
Universally Composable Password-Based Key Exchange

Ran Canetti∗ Shai Halevi∗ Jonathan Katz† Yehuda Lindell‡

Philip MacKenzie§

June 17, 2005

Abstract

We propose and realize a definition of security for password-based key exchange within the
framework of universal composability (UC), thus providing security guarantees under arbitrary
composition with other protocols. In addition, our definition captures some aspects of the
problem that were not adequately addressed by most prior notions. For instance, our definition
does not assume any underlying probability distribution on passwords, nor does it assume
independence between passwords chosen by different parties. We also formulate a definition
of password-based secure channels, and show how to realize such channels given any password-
based key exchange protocol.

The password-based key exchange protocol shown here is in the common reference string
model and relies on standard number-theoretic assumptions. The components of our protocol
can be instantiated to give a relatively efficient solution which is conceivably usable in practice.
We also show that it is impossible to satisfy our definition in the “plain” model (e.g., without
a common reference string).

Keywords: key exchange, password-based protocols, universal composability.

∗IBM T.J. Watson Research Center, Hawthorne, NY, USA. canetti@watson.ibm.com, shaih@alum.mit.edu.
†Dept. of Computer Science, University of Maryland, College Park, MD, USA. jkatz@cs.umd.edu. Supported by

NSF CAREER award #0447075 and Trusted Computing grant #0310751.
‡Dept. of Computer Science, Bar-Ilan University, Israel. lindell@cs.biu.ac.il. Some of this work was carried

out while the author was at IBM T.J. Watson.
§DoCoMo USA Labs, USA. philmac@docomolabs-usa.com. This work was carried out while the author was at

Bell Labs, Lucent Technologies

Contents

1 Introduction 1
1.1 A New Definition . 2

2 Definition of Security 3

3 Securely Realizing FpwKE: a High Level Description 6
3.1 Preliminaries . 6
3.2 The KOY/GL Protocol . 8
3.3 Extending the Protocol to Realize FpwKE . 9

4 Detailed Description of our Protocol 12
4.1 Building Blocks . 12
4.2 The Protocol . 13

5 Proof of security 15
5.1 Some Aspects of the Universal Composability (UC) Framework 15
5.2 Our Main Theorem . 16
5.3 Description of the Simulator . 17

5.3.1 Session Initialization . 17
5.3.2 Protocol Messages . 17
5.3.3 Other Interactions . 18

5.4 Proof of Indistinguishability . 18
5.5 Further Details . 23

6 Password-Based Secure Channels 26

7 Impossibility of Realizing FpwKE in the Plain Model 29

References 32

A Relation to Prior Notions of Security 34

1 Introduction

Protocols for password-based key exchange have received much attention in recent years. In short,
the problem is how to enable authenticated generation of a “high-quality” secret key between two
parties whose only a priori shared information consists of a low-entropy password. In this setting,
an attacker has a noticeable chance of impersonating one of the parties simply by guessing the
correct password and running the prescribed authentication protocol. Such an attack is called an
on-line dictionary attack, since one of the parties must be “on-line” and ready to participate in
the protocol as the attacker exhaustively enumerates the dictionary in this way. Since this attack
is unavoidable when low-entropy passwords are used, work in this area focuses on preventing off-
line dictionary attacks in which an adversary tries to determine the correct password without the
involvement of the honest parties based on information obtained during previous executions of the
protocol. Roughly, a secure password-based protocol guarantees that an exhaustive on-line attack
is the “best” possible strategy for an attacker. That is, the attacker must interact with a legitimate
player in order to verify each password guess, and the interaction leaks no information other than
whether or not the attacker’s guess is correct. Besides their practical importance, password-based
protocols are also interesting from a purely theoretical point of view: they provide a rare case where
bootstrapping “strong security” from “weak security” has to be modeled, obtained, and argued.

The problem of resistance to off-line password-guessing attacks was first raised by Gong, et al.
[22] in the asymmetric “PKI model” (where, in addition to a password, the user has the public
key of the server). Formal definitions and proofs of security in this setting were later given by
Halevi and Krawczyk [23] (see also [6]). A more difficult setting for this problem is one where
the parties share only a password (and in particular, neither party knows the other’s public-key).
This setting was first considered by Bellovin and Merritt [5], and their work was followed by much
additional research developing protocols with heuristic justifications for their security (see [7] for
a survey). Formal definitions for this setting, together with protocols analyzed in the random-
oracle/ideal-cipher models, were given by Bellare, Pointcheval, and Rogaway [3] (who proposed an
indistinguishability-based definition) and Boyko, MacKenzie, Patel, and Swaminathan [8, 26] (who
proposed a simulation-based definition). Goldreich and Lindell [20] introduced a third security def-
inition and also gave the first provably-secure solution to this problem in the standard model, based
on general assumptions; their protocol was recently simplified (at the expense of achieving a weaker
security guarantee) by Nguyen and Vadhan [28]. Another setting that has been considered for this
problem is one where, in addition to shared low-entropy passwords, all parties share a common ref-
erence string. In this setting, a practical and provably-secure protocol was first developed by Katz,
et al. [25] based on the decisional Diffie-Hellman assumption (in the standard model). This protocol
was subsequently generalized and abstracted by Gennaro and Lindell [19] who, among other things,
obtain protocols that rely on the quadratic residuosity and N th-residuosity assumptions.

The many definitions that have already been introduced [3, 8, 20] indicate that finding a “good”
definition of security for password-based authentication is difficult and remains a challenging prob-
lem. In fact, it is not clear that any of the above definitions adequately address all aspects of
the problem. For example, none of the above definitions relate to the (realistic) setting where
the password-based protocol is used as a component within a larger protocol. Rather, it is as-
sumed that the entire network activity consists only of many executions of the password-based
protocol itself. Since the problem at hand involves non-negligible probabilities of “success” by the
adversary, providing security-preserving composition is even more delicate than usual. Some of the
above definitions have not been proven sufficient for implementing any form of secure channels — a
natural goal of key-exchange protocols (see [10] for motivation). Finally, existing (explicit) defini-

1

tions assume that passwords are chosen from some pre-determined, known distribution, and (with
the exception of [8]) assume also that passwords shared between different parties are independent.
(We note, however, that it is claimed in [25] that their proof extends to the case of dependent
passwords.) These assumptions about password selection rarely hold in practice.

