pentium III
processor that achieves collision resistance at least equivalent to the dif-
ficulty of factoring a 1024-bit RSA modulus, runs at 1.1 MegaByte per
second, with a moderate slowdown to 0.7MB/s for 2048-bit RSA security.
VSH can be used to build a fast, provably secure randomised trapdoor
hash function, which can be applied to speed up provably secure signa-
ture schemes (such as Cramer-Shoup) and designated-verifier signatures.
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1 Introduction

Current collision-resistant hash algorithms that have provable security reduc-
tions are too inefficient to be used in practice. One example [17, 20] that is
provably reducible from integer factorisation is of the form xm mod n where m
is the message, n a supposedly hard to factor composite, and x is some pre-
specified base value. A collision xm ≡ xm′

mod n reveals a multiple m − m′ of
the order of x (which in itself divides φ(n)). Such information can be used to
factor n in polynomial time assuming certain properties of x.

The above algorithm is quite inefficient because it requires on average 1.5
multiplications modulo n per message-bit. Improved provable algorithms ex-
ist [7] which require a multiplication per O(log log n) message-bits, but beyond
that it seems that so far all attempts to gain efficiency came at the cost of losing
provability (see also [1]). We propose a hash algorithm that uses a single multi-
plication per Ω(log n) message-bits. It uses RSA-type arithmetic, obviating the
need for completely separate hash function code such as SHA-1. Our algorithm
may therefore be useful in embedded environments where code space is limited.



We say that an integer is very smooth if its prime factors are bounded by
(log n)c for a fixed constant c. We use VSH, for very smooth hash, to refer to
our new hash because finding a collision (i.e., strong collision resistance) for
VSH is provably as difficult as finding a nontrivial modular square root of a
very smooth number modulo n. We show that the latter problem, which we call
VSSR, is connected to integer factorisation, and that it is reasonable to believe
that VSSR is hard as well (until quantum computers are built). We emphasize
that VSH is ‘only’ collision-resistant and not suitable as a substitute for a random
oracle.

Given the factorisation of the VSH-modulus, collisions can be created (cf.
trapdoor hashes in [20]). Therefore, for wide-spread application of a single VSH-
modulus one has to rely on a trusted party to generate the modulus (and not to
create collisions). Or one could use [2] to generate a modulus with knowledge of
its factorisation shared among a group of authorities. For a one time computation
the overhead may be acceptable. If each party would have it own VSH-modulus,
the repudiation concerns are the same as those concerning regular RSA.

On the positive side, we show how VSH can be used to build a provably secure
randomised trapdoor hash function which requires only about 4 modular multi-
plications to evaluate on fixed-length messages of length k < log2 n bits (com-
pared to the fastest construction in [20], which requires about k multiplications).
Randomised trapdoor hash functions are used in signature schemes to achieve
provable security against adaptive chosen message attack [20], and in designated-
verifier signature schemes to achieve privacy [11, 21]. Our function can replace
the trapdoor function used in the Cramer-Shoup signature scheme [6], maintain-
ing its provable security while speeding up verification time by about 50%.

We also present a variant of VSH using a prime modulus p (with no trapdoor),
which has about the same efficiency and is provably collision-resistant assuming
the hardness of finding discrete logarithms of very smooth numbers modulo p.

Related Work. Previous hash functions with collision resistance provably related
to factoring have lower efficiency than VSH. The xm mod n function mentioned
above appeared in [17, 20]. A collision-resistant hash function based on a claw
free permutation pair (where claw finding is provably as hard as factoring an
RSA modulus) was proposed in [9]—this function requires 1 squaring per bit
processed. In [7] the construction is generalised to use families of r ≥ 2 claw free
permutations, such that log2(r) bits can be processed per permutation evalu-
ation. Two factoring based constructions are presented, which require 2 multi-
plications per permutation evaluation. In the first construction the modulus n
has 1 + log2(r) prime factors and thus becomes impractical already for small
log2(r). The second one uses a regular RSA modulus, but requires publishing r
random quadratic residues modulo n. This becomes prohibitive too for relatively
small log2(r); as a result the construction requires a multiplication modulo an
S-bit RSA modulus n per O(log S) message-bits while consuming polynomial
space (r = O(poly(S))). The constructions in [1] are more efficient but are only
provably collision-resistant assuming an underlying hash function is modeled as
a random oracle (we make no such assumption).
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Section 2 introduces VSSR. VSH and its variants are presented in Section 3.
Section 4 describes a VSH-based randomised trapdoor hash function which
speeds up the Cramer-Shoup signature scheme. Section 5 concludes with im-
plementation results.

2 Security Definitions

Notation. Throughout this paper, let c > 0 be a fixed constant and let n
be a hard to factor S-bit composite for an integer S > 0. The ring of integers
modulo n is denoted Zn, and its elements are represented by {0, 1, . . . , n− 1} or
{−n + 1,−n + 2, . . . , 0}. It will be clear from the context which representation
is being used. The ith prime is denoted pi: p1 = 2, p2 = 3, . . ., and p0 = −1. An
integer is pk-smooth if all its prime factors are ≤ pk. We use

L[n, α] = e(α+o(1))(log n)1/3(log log n)2/3

for constant α > 0 and n → ∞, and where the logarithms are natural.

Definition 1. An integer b is a very smooth quadratic residue modulo n if the
largest prime in b’s factorisation is at most (log n)c and there exists an integer
x such that b ≡ x2 mod n. The integer x is said to be a modular square root of b.

Definition 2. An integer x is said to be a trivial modular square root of an
integer b if b = x2, i.e. b is a perfect square and x is the integer square root of b.

Trivial modular square roots have no relation to the modulus n. Such identities
are easy to create, and therefore they are not allowed in the security reduction. A
sufficient condition for a very smooth integer b representing a quadratic residue
not to have a trivial modular square root is having some prime p such that p
divides b but p2 does not. Another sufficient condition is that b is negative.
Our new hardness assumption is that it is difficult to find a nontrivial modular
square root of a very smooth quadratic residue modulo n. Before formulating
our assumption, we give some relevant background on integer factorisation.

Background. General purpose integer factoring algorithms are used for the
security evaluation of RSA, since they do not take advantage of properties of
the factors. They all work by constructing nontrivial congruent squares modulo n
since such squares can be used to factor n: if x, y ∈ Z are such that x2 ≡ y2 mod n
and x 6≡ ±y mod n, then gcd(x±y, n) are proper factors of n. To construct such
x, y a common strategy uses so-called relations. An example of a relation would
be an identity of the form

v2 ≡
∏

0≤i≤u

p
ei(v)
i mod n,

where u is some fixed integer, v ∈ Z, and (ei(v))u
i=0 is a (u + 1)-dimensional

integer vector. Given u + 1 + t relations, at least t linearly independent depen-
dencies modulo 2 among the u + 1 + t vectors (ei(v))u

i=0 can be found using
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linear algebra. Each such dependency corresponds to a product of v2-values that
equals a product modulo n of pi’s with all even exponents, and thus a solution
to x2 ≡ y2 mod n. If x 6≡ ±y mod n, then it leads to a proper factor of n. A
relation with all even exponents ei(v) leads to a pair x, y right away, which has,
in our experience with practical factoring algorithms, never happened unless n
is very small. It may safely be assumed that for each relation found at least one
of the ei(v)’s is odd—actually most that are non-zero will be equal to 1.

