
Twin RSA

Arjen K. Lenstra1,2, Benjamin M.M. de Weger2

1 Lucent Technologies, Bell Laboratories, Room 2T-504
600 Mountain Avenue, P.O.Box 636, Murray Hill, NJ 07974-0636, USA

2 Technische Universiteit Eindhoven
P.O.Box 513, 5600 MB Eindhoven, The Netherlands

November 9, 2005

Abstract. We introduce Twin RSA, pairs of RSA moduli (n, n + 2),
and formulate several questions related to it. Our main questions are: is
Twin RSA secure, and what is it good for?

Keywords: recreational cryptography

1 Introduction

Regular RSA moduli are constructed by multiplying two more or less randomly
selected primes of appropriate sizes. As a result, representation of a regular 2N -
bit RSA modulus requires about 2N bits. To save on the representation size of
RSA moduli, several methods were proposed in [8], some of which were broken
in [1]. An often reinvented folklore approach to generate 2N -bit RSA moduli that
can be represented using just N bits, published in [5] along with several simple
variants, still seems to be unbroken. This simple method works as follows. For
an N -bit number x that is known from the context, repeatedly select an N -bit
prime p at random until the integer part q of the quotient (x+ 1)2N/p is prime,
then the most significant N bits of the RSA modulus n = pq are given by x.
Faster variants add some slack to x and replace q by q + 1 until it is prime, but
the principle remains the same. Since x is known from the context—or can for
instance be chosen as 2N−1—the N least significant bits suffice to represent the
2N -bit RSA modulus n. If one is willing to also consider moduli of unbalanced
factor sizes, e.g. a product of primes of sizes 1

2
N and 3

2
N , respectively, then, as

was shown in [5], a 2N -bit modulus can even be represented using 1

2
N bits. In

particular this shows that pairs of RSA moduli can be generated in such a way
that the pair can be represented using the space of a single regular or even a
half unbalanced RSA modulus.

In this note we present a method that achieves the same ‘compression ratio’
for pairs of RSA moduli, in a different and esthetically more pleasing way. Our
method is implicit in one of the methods described in [6] and thus not new. The
reason we present this particular case of the method from [6] is the fact that
the possibility of the construction is usually met first with amazement, quickly
followed by skepticism about the security, and finally with puzzled resignation
that the resulting moduli indeed look hard to break. Thus, we would like to

offer it as a challenge to a wider audience, hoping for either a better security
argument than what can be found in [6], or a more effective cryptanalysis.

Another question we want to pose with this note is: are there any applications
of Twin RSA that are more interesting than the ones we have been able to offer
so far? We realize that it is by no means good marketing policy to present a new
cryptographic method without convincing evidence of its practical potential or
cryptographic significance. On the other hand, publishing the method despite
the fact that we cannot think of a sensible application ourselves, at least has the
potential to uncover new possibilities by bringing it to the attention of members
of the practical cryptographic community who may never have realized that such
remarkable pairs of RSA moduli were possible—or secure.

The remainder of this note is organized as follows. Our method to generate
RSA moduli with a fixed prescribed difference is described and discussed in
Section 2. A few generalizations are offered in Section 3, and Section 4 concludes
this note with two factoring challenges.

2 Twin RSA

Generation of RSA moduli with any prescribed even integer difference d is an
easy application of the Chinese Remainder Theorem. The details are described
in Algorithm 1 below.

Algorithm 1. Let d 6= 0 be a small fixed even integer and let 2N be the
bitlength of the RSA moduli to be generated.

1. Select two random N -bit primes p and q.
2. Use the Chinese Remainder Theorem to calculate the least positive integer n

such that n ≡ 0 mod p and n ≡ −d mod q and let r = n/p and s = (n+d)/q.
3. If n or n + d does not have bitlength 2N , or if r or s is composite, then

return to Step 1.
4. Output the pair of RSA moduli (n, n + d) with factorizations n = pr and

n + d = qs.

For actual RSA applications of the resulting moduli, co-primality requirements
with respect to one’s favorite public exponent(s) and p−1, q−1, r−1, and s−1
have to be included in the above description.

Twin RSA. We introduce the term Twin RSA for the pair of moduli that
results from Algorithm 1 when d = ±2.

Abundance. A single moment of reflection learns that it is most likely the case
that Twin RSA moduli are abundant. The Prime Number Theorem combined
with the assumption that the factorizations of n and n+2 are independent leads
to the conjecture that the number of Twin RSA moduli up to x is asymptotically
equal to cx/(log x)4, for some positive constant c. The same argument applies
to the general case (n, n + d) for even d.