1.1 A New Definition

In this work, we propose and realize a new definition of security for password-based key-exchange
protocols within the universally composable (UC) security framework [9]. That is, we propose an
ideal functionality for “password-based key exchange” that captures the security requirements of
the problem. (Such an ideal functionality can be thought of as the code for a “centralized trusted
service”, were one actually available to the parties.) Working in the UC framework allows us to
benefit from the universal composition theorem. Loosely speaking, the theorem states that a pro-
tocol secure in this framework remains secure even when run in an arbitrary network, where many
different protocols (secure or not) may run concurrently. In addition to addressing composability,
the definition in this work also addresses the other concerns mentioned above: in particular, se-
curity is preserved even in the case of arbitrary and unknown password distributions, and even if
related passwords are used. The important feature here is that the probability of the adversary
succeeding in its attack is negligibly close to the probability of its guessing the password outright,
even when this guess is based on information about the password that the adversary obtains from
the arbitrary network or from related passwords that it learned. Finally, we show how protocols
satisfying our definition may be used to construct password-based secure channels. Such channels
enable private and authenticated communication, which in most cases is the goal of running the
protocol in the first place.

As one might expect, formulating an ideal functionality that captures all the requirements of
password-based key exchange involves a number of non-trivial definitional choices. Our formulation
builds on the known UC formulation of (standard) key-exchange [9, 10], where security is guaranteed
except with negligible probability. Unlike standard key-exchange, however, some mechanism must
be introduced that allows the adversary to “break” the protocol with noticeable probability by
guessing the correct password. A natural way of doing this is to have the functionality choose the
passwords for the parties; then, if the adversary correctly guesses the password (where this guess is
made explicitly by the adversary to the functionality), the adversary is allowed to choose the session-
key that the parties obtain. Although this formulation is quite intuitive, it is somewhat limited
in that it assumes a pre-determined dictionary or distribution on passwords and that passwords
are chosen independently from each other. This formulation also fails to model possible leakage of
partial information about the password to the adversary (since only the functionality knows the
password).

We therefore take a different approach and allow the calling protocol (or the environment)
to provide the password to the parties as part of their input. While this formulation may seem
somewhat counter-intuitive at first, we show that it results in a definition of security that is at least
as strong as that given by the first formulation.1 Furthermore, it does not make any assumptions
as to how the password is chosen and it imposes no pre-determined probabilities of failure.

Realizing the definition. We construct a protocol that realizes our definition. The protocol is
an extension of the protocols of KOY/GL [25, 19], and as such is in the common reference string

1The alternative formulation in which the functionality chooses the passwords may be obtained from the authors,
along with a proof that it is no stronger than the definition presented here.

2

model and may be based on some standard number-theoretic assumptions. Our protocol adds to the
protocols from [25, 19] a pre-flow and a simulation-sound zero-knowledge proof of consistency. All
the building blocks used have efficient instantiations under the decisional Diffie-Hellman, quadratic
residuosity, or N th-residuosity assumptions. As a result, our protocol is reasonably efficient (it
has 6 rounds and requires at most 30 modular exponentiations per party). Some of the efficiency
improvements we use in our protocol are applicable also to the protocol of [25] (and seemingly
[19]); see [24]. Applied there, these improvements yield the most efficient known password-based
protocols meeting the definition of [3] without random oracles.

On the necessity of set-up assumptions. Our protocol is constructed in the common reference
string model, and so requires a trusted setup phase. In fact, we show in Section 7 that our UC-based
definition of password-based key-exchange cannot be securely realized by any protocol in the plain
model (i.e., in a model with no trusted setup whatsoever). Beyond providing some justification
for our use of a common reference string, this result stands in sharp contrast with the fact that
standard UC-secure key exchange can be realized in the plain model [10]. It also shows that our
definition is strictly stronger than the definitions used by [20, 28], which can be realized in the plain
model. (We stress that in contrast to our definition, the definitions of [20, 28] do not guarantee
security even under concurrent composition of the same protocol with the same password.)

Password-based secure channels. Perhaps the most important application of key-exchange
protocols is for establishing secure communication sessions between pairs of parties. To advocate the
adequacy of our proposed definition we formulate a UC notion of password-based secure channels,
and show how to realize it given our notion of password-based key exchange. It is of course
impossible to obtain standard secure channels using short passwords, since the adversary may
guess the password with non-negligible probability. Consequently, our notion of password-based
secure channels relaxes the standard notion in a way similar to which our notion of password-based
key exchange relaxes the standard notion of key exchange. In Section 6 we show that the standard
protocols for realizing secure channels based on standard key exchange (see, e.g., [10]), suffice also
for realizing password-based secure channels from password-based key exchange.

2 Definition of Security

In this section we motivate and present our formulation of an ideal functionality for password-
based key exchange in the UC framework. The starting point for our approach is the definition
for universally composable “standard” key-exchange [10] (cf. Figure 1). Our aim is to define a
functionality that achieves the same effect as standard key-exchange (where the parties have high-
entropy keys), except that we also incorporate the inherent “security defect” due to the use of
low-entropy passwords. Two ways of introducing this “security defect” come to mind:

1. One option is to consider the same functionality FKE as in Figure 1, but to relax the require-
ment of indistinguishability between the real and ideal worlds. For example, when passwords
are assumed to be chosen uniformly from a dictionary D, one would define a secure proto-
col as one whose real-world execution is distinguishable from an interaction with the ideal
functionality with probability at most, say, 1/|D| plus a negligible amount.

2. A second possibility is to incorporate the “defect” directly into the functionality by, e.g.,
allowing the adversary to make explicit password guesses and to “break” the protocol following

3

a successful guess. Here, the adversary “breaks” the protocol with noticeable probability even
in the ideal world, and thus the standard notion of realizing an ideal functionality can be used.