For any u, relations are easily computed if n’s factorisation is known, since
square roots modulo primes can be computed efficiently and the results can be
assembled via the Chinese Remainder Theorem. If the factorisation is unknown,
however, relations in practical factoring algorithms are found by a determinis-
tic process that depends on the factoring algorithm used. It is sufficiently un-
predictable that the resulting x, y may be assumed to be random solutions to
x2 ≡ y2 mod n, implying that the condition x 6≡ ±y mod n holds for at least half
of the dependencies. Despite the lack of a rigorous proof, this heuristic argument
has not failed us yet. A few dependencies usually suffice to factor n.

The expected relation collection runtime is proportional to the product of u
(approximately the number of relations one needs) and the inverse of the smooth-
ness probability of the numbers that one hopes to be pu-smooth, since this prob-
ability is indicative for the efficiency of the collection process. For the fastest
factoring algorithms published so far, the Number Field Sieve (NFS, cf. [13,
5]), the overall expected runtime (including the linear algebra) is minimised—
based on loose heuristic grounds—when, asymptotically for n → ∞, u behaves
as L[n, 0.96...]. For this u, the running time is L[n, 1.923...], i.e., the square of u.

With the current state of the art of integer factorisation, one cannot expect
that, for any value of u, a relation can be found faster than L[n, 1.923...]/u
on average, asymptotically for n → ∞. For u-values much smaller than the
optimum, the actual time to find a relation will be considerably larger (cf. remark
below and [14]). For u ≈ (log n)c, it is conservatively estimated that finding a
relation requires runtime at least

L[n, 1.923...]

(log n)c
= L[n, 1.923...],

asymptotically for n → ∞, because the denominator gets absorbed in the numer-
ator’s o(1). This observation that finding relations for very small u (i.e., u’s that
are bounded by a polynomial function of log n) can be expected to be asymp-
totically as hard as factoring n, is the basis for our new hardness assumption.

Before formulating it, we present two ways to use the hardness estimate
L[n, 1.923...]/u for small u in practice. One way is to use the asymptotics and
assume that finding a relation is as hard as factoring n. A more conservative
approach incorporates the division by u in the estimate. In theory this is a futile
exercise because, as argued, a polynomially bounded u disappears in the o(1) for
n → ∞. In practice, however, n does not go to infinity but actual values have
to be dealt with. If n′ is a hard to factor integer for which log n and log n′ are
relatively close, then it is widely accepted that the ratio of the NFS-factoring
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runtimes for n and n′ approximates L[n, 1.923...]/L[n′, 1.923...] where the o(1)’s
are dropped. To assess the hardness estimate L[n, 1.923...]/u for very small u,
one therefore finds the least integer S′ for which, after dropping the o(1)’s,

L[2S′

, 1.923...] ≥
L[n, 1.923...]

u
, (1)

and assumes that finding a relation for this n and u may be expected to be (at
least) as hard as NFS-factoring a hard to factor S′-bit integer. Note that S′ will
be less than S, the length of n. Examples of matching S, S′, u values are given
in Section 5.

This factoring background provides the proper context for our new problem
and its hardness assumption.

Definition 3. (VSSR: Very Smooth number nontrivial modular Square Root)
Let n be the product of two unknown primes of approximately the same size and
let k ≤ (log n)c. VSSR is the following problem: Given n, find x ∈ Z∗

n such that

x2 ≡
∏k

i=0 pei

i mod n and at least one of e0, . . . , ek is odd.

VSSR Assumption. The VSSR assumption is that there is no probabilistic
polynomial (in log n) time algorithm which solves VSSR with non-negligible
probability (the probability is taken over the random choice of the factors of n
and the random coins of the algorithm).

One can contrive moduli where VSSR is not difficult, such as if n is very close
to a perfect square. However, such examples occur with exponentially small
probability assuming the factors of n are chosen randomly, as required. According
to proper security definitions [18], these examples do not even qualify as weak
keys since the time-to-first-solution is slower than factoring, and therefore are
not worthy of further consideration.

The VSSR Assumption is rather weak and useless in practice since it does
not tell us for what size moduli VSSR would be sufficiently hard. This is similar
to the situation in integer factorisation where the hardness assumption does not
suffice to select secure modulus sizes. We therefore make an additional, stronger
assumption that links the hardness of VSSR to the current state of the art in
factoring. It is based on the conservative estimate for the difficulty of finding a
relation for very small u given above.

Computational VSSR Assumption. The computational VSSR assumption
is that solving VSSR is as hard as factoring a hard to factor S′-bit modulus,
where S′ is the least positive integer for which equation (1) holds (where, as
in (1), the o(1)’s in the L[...]’s are dropped).
Remark. For existing factoring algorithms, the relation collection runtime in-
creases sharply for smoothness bounds that are too low, almost disastrously so if
the bound is taken as absurdly low as in VSSR (cf. [14]). Therefore, the Compu-
tational VSSR Assumption is certainly overly conservative. Just assuming—as
suggested above—that solving VSSR is as hard as factoring n may be more ac-
curate. Nevertheless, the runtime estimates for our new hash function will be
based on the overly conservative Computational VSSR Assumption.
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Although our analysis is based on the average runtime to find a relation
using the NFS, it is very conservative (i.e., leads to a large n) compared to a
more direct analysis involving the relevant smoothness probability of squares
modulo n. The latter would lead to a hardness estimate for finding even a single
very smooth relation that is more similar to the runtime of the Quadratic Sieve
integer factorisation algorithm, and thereby to much smaller ‘secure’ modulus
sizes (obviously, unless n’s factorisation is known or n has a special form which
it will not have when properly chosen). Thus, we feel more comfortable using
our NFS-based approach.

3 Very Smooth Hash Algorithm

The basic version of VSH follows below. More efficient variants of VSH are
discussed later in this section.

VSH Algorithm. Let k, the block length, be the largest integer such that
∏k

i=1 pi < n. Let m be an ℓ-bit message to be hashed, consisting of bits m1, . . . ,
mℓ, and assume ℓ < 2k. To compute the hash of m perform steps 1 through 5:

1. Let x0 = 1.
2. Let L = ⌈ ℓ

k⌉ (the number of blocks). Let mi = 0 for ℓ < i ≤ Lk (padding).