Runtime of Algorithm 1. Based on the Prime Number Theorem and the
runtime of a single probabilistic compositeness test (using standard arithmetic),

one may expect that each execution of Step 1 of Algorithm 1 takes expected
runtime O(N × N3 + N × N3) = O(N4). Assuming that r and s behave as
independent random N -bit numbers, they will simultaneously be prime with
probability proportional to 1/N2, again based on the Prime Number Theorem.
Using standard arithmetic, the computation in Step 3 of Algorithm 1 can be
expected to take runtime O(N3 + (1/N) × N3) = O(N3) (where the factor
1/N accounts for the probability that r is not found to be composite, in which
case compositeness of s has to be tested as well) and dominates the runtime of
the computation in Step 2. Overall, we find that the expected runtime becomes
O(N2(N4 + N3)) = O(N6).

Practical considerations. A practical speed-up can be obtained by generat-
ing the sequence of candidate p’s in Step 1 of Algorithm 1 using sieving based
methods, independently from the similarly generated sequence of candidate q’s.
Also, upon return to Step 1, one may decide to generate a new p or a new q, but
not both.

A more substantial speed-up is obtained by allowing more candidate quo-
tients per prime pair (p, q): in Step 3 of Algorithm 1, add some slack to the
lengths and find the smallest positive integer k such that the quotients (n+kpq)/p
and (n + kpq + d)/q are both prime. The resulting method can be made to work
in expected time O(N5), but results in RSA moduli pairs that are somewhat
less ‘elegant’ because their factors will have slightly different sizes. The more
time one is willing to invest in the generation of RSA moduli pairs with fixed
prescribed difference, the closer factor sizes one will be able to obtain.

Independent generation of n and n + d? Given d, the moduli n and n + d
are generated simultaneously by the single party that executes Algorithm 1. As
a result, that same party knows the factorizations of both moduli. We are not
aware of a simple variant of our approach where a first party generates p, a second
party generates q, and the two parties engage in a straightforward protocol that
results in RSA modulus n for the first party and n + 2 for the second party,
without either party knowing the factorization of the other party’s modulus. We
pose the challenge of developing such a protocol because it may lead to more
interesting applications of Twin RSA.

Security? With variable d, and as argued in [6], it seems impossible to distin-
guish an RSA moduli pair (n, n + d) generated using our method from a pair
of regular RSA moduli that happens to have difference d. This suggests that
‘our’ pairs (n, n+ d) are as secure as ‘regular’ pairs: being able to do the private
RSA operation for either modulus is independent of whether the private RSA
operation can be carried out for the other modulus or not.

But what about a fixed choice of d, such as d = 2? Most certainly, and
intuitively, Twin RSA looks highly suspicious. A more subtle security argument
is required in this case, which is one of the challenges we pose with this note.
All we can present at this point in support of our belief in the security of Twin
RSA—if one is willing to believe in the hardness of factoring to begin with—
is the circumstantial evidence that generations of factorers who contributed to

the Cunningham factoring project (cf. [3]), where factorizations of bk ± 1 are
collected for 2 ≤ b ≤ 12 up to high powers k, have never been able to profit from
the factorization of a certain bk ± 1 to factor the corresponding bk ∓ 1.

We also believe that, even when the two moduli share the same public expo-
nent e (such as in practice often happens, e.g. e = 65537), the two corresponding
private exponents will be completely different and independent for all practical
purposes. So, here we do not see any reason for additional suspicion either.

Applications? As mentioned in the Introduction, one of our reasons to publish
this note is that we are curious to know if there are any interesting applications
of Twin RSA. Here the ‘application’ may either wear a white or a black hat,
as long as it enables us to do something we were unable to do before. Some
rather unconvincing white hat applications use the twin modulus as backup in
case the other one is believed to be compromised, or use one for encryption
and the other for signature purposes—conveniently avoiding the cost of two
different certificates for the two different keys. In situations where the size of two
standard X.509 certificates is too costly, e.g. because of memory or bandwidth
restrictions such as in the mobile telephony world, Twin RSA can be useful. We
can envisage one certificate, in which one Certificate Authority (CA) signature
is used to bind the owner’s identity information to two RSA key pairs (a Twin
RSA pair), which is represented by just one of the two moduli and a common
(usually very small) public exponent. This will save almost half of the space
needed to represent the public key (and when predetermined bits are used, as
explained in the next section, a reduction to 25% even becomes possible). One of
the conditions that has to be posed is that there must be a standardized way of
interpreting this public key representation, of how to extract both public keys,
and of establishing the allowed key usages for both keys. It should be possible
to do this with only minor adaptations to existing certificate standards such as
X.509. Another condition is that the CA should explicitly guarantee that it has
seen proof that the certificate owner is in possession of both private keys.

Are there applications with more cryptographic significance? And are there
any applications with ‘interesting’ cryptanalytic potential?