Among previous works that used simulation-based definitions of security for password protocols, the
first approach was taken by [20, 28], while the second was taken by [8]. (Other definitions are not
simulation-based and so do not fit into either approach.) In this work we adopt the second option
for two reasons. First, the second option allows us to use the UC composition theorem directly
and thus guarantee security of password-based key-exchange protocols even when run in arbitrary
protocol environments. Second, this approach easily extends to handle additional complexities such
as multiple users with different distributions on their passwords, or dependencies among various
passwords. These aspects seem hard (if not impossible) to handle using the first approach.

Before proceeding to our definition, we describe the standard key-exchange functionality of [10].
(We note that the formulation of FKE in Figure 1 is somewhat different from the one in [10]; however,
the differences are inconsequential for the purpose of this work.) The main idea behind the FKE

functionality is as follows: If both participating parties are not corrupted, then they receive the
same uniformly-distributed session key, and the adversary learns nothing about the key except that
it was generated. However, if one of the parties is corrupted, then the adversary is given the power
to fully determine the session key. The rationale for this is that the aim of key exchange is to
enable honest parties to generate a key that is unknown to an external adversary. If one of the
participating parties is corrupted, then the adversary will learn the generated key (because it is
one of the participants), and so the security requirement is meaningless. In such a case, there is
nothing lost by allowing the adversary to determine the key. (We remark that the “role” variable
in the NewSession message is included in order to let a party know if it is playing the role of the
initiator or the responder in the protocol. This has no effect on the security, but is needed for
correct executions.)

Functionality FKE

FKE is parameterized by a security parameter k. It interacts with an adversary S and a set of (dummy)
parties via the following queries:

Upon receiving a query (NewSession, sid, Pi, Pj , role) from party Pi:

Send (NewSession, sid, Pi, Pj , role) to S. In addition, if this is the first NewSession query, or if this
is the second NewSession query and there is a record (Pj , Pi), then record (Pi, Pj).

Upon receiving a query (NewKey, sid, Pi, sk) from S, where |sk| = k:

If there is a record (Pi, Pj), and this is the first NewKey query for Pi, then:

• If either Pi or Pj is corrupted, then output (sid, sk) to player Pi.

• If there is also a record (Pj , Pi), and a key sk′ was sent to Pj , output (sid, sk′) to Pi.

• In any other case, pick a new random key sk′ of length k and send (sid, sk′) to Pi.

Figure 1: The authenticated key-exchange functionality FKE

Our definition of the password-based key-exchange functionality FpwKE is given in Figure 2.
The definition is similar to that of FKE, in that if one of the participating parties is corrupted the
adversary is given the power to fully determine the resulting session key. However, this power is
also given to the adversary in case it succeeds in guessing the parties’ shared password. In the
functionality FpwKE, a session is marked compromised if the adversary makes a successful password
guess, and the adversary can determine the session key for compromised sessions.

An additional property of our definition is that failed adversarial attempts at guessing a key
are detected by the participating parties. Specifically, if the adversary makes an incorrect pass-

4

word guess in a given session, then the session is marked interrupted and the parties are provided
independently-chosen session keys. (Giving the parties error messages in this case would correspond
to requiring explicit mutual authentication; see additional discussion below.)

A session that is not compromised or interrupted (and is still in progress) is considered fresh.
Such sessions (between honest parties) conclude with both parties receiving the same, uniformly
distributed session-key. Once a party receives a key in a fresh session, that session is marked
completed.

In the definition of FpwKE, the password is chosen by the environment who then hands it to
the parties as input.2 Since we quantify over all (polynomial-time) environments, this implies that
security is preserved for all efficient password distributions, as well as when arbitrarily-related
passwords are used in different sessions. Furthermore, since passwords are provided by the “en-
vironment in which the protocol is run”, security is preserved even when passwords are used for
other, unintended purposes by that same environment, thereby possibly leaking information about
the passwords. (When we say that security is preserved here, we mean that the probability that
an adversary can break the password-based key-exchange protocol is the same as its probability of
guessing a password outright, given the potential misuse mentioned above.) We also remark that
our definition guarantees security even in the case where two honest players execute the protocol
with different passwords. (In fact, this is quite a realistic scenario which occurs every time a user
mistypes a password; previous definitions did not guarantee anything in such a case.)

Functionality FpwKE

The functionality FpwKE is parameterized by a security parameter k. It interacts with an adversary S and
a set of parties via the following queries:

Upon receiving a query (NewSession, sid, Pi, Pj , pw, role) from party Pi:

Send (NewSession, sid, Pi, Pj , role) to S. In addition, if this is the first NewSession query, or if this is
the second NewSession query and there is a record (Pj , Pi, pw′), then record (Pi, Pj , pw) and mark
this record fresh.

Upon receiving a query (TestPwd, sid, Pi, pw′) from the adversary S:

If there is a record of the form (Pi, Pj , pw) which is fresh, then do: If pw = pw′, mark the record
compromised and reply to S with “correct guess”. If pw 6= pw′, mark the record interrupted and
reply with “wrong guess”.

Upon receiving a query (NewKey, sid, Pi, sk) from S, where |sk| = k:

If there is a record of the form (Pi, Pj , pw), and this is the first NewKey query for Pi, then:

• If this record is compromised, or either Pi or Pj is corrupted, then output (sid, sk) to player Pi.

• If this record is fresh, and there is a record (Pj , Pi, pw′) with pw′ = pw, and a key sk′ was sent
to Pj , and (Pj , Pi, pw) was fresh at the time, then output (sid, sk′) to Pi.

• In any other case, pick a new random key sk′ of length k and send (sid, sk′) to Pi.

Either way, mark the record (Pi, Pj , pw) as completed.

Figure 2: The password-based key-exchange functionality FpwKE

As additional justification for our definition, we show in Section 6 that it suffices to construct
password-based secure channels (arguably the most common application of such protocols). In
addition, we show in Appendix A that a protocol securely realizing our functionality is secure also
with respect to the definition of Bellare, et al. [3] (modulo unimportant differences regarding the

2This is in contrast to an alternative approach described in the Introduction where the functionality chooses the
password according to some predetermined distribution, and this password is hidden even from the environment. As
we have mentioned, security under our definition implies security under that alternative approach.

5

formalization of session identifiers3). We also show there that our definition implies the “expected”
notion of security against a passive eavesdropper (even one who happens to know the password
being used). These last two results can be viewed as “sanity checks” of our definition.