3. Let ℓ =
∑k

i=1 ℓi2
i−1 with ℓi ∈ {0, 1} be the binary representation of the

message length ℓ and define mLk+i = ℓi for 1 ≤ i ≤ k.
4. For j = 0, 1, . . . ,L in succession compute

xj+1 = x2
j ×

k
∏

i=1

p
mj·k+i

i mod n.

5. Return xL+1.

Message length. The message length does not need to be known in advance,
which is useful for applications involving streaming data. In an earlier version
which appeared on eprint [4], the message length was prepended, which may
prove inconvenient and also required usage of pk+1. If one uses the common
method of appending a single 1 bit prior to zero-padding the final block, collisions
can easily be created for the above version of VSH.
Compression function H. VSH applies the compression function H(x, m) :

Z∗
n × {0, 1}k → Z∗

n with H(x, m) = x2
∏k

i=1 pmi

i mod n, and applies a variant
of the Merkle-Damg̊ard transformation [15, 8] to extend H to arbitrarily long
inputs. We comment on why this works in Section 3.1.
1024-bit n. For 1024-bit n, the value for k would be 131. The requirement
ℓ < 2k is therefore not a problem in any real application, and most of the
bits ℓi will be zero. The Computational VSSR Assumption with S = 1024 and
k = u = 131 leads to S′ = 840. The security level obtained by VSH using 1024-
bit n is therefore at least the security level obtained by 840-bit RSA and, given
recent hash developments, by SHA-1.
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Efficiency. Because
∏

1≤i≤K pi is asymptotically proportional to e(1+o(1))K log K ,

for K → ∞, the k used in the basic version of VSH is proportional to log n
log log n . It

follows that the product
∏k

i=1 p
mj·k+i

i can be computed in time O((log n)2) using
straightforward multiplication without modular reduction. Therefore the cost of
each iteration is less than the cost of 3 modular multiplications. Since k bits
are processed per iteration, the basic version of VSH requires a single modular
multiplication per Ω( log n

log log n ) message-bits, with a small constant in the Ω.

Creating collisions. With ei =
∑L

j=0 mj·k+i2
L−j for 1 ≤ i ≤ k, the value

calculated by the VSH algorithm equals the multi-exponentiation
∏k

i=1 pei

i mod
n. Given φ(n) and assuming large enough L, collisions can be generated by
replacing ei by ei+tiφ(n) for any set of i’s with 1 ≤ i ≤ k and positive integers ti
(see also VSH-DL below). Thus, parties that know n’s factorisation can create
collisions at will. But collisions of this sort immediately reveal φ(n) and thereby
n’s factorisation. Creating collisions that cannot immediately be used to factor n
is a harder problem, involving discrete logarithms of very smooth numbers.

To avoid repudiation concerns if VSH would be used ‘globally’ with the same
modulus it would be advisable to generate n using the method from [2]. On the
other hand, it is conceivable—and may be desirable—to expand PKIs to allow
one to choose one’s own hash function, rather than using a ‘fixed target’ for all.
In this setting, one cannot allow the owner of a VSH-modulus to claim he did
not sign something by displaying a collision. Especially taking into considera-
tion that the only easy way the user can create a collision would also reveal the
factorisation of n, this would be analogous to somebody using RSA who anony-
mously posts the factorisation of their modulus in order to fraudulently claim
that he did not sign something. Thus, in such a situation the VSH-modulus
should be considered compromised and the user’s certificate should be revoked.

Short message inversion. The VSH algorithm described above allows easy
inversion of short and some sparse messages since there may be no wrap-around
modulo n. The attacker first guesses the length, divides the hash modulo n by
the corresponding

∏k
i=1 p

mL·k+i

i , and checks if the resulting value is very smooth.
This type of invertibility may be undesirable for some applications, but others
require just collision resistance (cf. below). See [16] for a related application.

A solution to this invertibility problem that does not affect our proof of
security (cf. below) is to square the final output enough times to ensure wrap-
around (no more than log2 log2 n times). Other, more efficient solutions may be
possible. Note that for all hash functions, the hash of extremely sparse or short
messages can always be ‘inverted’ by trial and error.

Undesirable properties. It is easy to find messages for which the hashes h and
h
′ satisfy h = 2h

′. Our solution to the invertibility problem addresses this issue as
well. Other similar possibly undesirable properties can be constructed. We again
emphasize that VSH is not intended to model a random oracle, and therefore
cannot be blindly substituted as is into constructions that depend upon them
(such as RSA signatures and some MAC constructions). We remind the reader
that random oracles do not exist in the real world, and therefore relying on them
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too much is not recommended. On the other hand, entirely provable solutions
do exist which require only collision resistance: for example, see Section 4.
Having stressed upfront in the last three remarks the disadvantages of VSH, we
turn to its most attractive property, namely its provable collision resistance.

3.1 Security Proof for VSH

We prove that VSH is (strongly) collision-resistant. Using proper security notions
[19], (strong) collision resistance also implies second preimage resistance.

Theorem 1. Finding a collision in VSH is as hard as solving VSSR (i.e., VSH
is collision-resistant under the assumptions from Section 2).

Proof. We show that different colliding messages m and m′ lead to a solution of
VSSR. Let x′

... denote the x... values in the VSH algorithm applied to m′ and let
ℓ,L and ℓ′,L′ be the bitlengths and number of blocks of m and m′, respectively.
Since m and m′ collide, m 6= m′ and xL+1 = x′

L′+1.
First consider the case of ℓ = ℓ′. Let m[j] denote m’s jth k-bit block, m[j] =

(mj·k+i)
k
i=1, and let t ≤ L be the largest index such that (xt, m[t]) 6= (x′

t, m
′[t])

but (xj , m[j]) = (x′
j , m

′[j]) for t < j ≤ L + 1. Then,

(xt)
2 ×

k
∏

i=1

p
mt·k+i

i ≡ (x′
t)

2 ×
k

∏

i=1

p
m′

t·k+i

i mod n . (2)

Let ∆ = {i : mt·k+i 6= m′
t·k+i, 1 ≤ i ≤ k} and ∆10 = {i ∈ {1, . . . , k} : mt·k+i =

1 and m′
t·k+i = 0}. Because all factors in Equation (2) are invertible modulo n,

it is equivalent to

[

(xt/x′
t) ×

∏

i∈∆10

pi

]2

≡
∏

i∈∆

pi mod n . (3)

If ∆ 6= ∅, Equation (3) solves VSSR. If ∆ = ∅, then (xt)
2 ≡ (x′

t)
2 mod n and

t ≥ 1 (since m 6= m′ and using the definition of t). With xt 6≡ ±x′
t mod n VSSR

can be solved by factoring n. If xt ≡ ±x′
t mod n then xt ≡ −x′

t mod n, since
∆ = ∅ implies (by definition of t) that xt 6= x′

t. But xt ≡ −x′
t mod n leads to

(xt−1/x′
t−1)

2 being congruent to −1 times a very smooth number and thus solves
VSSR.