3 Generalizations

Multiple RSA. With a proper choice of even differences di for 0 ≤ i < t and
d0 = 0, our method allows construction of t-tuples of RSA moduli (n + di)

t−1

i=0 ,
if one is willing to accept moduli where the size of the largest of the two factors
is t − 1 times the size of the smallest one. For large modulus sizes this may be
acceptable, and possibly even desirable (cf. [7]). Note that, for instance, d1 = 2,
d2 = 4 will not work: the set {di mod 3 : i = 0, 1, 2} equals the full residue
set {0, 1, 2} modulo the prime 3, so that for any integer n there will always
be an i ∈ {0, 1, 2} such that n + di is divisible by 3. More in general, the set
consisting of the di’s, for 0 ≤ i < t, should not contain a full residue system
modulo any prime ≤ t. The latter condition is obviously necessary, but also
sufficient. This can easily be seen as follows: for each prime q ≤ t there exists an

aq ∈ {0, 1, . . . , q−1} such that dj 6≡ aq mod q for all j. We now restrict ourselves
to n that are equal to −aq mod q for all q ≤ t, which can be obtained by Chinese
Remaindering. Then q does not divide n + dj for all q ≤ t and all j.

Algorithm 2. Let t ≥ 2, let (di)
t−1

i=0 with d0 = 0 be a set of small even integers
that does not contain a full residue system modulo any prime ≤ t, and let tN
be the bitlength of the RSA moduli to be generated.

1. Select t random N -bit primes pi, 0 ≤ i < t.
2. Use the Chinese Remainder Theorem to calculate the least positive integer n

of bitlength at most tN such that n ≡ −di mod pi for 0 ≤ i < t, and let
ni = n + di and ri = ni/pi for 0 ≤ i < t.

3. If ni does not have bitlength tN for an i ∈ {0, 1, . . . , t − 1} or if there is an
i ∈ {0, 1, . . . , t − 1} such that ri is composite, then return to Step 1.

4. Output the t-tuple of RSA moduli (ni)
t−1

i=0 with factorizations ni = piri.

As before, Algorithm 2 can be seen to have expected runtime O(N t+4).

Twin RSA with predetermined bits. Our methods can simply be com-
bined with the methods from [5], again at the cost of severely unbalancing the
factor sizes (cf. [6]), in a way similar to the construction of the colliding X.509
certificates that were reported in [2]. For instance, for any N -bit number x and
assuming that N is even, a pair of 2N -bit RSA moduli (n, n + d) can be con-
structed such that the leading N bits of n are given by x, and such that both n
and n + d are the products of a 3N/2-bit prime and an N/2-bit prime. In the
interest of space we elaborate.

Algorithm 3. Let d 6= 0 be a small fixed even integer, let x be an integer with
2N−1 ≤ x < 2N for some even positive integer N such that 2N is the bitlength
of the RSA moduli to be generated.

1. Select two random N/2-bit primes p and q.
2. Use the Chinese Remainder Theorem to calculate the least positive inte-

ger b < pq such that b ≡ −x2N mod p and b ≡ −x2N − d mod q, let
n = x2N + b, and let r = n/p and s = (n + d)/q.

3. If r or s is composite, then return to Step 1.
4. Output the pair of RSA moduli (n, n + d) with factorizations n = pr and

n + d = qs. The most significant N bits of n and n + d are the same and are
given by x.

Big brother RSA. There is no need to restrict to a ‘twin’ of the form n + d
for an RSA modulus n: the same method can be used to generate a ‘big brother’
an+d for any integer a 6= 0 (that must be coprime to d). Thus, one can generate
pairs of Sophie Germain RSA moduli (n, 2n+1) where the big brother follows by
pasting an additional 1-bit ‘at the end’ of n (pasting a 1-bit ‘before’ n was already
covered by taking d = 22N in the standard case a = 1), or ‘complementary pairs’
where n with negated bits (except the least significant one), i.e., 22N+1 − n, is
again an RSA modulus. Similarly, twins (n, n + 2) with big brother 2n + 1 can

be generated, or longer sequences of pasted-on bits on either side of n (such as
n, n||1 = 2n + 1, n||11 = 2(2n + 1) + 1, . . . if pasted on ‘at the end’), if one is
willing to tolerate unbalanced RSA moduli, and complementary pairs can be
generated with respect to any radix (i.e., not just radix 2). Note that a ‘little
brother’ (n+1)/2 for (n, n+2) is unfortunately impossible because n ≡ 2 mod 3
so that the little brother is always divisible by 3.

Remarks. None of the approaches mentioned in this or the previous section
yields a representation saving that is larger than what can be obtained by using
just the methods from [5].