Additional discussion. The definition of FpwKE could be strengthened to require explicit mutual
authentication by insisting that after a “wrong guess” of the password, the session would fail
(instead of producing a random and independent key). Similarly, a session with mismatching
passwords would also fail. We chose not to include these requirements because (a) we want to keep
the exposition simple; (b) mutual authentication is not needed for secure channels; and (c) it is well
known that any secure key-exchange protocol (including ours) can be augmented to provide mutual
authentication by adding two “key confirmation” flows at the end (and refreshing the session key).

The definition could also be weakened by notifying the simulator whether or not the passwords
match in the two NewSession queries. Roughly, the difference is that the current formulation requires
that an eavesdropper be unable to detect whether the session succeeded (i.e., both parties got the
same key) or failed (i.e., they got different keys). Although we are not aware of any application
where this is needed, it makes the definition simpler to describe and our protocol anyway satisfies
this requirement.

Finally we comment that the reason for marking a record as completed after delivering the key
is to preclude protocols where the adversary has an opportunity for an on-line guessing attack even
after the key was established. We thank Vladimir Kolesnikov for pointing this out to us.

3 Securely Realizing FpwKE: a High Level Description

We now sketch our protocol for securely realizing the functionality FpwKE in the common reference
string model. We remark that our protocol is proven secure in the model of static corruptions
(where the adversary may corrupt some of the participants, but only prior to the beginning of a
protocol execution) and unauthenticated channels (where the adversary has full control over the
communication channels and can insert, modify and delete all messages sent by the honest parties).
Although we consider only static corruptions, the “weak-corruption model” of [3] is implied by
our definition and achieved by our protocol; see Appendix A. (In the weak-corruption model,
the adversary may obtain passwords adaptively throughout the execution. This essentially models
leakage of passwords, rather than adaptive corruption of parties.)

3.1 Preliminaries

The protocol uses a number of primitives: one-time signatures, CPA-secure and CCA-secure public-
key encryption, simulation-sound zero-knowledge proofs, and smooth projective hashing. We pro-
vide only a brief description of the latter two primitives here. More details are provided later in
Section 4.

Simulation-sound zero-knowledge (SSZK) proofs. Informally speaking, a zero-knowledge
proof system is said to be (unbounded) simulation-sound if it has the property that an adversary
cannot provide a convincing proof for a false statement, even if it has seen simulated proofs. Such

3In our formalization, a unique session identifier sid is assumed to be part of the input to the functionality while
in [3] the sid is a function of the eventual transcript of a protocol execution. In the two-party setting, a session
identifier as required by our formulation can be obtained by having the parties exchange random strings and then
setting sid to be their concatenation.

6

simulated proofs may actually prove false statements, and so we require that the adversary can
copy these proofs but do nothing more. More formally, the adversary is given oracle access to
the zero-knowledge simulator and can request simulated proofs of any statement that it wishes
(true or false). The adversary is then said to succeed if it generates a convincing proof of a false
statement, and this proof was not received from the oracle. This concept was first introduced by
Sahai [30] and De Santis, et al. [15] in the context of non-interactive zero-knowledge. For the case
of interactive protocols, the notion was formally defined by Garay, et al. [18].4 Efficient methods
for transforming three-round honest-verifier zero-knowledge protocols (also called Σ-protocols [13])
into simulation-sound zero-knowledge protocols in the common reference string model have been
shown in [18] and [27]. We note that, according to the definition of [18], simulation-sound zero
knowledge protocols also achieve concurrent zero knowledge; i.e., the zero knowledge property
holds for an unbounded number of asynchronous executions of an honest prover. Finally, we note
that simulation-sound zero knowledge is a weaker requirement than universally-composable zero-
knowledge, and more efficient constructions for it are known.

Smooth projective hashing [14]. On a very high level, a projective hash family is a family
of hash functions that can be computed using one of two keys: the (secret) hashing key can be
used to compute the function on every point in its domain, whereas the (public) projected key
can only be used to compute the function on a specified subset of the domain. Such a family is
called “smooth” if the value of the function on a point outside the specified subset is uniformly
distributed, even given the projected key. More formally (but still far from being exact), let X be a
set and let L ⊂ X. We say a hash function Hhk mapping X to some set is projective if there exists
a projection function α(·) that maps hash keys hk into their projections hp = α(hk), such that
for every x ∈ L the value of Hhk(x) is uniquely determined by hp and x. (In contrast, for x 6∈ L
the value of Hhk(x) need not be determined by hp and x.) A smooth projective hash function has
the additional property that for x /∈ L, the projection hp actually says nothing about the value of
Hhk(x). More specifically, given x and hp = α(hk), the value Hhk(x) is (statistically close to) a
uniformly distributed element in the range of Hhk.

We have already mentioned that for x ∈ L the projected key hp fully determines the value
Hhk(x), but so far we have said nothing about whether or not this value can be efficiently computed.
An important property of smooth projective hash functions is that if the subset L is an NP -
language, then for x ∈ L it is possible to compute Hhk(x) using the projected key hp = α(hk) and
a witness of the fact that x ∈ L. Thus, for x ∈ L there are two alternative ways of computing
Hhk(x):

1. Given the hashing key hk, compute Hhk(x) directly.

2. Given the projected key hp = α(hk) and a witness w that x ∈ L, compute the hash value
hhp(x;w) = Hhk(x).

Following [19], the set X that we consider in this work is the set {(c,m)} of all ciphertext/plaintext
pairs under a given public-key pke. Furthermore, the language L is taken to be {(c,m) | c =
Epke(m)}; that is, L is the set of all ciphertext/plaintext pairs (c,m) where c is an encryption of
m under the public-key pke. This language is indeed an NP language, with the witness being the
randomness that was used in the encryption of m.

We also comment that the semantic security of the encryption implies that L is hard on the
average (i.e., it is hard to distinguish a random element in X from a random element in L). For

4When we say a proof is simulation sound, we will also mean that it is uniquely applicable [30]; that is, a proof is
valid for at most one statement.