Now consider the case ℓ 6= ℓ′. Since xL+1 = x′
L′+1, we have (xL/x′

L′)2 ≡
∏k

i=1 p
ℓ′i−ℓi

i mod n. Since |ℓ′i − ℓi| = 1 for at least one i, VSSR is solved using a
transformation as in Equation (3). ⊓⊔

Why Merkle-Damg̊ard works. VSH applies a variant of the Merkle-Damg̊ard
transformation [15, 8] to hash arbitrary length messages using the compression
function H : Z∗

n×{0, 1}k → Z∗
n. The proof in [8] shows that a sufficient condition

for a hash function to be collision-resistant is that its compression function H

8



is collision-resistant, i.e. it is hard to find any (x, m) 6= (x′, m′) with H(x, m) =

H(x′, m′). However, our compression function H(x, m) = x2
∏k

i=1 pmi

i mod n is
not strictly collision-resistant (H(−x mod n, m) = H(x, m)), and yet we proved
that H is still sufficiently strong to make VSH collision-resistant. Therefore, one
may ask whether we can strengthen the result in [8] to state explicitly the se-
curity properties of a compression function (which are weaker than full collision
resistance) that our compression function satisfies and that are still sufficient
in general to make the resulting hash function collision-resistant. Indeed, these
conditions can be readily generalised from our proof of Theorem 1, so we only
state them here:

(1) Collision Resistance in Second input: It is hard to find (x, m), (x′, m′) ∈
Z∗

n × {0, 1}k with m 6= m′ such that H(x, m) = H(x′, m′).
(2) Preimage Resistance for a collision in first input: It is hard to find (x, m) 6=

(x′, m′) ∈ Z∗
n × {0, 1}k and m∗ ∈ {0, 1}k such that H(y, m∗) = H(y′, m∗),

where y = H(x, m), y′ = H(x′, m′) and y 6= y′.

The VSH compression function H satisfies these properties, under the VSSR
Assumption.

3.2 Example: A Related Algorithm that can be Broken

To emphasize the importance of the nontrivialness, consider a hash function
that works similarly to VSH, except breaks the message into blocks r1, r2, . . .
of K > 1 bits and uses the compression function xj+1 = x2

j × 2rj+1 mod n.
Because K > 1 collisions can simply be created. For example, for any e with
0 < e < 2K−1 the message blocks r1 = e and r2 = 2e collide with r′1 = 2e and
r′2 = 0. The colliding values are (2e)222e and (22e)220, but this does not lead
to a solution of VSSR or a chance to factor n. Such trivial relations are useless,
and the security of this hash algorithm is not based on a hard problem. The fix

is to use the costlier compression function xj+1 = x2K

j × 2rj+1 , but that results
in the same function xm mod n from [17, 20].

3.3 Combining VSH and RSA

Since the output length of VSH is the length of a secure RSA modulus (thus
1024–2048 bits), VSH seems quite suitable in practice for constructing ‘hash-
then-sign’ RSA signatures for arbitrarily long messages. However, such a sig-
nature scheme must be designed carefully to ensure its security. To illustrate a
naive insecure scheme, let (n, e) be the signer’s public RSA key, where the modu-
lus n is used for both signing and hashing. The signing function σ : {0, 1}∗ → Zn

is σ(m) = V SHn(m)1/e mod n, where V SHn : {0, 1}∗ → Zn is VSH with mod-
ulus n. For a k-bit message m = (m1, . . . , mk) ∈ {0, 1}k, the signature is thus

σ(m) = (κ
∏k

i=1 p2mi

i )1/e mod n, for a κ that is the same for all k-bit messages.
This scheme is insecure under the following chosen message attack. After

obtaining signatures on three k-bit messages: s0 = σ((0, 0, 0, . . . , 0)) = κ1/e mod
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n, s1 = σ((1, 0, 0, . . . , 0)) = (κp2
1)

1/e mod n, and s2 = σ((0, 1, 0, . . . , 0)) =
(κp2

2)
1/e mod n, the attacker easily computes the signature s1s2

s0
mod n on the

new k-bit forgery message (1, 1, 0, . . . , 0). It is easy to see that k + 1 signatures
on k + 1 properly chosen messages suffice to sign any k-bit message.

To avoid such attacks, we suggest a more theoretically sound design approach
for using VSH with ‘hash-then-sign’ RSA signatures that does not rely on any
property of VSH beyond the collision resistance which it was designed to achieve:
Step 1. Let n̄ be an (S + 1)-bit RSA modulus, with n̄ and the S-bit VSH
modulus n chosen independently at random. So, n̄ > 2S. Specify a one-to-one
one-way encoding function f : {0, 1}S → {0, 1}S, and define the short-message
(S-bit) RSA signature scheme with signing function σn̄(m) = (f(m))1/e mod
n̄. The function f is chosen such that the short-message scheme with signing
function σn̄ is existentially unforgeable under chosen message attack. In the
standard model no provable techniques are known to find f , but since f is one-
to-one, there are no collision resistance issues to consider when designing f .
Step 2. With (n̄, n, e) as the signer’s public key, the signature scheme for signing
arbitrary length messages is now constructed with signing function σn̄,n(m) =
σn̄(V SHn(m)). It is easy to prove that the scheme with signing function σn̄,n is
existentially unforgeable under chosen message attack, assuming that the scheme
with signing function σn̄ is and that V SHn is collision-resistant. We emphasize
that the proof no longer holds if n̄ = n: in order to make the proof work in
that case, one needs the stronger assumption that V SHn is collision-resistant
even given access to a signing oracle σn. However, it is worth remarking that if
the function f is modeled as a random oracle, then the proof of security works
(under the RSA and VSSR assumptions) even with a shared modulus (n̄ = n).

3.4 Variants of VSH

Cubing instead of squaring. Let H ′ : Z∗
n × {0, 1}k → Z∗

n with H ′(x, m) =

x3
∏k

i=1 pmi

i mod n be a compression function that replaces the squaring in H
by a cubing. If gcd(3, φ(n)) = 1 then thanks to the injectivity of the RSA cubing
map modulo n, the function H ′ is collision-resistant, assuming the difficulty of
computing a modular cube root of a very smooth cube-free integer of the form
∏k

i=1 pei

i 6= 1, where ei ∈ {0, 1, 2} for all i. This problem is related to RSA
inversion, and is also conjectured to be hard. Although H ′ requires about 4
modular multiplications per k message-bits (compared to 3 for H), it has the
interesting property that H ′ itself is collision-resistant, while this is not quite
the case for H (because x2

∏

i pi
mi ≡ (−x)2

∏

i pmi

i mod n).
Increasing the number of small primes. A speed-up is obtained by allowing
the use of larger k than the largest one for which