The practical speed-up tricks that applied to Algorithm 1 can, with the
obvious changes, be applied to Algorithms 2 and 3 as well. Furthermore, Algo-
rithm 3 allows a similar generalization to t-tuples—Multiple RSA with prede-
termined bits—as was presented for Algorithm 1 in Algorithm 2. The restriction
to even N in Algorithm 3 is not crucial and just for ease of exposition. Different
sized predetermined parts can be handled in essentially the same way. Putting
the predetermined part in the least significant bits, or spreading it over most
and significant bits, is possible too. The underlying idea of all these generaliza-
tions is the same: combine any of the methods described in [5] with the Chinese
Remainder Theorem.

We gladly leave other variants of our idea, namely Twin Discrete Log, or
subvariants such as Twin (Hyper)Elliptic Discrete Log, for others to pursue.
This could take the not so challenging form of twin prime fields (Fp,Fp+2), of
equally uninteresting generators (g, g + 1) (no need to jump by 2 this time!)
of the same full multiplicative group, or, the sole interesting case (cf. [6]), of
generators g, g + 1 of a relative small prime order subgroup of a multiplicative
group of a prime field—actually, the range of possibilities is only limited by one’s
imagination. What it would be good for is an entirely different matter.

4 Factoring challenges

Below the n is given of a Twin RSA pair (n, n + 2) consisting of two 1024-bit
RSA moduli that each have one 256-bit prime factor, along with the 256-bit
factor p of n. Note that the Twin RSA pair (n, n + 2) can be represented using
just 512 bits. Finding the 256-bit factor of n + 2 should be borderline possible
using the elliptic curve factoring method (ECM), now that a 219-bit (66-digit)
factor found using ECM has been announced [4]. Can anyone factor n+2 faster,
if at all possible using the known factorization of n?

n = 80000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

11B9E917 7E937E9D 6AAB2AB0 28940F89 BEEC962C 286F28A9 DB965A18 688EE789

ACF43457 0E44D41B F837B4EF 9E435CFB 56C2E2F7 00EE8DDD 2A3ECF9F B2EA360D

p = EF0650E4 304D1242 F3DBAF45 80BFB645 77527C60 3C1E3006 BCDE98FB 5F97E507.

Obviously, with the fixed prefix this size cannot be recommended for practical
purposes. A more substantial factoring challenge is given by the Twin RSA pair

(m, m+2), for which the 2048-bit m is given below along with its 512-bit factor q.
Finding the 512-bit prime factor of m+2 using ECM can be expected to be about
as hard as factoring m+2 using the Number Field Sieve. Can m+2 be factored
in an easier way, possibly using the known factorization of m?

m = 80000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

396099A3 5F9D2B49 E7BB729E 9542A7B0 A1FAD34B EE884199 E29A5DB4 E49DE1C8

279682F4 2A92FBFF 4F0F891F 65638997 B28D26DA 10B7529A 40CFA534 8BB95BE8

ADF4A21B 7DC562D4 93590D53 6B6124C5 6DB5D693 1004A7B4 C031C401 A4B6E1E8

EA5C8362 E7B2DB3F BFDEF87D 75311FEA 7D9BF1C3 9E3E64DF 9163E468 6D5D2711

q = C1A25EAE FF7A187A 6F793972 199F192B 3D2912DF BD4586CF 4D1CE614 6D75992F

AB3A7E2A 2149CD3C 4FE9F8A4 8DF3B515 74660F13 696BC4BD 4808E475 69E414B9.

As far as we know this last Twin RSA size can be recommended for practical
purposes, either with or without a fixed 1024-bit prefix. With the prefix it allows
representation of two 2048-bit moduli at the cost of representing 1024 bits.

References

1. D. Coppersmith, Finding a small root of a bivariate integer equation; factoring with

high bits known, Eurocrypt’96, LNCS 1070, Springer-Verlag 1996, 178–189.
2. Colliding X.509 Certificates, see

http://www.win.tue.nl/~bdeweger/CollidingCertificates/.
3. Cunningham project, see http://www.cerias.purdue.edu/homes/ssw/cun/.
4. B. Dodson, email announcement of the ECM factorization of M963, April 6, 2005.
5. A.K. Lenstra, Generating RSA moduli with a predetermined portion, Asiacrypt’98,

LNCS 1514, Springer-Verlag 1998, 1–10.
6. A.K. Lenstra, B.M.M. de Weger, On the possibility of constructing meaningful hash

collisions for public keys, ACISP 2005, LNCS 3574, Springer-Verlag 2005, 267–279.
7. A. Shamir, RSA for paranoids, RSA Laboratories’ Cryptobytes, v. 1, no. 3 (1995)

1–4.
8. S.A. Vanstone, R.J. Zuccherato, Short RSA keys and their generation, J. Cryptology,

8 (1995) 101–114.