7

Pi (server) Pj (client)

CRS: public key pke

(sk, vk)← sigKey($)
c1 ← Epke(pw; r1)c1, vk

✛

c2 ← Epke(pw; r2)
hk ←H
hp← α(hk) c2, hp

✲

hk′ ←H
hp′ ← α(hk′)
σ ← Signsk(c2, hp, hp′)hp′, σ

✛

if (Verifyvk((c2, hp, hp′), σ) = 1)
session-key← Hhk(c1, pw) session-key← hhp(c1, pw; r1)

+ hhp′(c2, pw; r2) +Hhk′(c2, pw)

Figure 3: The core of the KOY/GL protocols.

such languages, it was proven in [19] that given a random x ∈ L and hp = α(hk), the value Hhk(x)
is computationally indistinguishable from a random value in the range of Hhk. (This holds even
though for any x ∈ L, the value Hhk(x) is uniquely determined by x and hp.)

In the description below we denote by hk ← H the selection of a random hashing key, and
denote the projection of this key by hp = α(hk). We also denote the computation of the hash
value using the hashing key hk by Hhk(x), and denote computation of the hash value using the
projected key hp and witness w by hhp(x;w). (The statements x below are actually pairs (c,m)
and the witness is the randomness r; thus, we write Hhk(c,m) and hhp(c,m; r).)

3.2 The KOY/GL Protocol

The starting point of our protocol is the password-based key-exchange protocol of Katz, Ostrovsky,
and Yung [25], as generalized and abstracted by Gennaro and Lindell [19]. The “core” of this
protocol is sketched in Figure 3 (in this figure we suppress various details unimportant for the
present high-level discussion). At a high level, the parties in the KOY/GL protocol exchange
CCA-secure encryptions5 of the password, encrypted with the public-key found in the common
reference string, and then compute the session key by combining (smooth projective) hashes of the
two ciphertext/password pairs. In order to do this, each party chooses a hashing key for a smooth
projective hash function and sends the “projected key” to the other party.

Ignoring for the moment the signature keys from Figure 3, let c2, hk and c1, hk′ be the ciphertexts
and hashing keys generated by parties Pi and Pj , respectively. Party Pi can compute Hhk(c1, pw)
since it knows the actual hashing key hk. Furthermore, since it generated the ciphertext c2, it can
compute hhp′(c2, pw; r2) = Hhk′(c2, pw) using its knowledge of the randomness r2 that was used to
generate c2 = Epke(pw; r2). (Recall the two alternate ways of computing Hhk(x) described above.)
Symmetrically, Pj computes the same session key using hk′, hp, and its knowledge of r1.

5It is shown in [19] that non-malleable commitments can be used in place of CCA-secure encryption. However,
for our extension of the protocol to the UC framework we will need to use encryption, so we describe it this way.

8

The basic idea behind the security of the protocol can be described as follows. Denote the
shared password of a client and server by pw. If the client receives an encryption c of the wrong
password pw′, then (by the definition of smooth projective hashing) the hash she computes will be
random and independent of all her communication. (This holds because the statement (c, pw) is
not in the language, so Hhk′(c, pw) is close to uniform even given the projected key hp′.) A similar
argument holds for the server. Thus, for an adversary to distinguish a session key from random, it
must send one of the parties an encryption of the correct password pw.

The adversary can obtain an encryption of the correct password by copying a ciphertext from
another execution of the protocol, but then it does not know the randomness that was used to gen-
erate this ciphertext. By the property discussed earlier (regarding hard-on-the-average languages),
the value Hhk(c, pw) is computationally indistinguishable from uniform, even given hp. Moreover,
since the encryption scheme is CCA-secure, and thus non-malleable, the adversary cannot gener-
ate a new encryption of pw with probability any better than it could achieve by simply guessing
passwords from the dictionary and encrypting them.

Finally, the adversary may try to gain information by copying ciphertexts from a current session
faithfully but not copying other values (such as the hash projected keys). This type of man-in-the-
middle attack is prevented using the one-time signature. We conclude that the adversary succeeds
in its attack if and only if it generates an encryption of the correct password. In other words, the
adversary succeeds only with the same probability with which it can guess the secret password, as
required.

3.3 Extending the Protocol to Realize FpwKE

The protocol of Figure 3 serves as a good starting point, but it does not seem to achieve the security
required by our definition. The main issue is that an ideal-model simulator must be able to extract
the adversary’s password guess.6 At first glance, it may seem that this is not a problem because
in the ideal model the simulator has control over the common reference string and so can include
a public key pke for which it knows the corresponding secret key ske. Then, when the adversary
generates an encryption of the password c = Epke(pw), the simulator can decrypt using ske and
obtain the password guess pw. However, as we will now show, this seems not to suffice. In order
to see where the difficulty arises, consider an ideal-model adversary/simulator S that has access
to the functionality FpwKE and needs to simulate the KOY/GL protocol for a real-life adversary
A. Informally, simulating the server when the adversary impersonates a client can be carried out
as follows: The simulator decrypts the ciphertext c1 generated by A and recovers the adversary’s
“password guess” pw (this decryption can be carried out because S chooses the common reference
string so that it has the corresponding secret key). The simulator then sends pw to FpwKE as its
own guess. If the guess is incorrect then, as described above, the smoothness of the hash function
causes the honest parties to output independent random keys (as occurs in the ideal model for the
interrupted session). In contrast, if the guess is correct then the simulator has learned the correct
password and can continue the remainder of the execution exactly as an honest party would when
using that password.

However, consider what happens when the adversary impersonates a server. Here, the simulator
must send some c1 (presumably an encryption of some password pw′) before the adversary replies
with c2. As before, the simulator can decrypt c2 to recover the adversary’s password guess pw,

6This need to extract is not a mere technicality, but is rather quite central to our definition. In particular, this
enables us to argue that the level of security achieved is equivalent to the probability of successfully guessing the
password, even in the case that related and partially-leaked passwords are used.