∏k
i=1 pi < n. This does not affect

the proof of security and reduction to VSSR, as long as k is still polynomially
bounded in log n. The Computational VSSR Assumption implies that a larger
modulus n has to be used to maintain the same level of security. Furthermore,
the intermediate products in Step 4 of the VSH algorithm may get larger than
n and may thus have to be reduced modulo n every so often. Nevertheless, the
resulting smaller L may outweigh these disadvantages.
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Precomputing products of primes. An implementation speed-up may be
obtained by precomputing products of primes. Let b > 1 be a small integer,
and assume that k = k̄b for some integer k̄. For i = 1, 2, . . . , k̄ compute the
2b products over all subsets of the set of b primes {p(i−1)b+1, p(i−1)b+2, . . . , pib},

resulting per i in 2b moderately sized values vi,t for 0 ≤ t < 2b. The k message-
bits per iteration of VSH are now split into k̄ chunks m[0], m[1], . . . , m[k̄ − 1] of
b bits each, interpreted as non-negative integers < 2b. The usual product is then

calculated as
∏k̄

i=1 vi,m[i−1]. This has no effect on the number of iterations or
the modulus size to be used to achieve a certain level of security.
Fast VSH. Redefining the above vi,t as p(i−1)2b+t+1 and using i = 1, 2, . . . , k

instead of i = 1, 2, . . . , k̄, the block length increases from k to bk, the number of
iterations is reduced from ⌈ ℓ

k ⌉ to ⌈ ℓ
bk ⌉, and the calculation in Step 4 of the VSH

algorithm becomes

xj+1 = x2
j ×

k
∏

i=1

p(i−1)2b+m[jbk+i−1]+1 mod n,

where m[r] is the rth b-bit chunk of the message, with 0 ≤ m[r] < 2b. Because
the number of small primes increases from k to k2b, a larger modulus would,
conservatively, have to be used to maintain the same level of security. But this
change does not affect the proof of security and, as shown in the analysis below
and the runtime examples in the final section, it is clearly advantageous.
Analysis of Fast VSH. Since p(i−1)2b+m[jbk+i−1]+1 ≤ pi2b , each intermedi-
ate product in the compression function for Fast VSH will be less than n if
∏k

i=1 pi2b < n. If k is maximal such that
∏(k+1)2b

i=1 pi ≤ (2n)2
b

, then

(k+1)2b

∏

i=1

pi =

2b
∏

t=1

k
∏

i=0

pi2b+t ≤ (2n)2
b

,

so that
∏k

i=0 pi2b+1 ≤ 2n. With pi2b < pi2b+1 it follows that
∏k

i=1 pi2b < n.

Thus, for (k + 1)2b proportional to 2b log(2n)
log(2b log(2n)) and k to log(2n)

log(2b log(2n)) − 1, the

cost of Fast VSH is one modular multiplication per Ω(bk) message-bits, with

bk proportional to b log(2n)
log(2b log(2n))

− b. Selecting 2b as any fixed positive power of

log(2n), it follows that bk is proportional to log n and thus that Fast VSH requires
a single modular multiplication per Ω(log n) message-bits. It also follows that the
number of small primes k2b is polynomially bounded in log n so that, with S′ the
overly conservative RSA security level obtained according to the Computational
VSSR Assumption, Fast VSH requires a single modular multiplication per Ω(S′)
message-bits.
Zero chunks in Fast VSH. A negligible speed-up and tiny saving in the
number of primes can be obtained in Fast VSH if for a particular b-bit pattern
(such as all zeros) no prime is multiplied in (as was the case in basic VSH).
Fast VSH with increased block length. Fast VSH can be used in a straight-
forward fashion with a larger block length than suggested by the above analysis.
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If, for instance, the number of small primes is taken almost w times larger, for
some integer w > 1, the small prime product can be split into w factors each less
than n. Per iteration this results in a single modular squaring, w − 1 modular
multiplications plus the time to build the w products. The best value for w is best
determined experimentally, and will depend on various processor characteristics
(such as cache size to hold a potentially rather large table of primes).
Generating collisions. For all variants given above knowledge of φ(n) can be
used to generate collisions, though displaying such a collision is not in the user’s
interest since it would give out a break to the user’s hash function (i.e. it would
be similar to someone giving out the factorisation of their RSA modulus).
VSH-DL, a discrete logarithm variant. We present a discrete logarithm
(DL) variant of VSH that has no trapdoor. Its security depends on the following
problem and its hardness assumption.

Definition 4. (VSDL: Very Smooth number Discrete Log) Let p, q be primes
with p = 2q + 1 and let k ≤ (log p)c. VSDL is the following problem: given p,

find integers e1, e2, . . . , ek such that 2e1 ≡
∏k

i=2 pei

i mod p with |ei| < q for
i = 1, 2, . . . , k, and at least one of e1, e2, . . . , ek is non-zero.

VSDL Assumption. The VSDL assumption is that there is no probabilistic
polynomial (in log p) time algorithm which solves VSDL with non-negligible
probability (the probability is taken over the random choice of the prime p and
the random coins of the algorithm).

A solution to a VSDL instance produces the base 2 DL modulo p of a very smooth
number (the requirements on the exponents ei avoids trivial solutions in which
all exponents are zero modulo q). Given k random VSDL solutions, the base 2
DL of nearly all primes p1, . . . , pk can be solved with high probability by linear
algebra modulo q. Although computing the DLs of a polynomial number of small
primes is an impressive feat, it does not help to solve arbitrary DL problems. To
solve the DL of an arbitrary group element with respect to some generator one
could include both generator and element among the pi, but there is no guarantee
that solutions to VSDL contain the appropriate elements. Nevertheless, there is a
strong connection between the hardness of VSDL and the hardness of computing
DLs modulo p, which is reminiscent of, but seems to be somewhat weaker than,
the connection between VSSR and factorisation. See also [3]. As was the case
for VSSR, moduli for which VSDL is not difficult are easily constructed and not
worthy of further consideration.

Let p be an S-bit prime of the form 2q+1 for prime q, let k be a fixed integer
length (number of small primes, typically k ≈ S/ logS), and let L ≤ S − 2. We
define a VSH-DL compression function HDL : {0, 1}Lk → {0, 1}S, where m is
an Lk-bit message consisting of bits m1, m2 . . . , mLk:

– Set x0 = 1. For j = 0, 1, . . . ,L−1, compute xj+1 = x2
j ×

∏k
i=1 p

mj·k+i

i mod p.

– Return HDL(m) = xL interpreted as a value in {0, 1}S.

If ei =
∑L−1

j=0 mj·k+i2
L−j−1 for 1 ≤ i ≤ k, then HDL(m) =

∏k
i=1 pei

i mod p.

A collision m, m′ ∈ {0, 1}Lk with m 6= m′ therefore implies that
∏k

i=1 pei

i ≡

12



∏k
i=1 p

e′
i

i mod p, where e′i =
∑L−1

j=0 m′
j·k+i2

L−j−1 and m′ consists of the bits

m′
1, . . . , m

′
Lk. Rearranging this congruence, a solution 2e1−e′

1 ≡
∏k

i=2 p
e′

i−ei

i mod
p to VSDL follows, because |e′i − ei| < 2L ≤ 2S−2 ≤ q for all i and e′i − ei 6= 0 for
some i since m 6= m′. Hence the compression function HDL is collision-resistant
under the VSDL assumption. We remark that VSH-DL can be viewed as a (more
efficient) special case of the collision-resistant function in [3], which uses random
group elements in place of the small primes pi.