9

Pi (client) Pj (server)

CRS: pke

c0 ← Epke(pw; r0) c0
✲

(sk, vk)← sigKey($)
c1 ← Epke(pw; r1)c1, vk

✛

c2 ← Epke(pw, r2)
hk ←H
hp← α(hk; c1) c2, hp

✲

ZKP(c0 ≈ c2)
✲

hk′ ←H
hp′ ← α(hk′; c2)
σ ← Signsk(c2, hp, hp′)hp′, σ

✛

if (Verifyvk((c2, hp, hp′), σ) = 1)
session-key← Hhk(c1, pw) session-key← hhp(c1, pw; r1)

+ hhp′(c2, pw; r2) +Hhk′(c2, pw)

Figure 4: The core of the universally-composable protocol.

and submit this guess to FpwKE. However, if it turns out that pw is a correct guess, the simulator
is stuck with a ciphertext c1 that in all likelihood is an encryption of a different (i.e., incorrect)
password. Without knowing the hashing key hk that A holds, the simulator cannot predict the
value Hhk(c1, pw) that the adversary will compute (since (c1, pw) /∈ L). Thus, the simulator seems
to have no way of ensuring that the secret key computed byA is the same as the one the environment
obtains from the functionality (via the client).7

To overcome this problem, we modify the protocol by having the server send a “pre-flow” c0

which also contains an encryption of the password (i.e., c0 = E(pw; r0)). Then, when the server
later sends c2, it proves in zero knowledge that c0 and c2 are encryptions of the same value. We
stress that the session key is still computed using only c1 and c2 and so the simulator need only
ensure that consistency hold between these two ciphertexts (where by consistency, we mean that
they are both an encryption of the same password). The modified protocol is sketched in Figure 4.
(Note that we switch the “client” and “server” roles so that the client is still the one who sends
the first message.)

We now describe the high-level simulation strategy for the modified protocol (and thus why this
modification solves the above-described problem):

1. Case 1 — the adversary A impersonates the client: The simulator S obtains the ciphertext
c0, decrypts it to obtain pw, and sends pw to FpwKE as the password guess. If this guess
is correct, then S continues the simulation using the same pw and consistency is achieved.
Note that the zero-knowledge proof ensures that the ciphertext c2 later sent by A is also an
encryption of pw (and thus, in this case, consistency between c0 and c1 implies consistency

7This problem does not arise in the proofs of KOY/GL, since the “simulator” there can just halt upon a correct
password guess by the adversary. Our simulator, on the other hand, must continue to simulate both when the
adversary fails and when it succeeds.

10

between c1 and c2, as desired).

2. Case 2 — the adversary A impersonates the server: In this case, the simulator S generates
the pre-flow ciphertext c0 as an encryption of some default value. Then, upon receiving c1

from A, the simulator S decrypts it to obtain pw and sends pw to FpwKE as the password
guess. If the guess is correct, then S generates c2 to also be an encryption of pw. Notice
that c1 and c2 are now consistent in that they both encrypt the correct password pw. The
only problem remaining in the simulation is that S is supposed to prove that c0 and c2 are
consistent (which in this case they are not). It does this by using the zero-knowledge simulator
for the proof of consistency. By the zero-knowledge property, this proof is indistinguishable
from a real one (and this holds even though the statement in this case is false). We therefore
conclude that in the case of a correct password guess consistency is achieved and, in addition,
the adversary cannot distinguish its view in the simulation from its view in a real execution.

We stress that Figure 4 is only a sketch of the protocol and does not contain all the details. For
example, the full protocol uses labeled encryption [31] in order to bind certain protocol information
to the ciphertexts (such as the session-id and the verification key of the signature scheme) and in
order to prevent other types of man-in-the-middle attacks. (Labels were used implicitly for the
same purpose in [25, 19].) A detailed description of the protocol can be found in the next section,
where we also provide a formal statement and proof of the following result:

Theorem 1 (main theorem – informally stated): Assume the existence of CCA-secure encryp-
tion schemes with smooth projective hash functions, and simulation-sound zero-knowledge proofs.
Then there exists a protocol in the common reference string model that securely realizes the FpwKE

functionality in the presence of static-corruption adversaries.

We remark that all the building blocks of our protocol can be constructed under the DDH,
quadratic residuosity, or N th-residuosity assumptions, and so UC-secure password-based key ex-
change is possible under any of these assumptions. For the most efficient instantiation we would use
encryption and smooth projective hash functions based on the DDH assumption and a simulation-
sound zero-knowledge proof system [18, 27] based on the strong RSA assumption. Hence, the end
result would rely on all of these assumptions for its security.

Efficiency notes. Considering the protocol as depicted in Figure 4, we emphasize that it suffices
to use a (simulation sound) zero-knowledge proof of membership, rather than a proof of knowledge.
This allows for improved efficiency; see [18]. Furthermore, it suffices to generate c0 and c2 using
an encryption scheme that is only CPA-secure, rather than CCA-secure8 (in this case, the public
key used to encrypt c0 and c2 is generated independently of the public key used to encrypt c1);
this is how we present the scheme in the following section. Using a CPA-secure scheme provides
efficiency improvements in the encryption itself, the projective hashing step, and the proof of
consistency. (In particular, a highly efficient and simple construction of smooth projective hashing
was demonstrated for the El Gamal encryption scheme — which is CPA-secure under the DDH
assumption — in [19]. Furthermore, proving consistency of El Gamal encryptions is more efficient
than proving consistency of, e.g., CCA-secure Cramer-Shoup encryptions.)

8In fact, the second encryption in the KOY/GL protocols can be generated using a CPA-secure scheme (e.g., El
Gamal) as well; see [24]. This yields the most efficient known password-based key-exchange protocol in the standard
model (i.e., without random oracles), albeit under a weaker definition than the one considered here.

11

4 Detailed Description of our Protocol

In this section we present the full description of our protocol. We begin by describing in some
detail the primitives that we use in our protocol, followed by a detailed description of the protocol
itself. Section 5 contains the proof of security.

4.1 Building Blocks

CPA-secure and labeled CCA-secure public-key encryption. We use both a semantically-
secure encryption scheme [21] (which we call CPA-secure), and a labeled CCA-secure encryption
scheme (see [31]). The latter is similar to the standard notion of CCA-secure encryption [29, 16, 2],
with the added property that an arbitrary label can be bound to the ciphertext in a non-malleable
way. In more detail, both the encryption and decryption procedures accept an additional input
string called a label, and we only require correct decryption if the label provided to the decryption
algorithm is the same as that used to encrypt. The standard CCA attack model is also modified
by letting the adversary specify labels in its decryption queries, as well as a “target label” when it
submits its two “target messages” to be encrypted. The crux of the definition is that the adversary
is allowed to query the decryption oracle on any ciphertext/label pair that is not equal to the target
ciphertext/label pair. A generic way of transforming any CCA-secure encryption scheme E into a
labeled CCA-secure encryption scheme E′ is to set E′

pke(m; label) = Epke(m | label), and have the
decryption routine verify that the labels match. However, more efficient solutions are possible in
many cases.

We denote by Epke(m; ℓ; r) the labeled encryption of message m with respect to public key pke,
using label ℓ and randomness r. Similarly we denote by Dske(c; ℓ) the decryption of ciphertext c
with secret key ske and label ℓ. We denote by Epke an efficiently recognizable superset of the set of
all possible encryptions using key pke. In particular, in our definitions of smooth projective hashing
below, a “ciphertext” with respect to a key pke will refer to an element in Epke. The exact nature
of this set depends on the specific encryption scheme being used (see, e.g., [19]). The notations for
CPA-secure schemes are similar, except with the labels omitted.

Smooth projective hashing. Recall that a projective hashing family [14] is a family of hash
functions that can be computed using one of two keys: the (secret) hashing key can be used to
compute the function on every point in its domain, whereas the (public) projected key can only
be used to compute the function on some specified subset of the domain. Such a family is called
“smooth” if the value of the function on any single point outside the specified subset is independent
of the projected key. For our purposes, we use two such families: one related to the CPA-secure
encryption scheme, and the other related to the labeled CCA-secure scheme. Below we describe
the notations we use for the family related to the labeled CCA-secure scheme. The notations for
the other family are similar, except with the labels omitted.

The domain of the hash functions consists of triples of the form (message, label, ciphertext),
with respect to a specific public key of the labeled CCA-secure scheme; the range of these functions
will be some group G. We use here a variant of smooth projective hashing similar to that defined
by Gennaro and Lindell [19]. Specifically, we consider hash families described by the following four
components (all of which are assumed to be efficiently implementable):

H is a distribution ensemble of hashing keys, indexed by public keys of an encryption scheme.
Namely, for an encryption public key pke, H(pke) is a distribution over hashing keys.

12

α is the projection function. It takes as input a hashing key, a label (for labeled CCA-secure
encryption schemes), and a ciphertext, and outputs a projected key. A projection of a hash
key hk with respect to label ℓ and ciphertext c is denoted hp = α(hk; ℓ, c).

H is the hashing algorithm. It takes a hashing key hk and an element (m, ℓ, c) of the domain, and
returns an element g in the range. We denote this by g = Hhk(m, ℓ, c).

h is the “projected hashing” algorithm. It takes a projected key hp, an element (m, ℓ, c) of the
domain, and a string r, supposedly the randomness that was used to generate the ciphertext c.
It returns an element g in the range. We denote this by g = hhp(m, ℓ, c; r).

The properties that we need of this family are the following:

Projection. For any encryption public key pke, any message m, label ℓ, and randomness r, and any
hashing key hk ∈ H(pke), if we set c = Epke(m; ℓ; r) and hp = α(hk; ℓ, c), then Hhk(m, ℓ, c) =
hhp(m, ℓ, c; r).

Smoothness. Fix any encryption public key pke, any m, ℓ, and any c ∈ Epke such that c is
not an encryption of m with respect to pke and label ℓ.9 Then, for a random hashing key
hk ∈ H(pke) and hp = α(hk; ℓ, c), the element g = Hhk(m, ℓ, c) is (statistically close to)
uniform in the group G, independent of (hp,m, ℓ, c).

Gennaro and Lindell [19] describe CPA-secure and CCA-secure encryption schemes with associated
smooth projective hashing families, based on a variety of (standard) number-theoretic cryptographic
assumptions. These constructions can be used here, with straightforward modifications to incor-
porate labels. (Specifically, we need to add the label as an argument to the collision-resistant hash
function; see [19].)

Simulation-sound zero-knowledge (SSZK) proofs [30, 15, 18, 27]. As we have described
in Section 3.1, a zero-knowledge proof system is said to be (unbounded) simulation-sound if it has
the property that an adversary cannot give a convincing proof for a false statement, even if the
adversary has oracle access to the zero-knowledge simulator (except, of course, by copying proofs
that were directly obtained from the simulator). We do not provide a formal definition here but
refer the reader to [18] instead. We denote a proof protocol for the statement x ∈ L in which the
verifier has input x and the prover has input x, y by:

{
PRV(x, y) ←→ VRF(x)

x ∈ L

}

One-time signatures. We assume the reader is familiar with the standard notion of a one-
time signature scheme [17]. For this, we denote the signing algorithm by σ = Signsk(m) and the
verification by Verifyvk(m,σ). We say that a one-time signature scheme is secure if it is existentially
unforgeable against an adaptive chosen one-message attack.

4.2 The Protocol

The full description of our password-based key-exchange protocol Π can be found in Figure 5. It
follows the high-level ideas presented in Figure 4.

9We note that the constructions of [19] hold for a more relaxed notion of smoothness. Specifically, there exists

13

UC Password Protocol Π

Common reference string: A triple (pke, pke′, γ), where pke is a public key for a labeled CCA-secure
encryption scheme E, pke′ is a public key for a CPA-secure encryption scheme E′, and γ is a reference
string for a simulation-sound zero-knowledge proof system for the language Lpke′ defined below.

Protocol Steps:

0. When Pi is activated with input (NewSession, sid, ssid, i, j, w, role), it does the following. If role =
server it does nothing (except waiting for a flow-zero message as described below). If role = client, it
chooses r0, encrypts c0 = E′

pke′(w; r0), and sends the message (flow-zero, c0) to Pj . From this point
on, assume that Pi is a party activated with input (NewSession, sid, ssid, i, j, w, client), and that Pj

is a party activated with input (NewSession, sid, ssid, j, i, w′, server).