The compression function HDL uses the same iteration as the basic VSH
algorithm. Hence, for the same modulus length S and number of primes k it has
the same throughput efficiency of a single modular multiplication per about k

3
message-bits. By applying the Merkle-Damg̊ard transformation [15, 8], HDL can
be used to hash messages of arbitrary length in blocks of Lk−S message-bits per
evaluation of HDL. This leads to a reduction in throughput by a factor of Lk−S

Lk
(since only Lk − S of the Lk bits processed in each HDL evaluation are new
message-bits) relative to factoring based VSH. However, for long messages, this
throughput reduction factor can be made close to 1 by choosing a sufficiently
large block length Lk; indeed, the construction allows block lengths up to Lk =
k(S − 2), and for this choice the throughput reduction factor is 1 − S

k(S−2) ≈

1 − 1
k ≈ 1.

Reducing the length. A possible drawback of VSH is its relatively large
output length. We are investigating length-reduction possibilities by combining
VSH-DL with elliptic curve, trace, or torus-based methods [10, 12, 22].

4 VSH Randomised Trapdoor Hash and Applications

Let M,R,H be a message, randomiser, and hash space, respectively. A ran-
domised trapdoor hash function [20] Fpk : M × R → H is a collision-resistant
function that can be efficiently evaluated using a public key pk, but for which
certain randomly behaving collisions can be found given a secret trapdoor key sk:

Collision Resistance in Message Input: Given pk, it is hard to find m, m′ ∈
M and r, r′ ∈ R for which m 6= m′ and Fpk(m, r) = Fpk(m′, r′).

Random Trapdoor Collisions: There exists an efficient algorithm that given
trapdoor (sk, pk), m, m′ ∈ M with m 6= m′, and r ∈ R, finds a randomiser
r′ ∈ R such that Fpk(m, r) = Fpk(m′, r′). Furthermore, if r is chosen uniformly
from R then r′ is uniformly distributed in R.

Randomised trapdoor hash functions have applications in provably strengthen-
ing the security of signature schemes [20], and constructing designated-verifier
proofs/signature schemes [11, 21]. The factorisation trapdoor of VSH suggests
that it can be used to build such a function. Here we describe a provably secure
randomised trapdoor hash family which preserves the efficiency of VSH.

Key Generation: Choose two S/2-bit random primes p, q with p ≡ q ≡ 3 mod 4
and S-bit product n. The public key is n with trapdoor key sk = (p, q). Let k

be as in the basic VSH algorithm, M = ∪2k−1
ℓ=0 {0, 1}ℓ, and R = Z∗

n.
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Hash Function: Let m ∈ M of length ℓ < 2k and r ∈ R. Calculate the basic VSH
of m with x0 replaced by r to compute xL+1 and output Fn(m, r) = x2

L+1 mod n.

Theorem 2. The above construction satisfies the security requirements for ran-
domised trapdoor hash functions, under the VSSR assumption.

Proof. Collision Resistance in Message Input: The proof follows the same lines
as the proof of Theorem 1 since the value of x0 and the squaring at the end do
not affect the security reduction.
Random Trapdoor Collisions: Let m, m′ ∈ M with m 6= m′ and r ∈ R.

Because Fn(m, r) = (r2L+1 ∏k
i=1 pei

i )2 mod n, where mLk+i = ℓi and ei =
∑L

j=0 mj·k+i2
L−j for 1 ≤ i ≤ k, finding r′ ∈ R with Fn(m, r) = Fn(m′, r′)

amounts to finding r′ such that

(r′)2
L′+2

≡ r2L+2

· (
k

∏

i=1

p
ei−e′

i

i )2 mod n

(where m′
L′k+i = ℓ′i and e′i =

∑L′

j=0 m′
j·k+i2

L′−j for 1 ≤ i ≤ k), i.e., finding an
(L′ + 2)nd square root modulo n of the right hand side g of the equation for

(r′)2
L′+2

. Given the trapdoor key (p, q) this is achieved as follows.
Let QRn = {y ∈ Z∗

n : (y
p ) = (y

q ) = 1} denote the subgroup of quadratic
residues of Z∗

n. The choice p ≡ q ≡ 3 mod 4 implies that −1 is a quadratic non-
residue in Z∗

p and Z∗
q , so for each element of QRn exactly one of its 4 square

roots in Z∗
n belongs to QRn. Hence the squaring map on QRn permutes QRn and

given (p, q) it can be efficiently inverted by computing the proper square roots
modulo p and q and combining them by Chinese remaindering. Since g ∈ QRn,
its (L′ + 1)st square root d ∈ QRn can thus be computed, and r′ is then chosen
uniformly at random among the 4 square roots in Z∗

n of d.
If r is uniformly distributed in Z∗

n, then (since each element of QRn has 4
square roots in Z∗

n) the value r2 mod n is uniformly distributed in QRn. The
squaring map on QRn permutes QRn, so that g and d are also uniformly dis-
tributed in QRn. It follows that r′ is uniformly distributed in Z∗

n. ⊓⊔

Efficiency. For short fixed-length messages with ℓ ≤ k (i.e., 1 block), the

message length can be omitted, so that Fn(m, r) = (r2
∏k

i=1 pmi

i )2 mod n. Eval-
uation requires only about 4 compared to at least k modular multiplications
required by the trapdoor functions in [20]. On the other hand, the trapdoor
collision-finding algorithm for Fn is not very fast, requiring a square root mod-
ulo n per message block. This is not a major issue because in many applications
of randomised hash functions, the collision-finding algorithm is only used in the
security proof of a signature scheme rather than in the scheme itself. However,
it reduces the efficiency of the reduction and thus requires slightly increased
security parameters.
‘Inversion’ trapdoor property. It follows from the proof of Theorem 2 that
Fn also satisfies the ‘inversion’ trapdoor property [20]. This is stronger than the
trapdoor collision property, and can be used to upgrade a signature scheme’s
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resistance against random message attacks to chosen message attacks: Given the
trapdoor key, a random element d ∈ QRn in the range of Fn and an m ∈ M, it
is easy to find a randomiser r ∈ Z∗

n such that Fn(m, r) = d and r is uniformly
distributed in Z∗

n when d is uniformly distributed in QRn.

Application. As an example application, we mention the Cramer-Shoup (CS)
signature scheme [6], which to our knowledge is the most efficient factoring-based
signature scheme provably secure in the standard model (under the strong-RSA
assumption). The CS scheme makes use of an RSA-based randomised trapdoor
hash function to achieve security against adaptive message attacks. Using Fn

instead cuts the signing and verification costs by about a double exponentiation
each, while preserving the proven security. The modified CS scheme is as follows:
Key Generation: Choose two safe random ≈ S/2-bit primes p̄, q̄ and two random
≈ S/2 bit primes p, q with p ≡ q ≡ 3 mod 4 that result in S-bit moduli n̄ = p̄q̄
and n = pq, and choose x, z ∈ QRn̄ at random. Let h : {0, 1}S → {0, 1}ℓ be
a collision-resistant hash function for a security parameter ℓ for which an ℓ-bit
(traditional) hash and S-bit RSA offer comparable security (typically ℓ = 160
when S = 1024). The public key is (x, z, n, n̄, h) and the secret key is (p̄, q̄).
Signing: To sign m ∈ {0, 1}∗, choose a random (ℓ+1)-bit prime e and a random
r ∈ Z∗

n and compute y = (x · zh(Fn(m,r)))1/e mod n̄. The signature is (e, y, r).
Verifying: To verify message/signature pair (m, (e, y, r)), check that e is an odd
(ℓ + 1)-bit integer and that yez−h(Fn(m,r)) ≡ x mod n̄.

The cost of verification in the original CS scheme is about two double exponen-
tiations with ℓ-bit exponents. The modified scheme requires approximately one
such double exponentiation, so a saving in verification time of about 50% can
be expected. The relative saving in signing time is smaller. However, the length
of the public key is larger than in the original scheme by typically 25%.

Because VSH’s output length S is typically much larger than ℓ, VSH cannot
be used for the ℓ-bit collision-resistant hash function h above. To avoid the need
for an ad-hoc ℓ-bit hash function, h may be dropped and e chosen as an (S +1)-
bit prime, making the scheme much less efficient. The variant below eliminates
the need for h and maintains almost the computational efficiency of the scheme
above, but has a larger public key and requires some precomputation.
Key Generation: Let p̄, q̄, p, q, n̄, n be as above, let s = ⌈S

ℓ ⌉ and randomly choose
x, z1, . . . , zs ∈ QRn̄. The public key is (x, z1, . . . , zs, n, n̄) with secret key (p̄, q̄).
Signing: To sign m ∈ {0, 1}∗, choose a random (ℓ+1)-bit prime e and a random
r ∈ Z∗

n, and compute Fn(m, r). Interpret Fn(m, r) as a value in {0, 1}s·ℓ (possibly
after padding) consisting of s consecutive ℓ-bit blocks Fn,1(m, r), . . . , Fn,s(m, r)

and compute y = (x ·
∏s

u=1 z
Fn,u(m,r)
u )1/e mod n̄. The signature is (e, y, r).

Verifying: To verify message/signature pair (m, (e, y, r)), check that e is an odd

(ℓ + 1)-bit integer and that ye
∏s

u=1 z
−Fn,u(m,r)
u ≡ x mod n̄.

For typical parameter values such as S = 1024, ℓ = 171, s = 6, the 2s = 64 subset
products modulo n̄ of the zu’s may be precomputed. Using multi-exponentiation,
that would make the above scheme about as efficient as the previous variant.
It can be proved (cf. Appendix A) that the above CS signature variant is se-
cure assuming the strong-RSA and VSSR assumptions. Thus we have obtained
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an efficient signature scheme proven secure without ad-hoc assumptions. This
is unlike the original CS scheme, which relied on a collision resistance or uni-
versal one-wayness assumption regarding a 160-bit hash function—as far as we
are aware, the only practical provably secure design for such a function is an
inefficient discrete log based construction using an elliptic curve defined over a
160-bit order finite field. A disadvantage of our variant is that its public key is
typically 9 kbits, which is about 3 times more than in the original CS scheme.

5 Efficiency of VSH in Practice

Let the cost of a multiplication modulo n be O((log n)1+ǫ) operations, where
ǫ = 1 if ordinary multiplication is used, and where ǫ > 0 can be made arbitrarily
small if fast multiplication methods are used. Asymptotically the cost of the basic

VSH algorithm is O( (log n)1+ǫ

k ) = O((log n)ǫ log log n) operations per message-bit.
Given n’s factorisation one can do better for long messages by reducing the k
exponents of the pi’s modulo φ(n). Asymptotically, Fast VSH costs O((log n)ǫ)
operations per message-bit. It is faster in practice too, cf. below.

The table below lists VSH runtimes obtained using a gmp-based implemen-
tation on a 1GHz Pentium III. The two security levels conservatively correspond
to 1024-bit and 2048-bit RSA (based on the Computational VSSR Assumption,
where an S-bit VSH-modulus leads to a lower RSA security level S′ depending
on the number of small primes). In the 2nd and 6th rows basic VSH is used
with more small primes, in the 3rd and 7th rows extended with precomputed
prime products and message processing b = 8 bits at a time. Fast VSH also
processed b = 8 message-bits at a time. With S′ = 1024 and S = 1516 (i.e., at
least 1024-bit RSA security, at the cost of a 1516-bit VSH-modulus) Fast VSH is
about 25 times slower than Wei Dai’s SHA-1 benchmark [23]. Better throughput
will be obtained under the more aggressive assumption that VSH with an S-bit
modulus achieves S-bit RSA security. A similarly more favorable comparison
will be obtained when using VSH with parameters matching the actual SHA-1
security level; at the time of writing that is 63 bits, but as it is a moving target
we prefer not to specify matching VSH parameters. In any case, the slowdown
is a small price for avoiding heuristically collision-resistant hashes. Nevertheless,
except for its lack of other nice properties, VSH has been criticised for being
too slow. We consider the prospects of faster VSH software more realistic than
a proof that SHA-2 offers any security at all.

S′ Method # small primes S b # products Megabyte/second
1024 Basic VSH 152 1234 1 n/a 0.355

1024 1318 1 n/a 0.419
8 128 ∗ 256 0.486

Fast VSH 216 = 65536 1516 8 n/a 1.135
2048 Basic VSH 272 2398 1 n/a 0.216

1024 2486 1 n/a 0.270
8 128 ∗ 256 0.303

Fast VSH 218 = 262144 2874 8 n/a 0.705
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A Security Proof for CS Signature Variant in Section 4

We give the security proof for the second CS variant signature scheme in Section 4
(the proof of the first CS variant scheme is essentially a special case with s =
1 and the collision-resistant function Fn(·, ·) replaced by the collision-resistant
function h(Fn(·, ·))).

Let A be an adaptive chosen message attacker, let (mi, (ei, yi, ri)) for 1 ≤
i ≤ t be the ith sign query/answer pair of A, and let (m, (e, y, r)) be the output
forgery message/signature pair of A. As in [6], there are three possible types of
attacks according to the output forgery. For each attacker type, we outline how
to use it to contradict either the collision resistance of Fn (and hence the VSSR
assumption) or the strong-RSA assumption.

Type I. For some 1 ≤ j ≤ t, e = ej and Fn(m, r) = Fn(mj , rj). Given
VSH-modulus n, we construct a collision finder for Fn as follows. Gener-
ate (x, z1, . . . , zs, n̄) and (p̄, q̄) as in key generation and run A on input
(x, z1, . . . , zs, n, n̄). Using the known (p̄, q̄), we efficiently answer (and store)
A’s sign queries. When A outputs its forgery (with m 6= mj), we output the
collision (m, r), (mj , rj) for Fn.

Type II. For some 1 ≤ j ≤ t, e = ej and Fn(m, r) 6= Fn(mj , rj); in particular,
with Fn,u(m, r) for 1 ≤ u ≤ s denoting the uth consecutive ℓ-bit block of
Fn(m, r) (as in Section 4), let Fn,u∗(m, r) 6= Fn,u∗(mj , rj) for some u∗ ∈
{1, 2, . . . , s}. Given a strong-RSA instance (n̄, z̄) with z̄ ∈R Z∗

n̄, we compute
e > 1 and the eth root of z̄ mod n̄ as follows. We randomly guess the values
of j ∈ {1, . . . , t} and u∗ ∈ {1, . . . , s} (our guess is right with non-negligible
probability 1/(ts)). Then we generate a random VSH-modulus n (keeping
its factors p, q for later use), t random (ℓ + 1)-bit primes e1, . . . , et, a total
of s random elements {z̄u}u={1,...,s}\{u∗} and v from Z∗

n̄, and a random r̄ ∈

Z∗
n, and we compute (x, z1, . . . , zs), where zu = z̄

2
∏

i
ei

u mod n̄ for u 6= u∗,

18



zu∗ = z̄
2
∏

i6=j
ei mod n̄, and x = v2

∏

i
ei · (

∏s
u=1 z

Fn,u(m̄,r̄)
u )−1 mod n̄, where

m̄ is an arbitrary message.
Given this set-up, we run A on input (x, z1, . . . , zs, n, n̄). For i 6= j, we answer
the ith sign query of A with (ei, yi, ri), where ri is chosen uniformly from

Z∗
n and yi = (x ·

∏s
u=1 z

Fn,u(mi,ri)
u )1/ei mod n̄ is easy to compute since we

know the eith roots of x, z1, . . . , zs mod n̄. For answering the jth sign query
mj , we first use the ‘random trapdoor collision’ algorithm for Fn (which is
efficient since we know p, q) to compute rj ∈ Z∗

n such that Fn(mj , rj) =
Fn(m̄, r̄) (note rj is uniform since r̄ is uniform), and we answer (ej , yj, rj),

where yj = (x ·
∏s

u=1 z
Fn,u(m̄,r̄)
u )1/ej mod n̄ = v

2
∏

i6=j
ei mod n̄ is easy to

compute. Finally, if A’s output forgery (m, (e, y, r)) is valid, then, defining
∆ = Fn,u∗(mj , rj) − Fn,u∗(m, r) 6= 0, we have

yj

y
·

∏

u6=u∗

(z1/ej
u )Fn,u(m,r)−Fn,u(mj ,rj) ≡ (z

1/ej

u∗ )∆ mod n̄.

Using the known ejth roots of zu for u 6= u∗, we efficiently compute the
left hand side of the above congruence obtaining the result α. From the

right hand side we see that α ≡ (z̄1/ej )
2∆

∏

i6=j
ei mod n̄. Note we also know

β = (z̄1/ej )ej mod n̄ = z̄. Using the Euclidean algorithm we compute a and
b such that d = gcd(2∆

∏

i6=j ei, ej) = a · 2∆
∏

i6=j ei + b · ej and hence we

can efficiently compute γ ≡ (z̄1/ej )d ≡ αaβb mod n̄. Since the ei’s are primes
greater than 2ℓ (and are distinct with overwhelming probability when t is
small compared to 2ℓ/2) while 0 < |∆| < 2ℓ, it follows that d = 1 so the value
γ is the e = ejth root of z̄ mod n̄ and hence a solution to our strong-RSA
instance (n̄, z̄).

Type III. For all 1 ≤ i ≤ t, e 6= ei. Given strong-RSA instance (n̄, z̄) with
z̄ ∈R Z∗

n̄, we compute δ > 1 and the δth root of z̄ mod n̄ as follows. We
generate a VSH-modulus n at random, t random (ℓ+1)-bit primes e1, . . . , et,
a total of s integers a and a2, a3, . . . , as chosen uniformly at random from

ZB with B ≥ n̄2, and we compute (x, z1, . . . , zs), where z1 = z̄2
∏

i
ei mod n̄,

zu = zau
1 mod n̄ for u = 2, . . . , s and x = za

1 mod n̄.
We then run A on input (x, z1, . . . , zs, n, n̄). Here we use the fact that z1 is a
generator of QRn̄ with overwhelming probability, because n̄ is a product of
safe primes, and that z1, z2, . . . , zs, x are statistically indistinguishable from
independent uniformly random elements in QRn̄ because B/|QRn̄| ≥ n̄.
For i = 1, . . . , t, we answer the ith sign query of A with (ei, yi, ri), where

ri is chosen uniformly from Z∗
n and yi = (x ·

∏s
u=1 z

Fn,u(mi,ri)
u )1/ei mod n̄

is easy to compute since we know the eith roots of x, z1, . . . , zs mod n̄. If

A outputs a valid forgery (m, (e, y, r)) we have y ≡ (z̄1/e)2(c+a)
∏

i
ei mod n̄,

where c = Fn,1(m, r)+
∑

u≥2 Fn,u(m, r) ·au. Similary to the Type II case, we

can efficiently compute γ ≡ z̄1/(e/d) mod n̄, where d = gcd(e, 2(c + a)
∏

i ei).
To ensure that δ = e/d > 1, it suffices (since e is odd and e 6= ei for all i)
that (c + a) 6≡ 0 mod ρ for some prime divisor ρ of e. But, dividing a by the
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order ord(z1) of z1 in Z∗
n̄, we have a = ⌊ a

ord(z1)
⌋ · ord(z1) + (a mod ord(z1)).

Since B ≥ n̄2 and ord(z1) < n̄ the distribution of the quotient ⌊ a
ord(z1)

⌋

is statistically indistinguishable from uniform on Z⌊ B
ord(z1)

⌋ and essentially

independent of the attacker’s view (which is only a function of the remainder
a mod ord(z1)). It follows (using also the fact that gcd(ord(z1), ρ) = 1 since
n̄ is safe and ℓ < S/2) that (c + a) 6≡ 0 mod ρ occurs with non-negligible
probability very close to 1−1/ρ > 1/2, so that with non-negligible probability
δ > 1 and γ is a δth root of z̄ mod n̄, solving the strong-RSA instance (n̄, z̄).

This completes the proof of security. ⊓⊔
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