1. When Pj (who was waiting for a flow-zero message) receives a message (flow-zero, c0), it checks
that c0 ∈ E′

pke′ as defined in Section 4.1. Then it generates a key pair (V K, SK) for a one-time
signature scheme, chooses r1, sets the label ℓ1 = j ◦ i ◦ ssid ◦ V K, encrypts c1 = Epke(w

′; ℓ1; r1),
and sends (flow-one, c1, V K) to Pi.

2a. When Pi receives a message (flow-one, c1, V K), it checks that c1 ∈ Epke. Then it chooses a key hk for
the smooth projective hash function family H with respect to pke, sets the label ℓ1 = j◦i◦ssid◦V K,
and computes the projection hp = α(hk; ℓ1, c1). Next it chooses r2, encrypts c2 = E′

pke′(w; r2), and
sends (flow-two, hp, c2) to Pj .

2b. Let Lpke′ be the language of pairs of ciphertexts that encrypt the same message w.r.t. pke′:

Lpke′
def
= {(c0, c2) | ∃ (w, r0, r2) s.t. c0 = E

′
pke′(w; r0) and c2 = E

′
pke′(w; r2)}

Player Pi proves to Pj that (c0, c2) ∈ Lpke′ , by engaging in a simulation-sound zero-knowledge proof
protocol using the witness w, r0, r2 that it knows and the reference-string γ. Namely, the players
engage in a proof protocol

{
PRV(c0, c2, γ; w, r0, r2) ←→ VRF(c0, c2, γ)

(c0, c2) ∈ Lpke′

}

3. When Pj receives a message (flow-two, hp, c2), it checks that c2 ∈ E′
pke′ . Then it plays the verifier

role in the simulation-sound zero-knowledge proof protocol (as discussed in the previous step). If
Pj rejects the proof, it aborts. Otherwise, it does the following:

(a) Choose a key hk′ for the smooth projective hash family H′ with respect to pke′ and compute
the projection hp′ = α′(hk′; c2).

(b) Compute σ = SignSK(c0, c2, hp, hp′).

Pj then sends (flow-three, hp′, σ) to Pi, computes session key sk′ = hhp(w′, ℓ1, c1; r1) + H ′
hk′(w′, c2),

outputs (sid, ssid, sk′), and terminates the session.

4. When Pi receives a message (flow-three, hp′, σ), it checks that VerifyV K((c0, c2, hp, hp′), σ) = 1.
If not, it aborts the session outputting nothing. Otherwise, it computes session key sk =
Hhk(w, ℓ1, c1) + h′

hp′(w, c2; r2), outputs (sid, ssid, sk), and terminates the session.

Figure 5: A framework for universally composable password-based key exchange

14

5 Proof of security

5.1 Some Aspects of the Universal Composability (UC) Framework

We assume basic familiarity with the workings of the UC framework, and refer the reader to [9]
for complete details. As a reminder, in this framework the security of a task is captured via an
ideal functionality, which is essentially the code for a “trusted party” that interacts with parties
in a network. The formal model for testing whether a protocol π realizes an ideal functionality
F involves an environment Z that provides inputs to and obtains outputs from either (a) parties
running a single execution of π, plus an adversary A that controls some of the parties and all the
communication, or (b) “dummy parties” that communicate only with F by sending it their inputs
and receiving back outputs, plus an adversary S that also interacts with F . Protocol π is said to
securely realize F if for every A there exists an S such that Z can not distinguish whether it is in case
(a) or case (b) with any non-negligible advantage over a random guess. The universal composition

theorem then asserts that any larger protocol that uses multiple copies of F continues to behave
essentially the same when the copies of F are replaced by instances of protocol π. Intuitively, one
can view this larger protocol as modeling arbitrary network activity. The composition theorem
thus guarantees that a secure protocol behaves like the ideal functionality, even when run in an
arbitrary network.

In this work, we focus on static adversaries that cannot corrupt parties during the execution.
(Nevertheless, as we show in Appendix A, this implies the “weak corruption” model of [3] in which
passwords can be adaptively obtained.)

The “canonical real-world adversary”. In the UC framework, the real-life adversary is al-
lowed to follow any arbitrary PPT strategy. However, it has been shown [9] that the notion of
security remains unchanged even if we restrict attention to the case of a “dummy adversary” that
only reports all messages sent by the parties to the environment, and exactly follows the instructions
of the environment regarding what messages to deliver to which parties. In this work we concen-
trate on this simpler (but equivalent) formulation of the UC notion of security, and we sometimes
refer to this dummy adversary as the “canonical real-world adversary”.

Session identifiers. The communication model of the UC framework differs from some other
models in the way it uses session IDs. In the UC framework there are potentially many copies
of any ideal functionality F , and each copy is assumed to have a unique identifier, called the
session ID (SID) of that copy. Each message sent to a copy of F should contain the SID of that
copy, and each message from a copy of F to a party contains the SID of that copy. Similarly,
a protocol π that realizes F expects each input to contain the SID that is unique to that copy,
and each output contains the SID. This formalism puts the burden of choosing the SIDs on the
calling protocol. In particular, this implies that the calling protocol must make sure that all the
parties that communicate with the same copy of F (or alternatively, participate in an instance
of π) use the same SID, and that different copies use different SIDs. This choice simplifies some
technicalities, almost without any loss of generality. Indeed it was shown in [1] that in most cases
there are simple ways for realizing this formalism. The case of two-party protocols is particularly

a hard-to-sample subset of tuples (m, ℓ, c) for which c is not an encryption of m (w.r.t. pke and label ℓ) and yet
smoothness is not required to hold. Since this set is hard-to-sample it makes no difference to our proof. See [19,
Sections 8.1 & 8.2] for details.

15

simple: a two-party protocol that expects an input SID can be preceded by an exchange of nonces,
and then the original protocol can be run using the concatenation of the nonces as the input SID.

Joint state and multi-session extensions. The protocols developed in this work remain secure
even when different sessions use the same common reference string (as is clearly necessary in
practice). For this purpose, we use the “universal composability with joint state” (JUC) formalism
that was introduced by Canetti and Rabin [12]. The problem addressed by that work is that the
original UC composition theorem from[9] guarantees that security of a protocol ρ is preserved under
arbitrary composition only as long as the executions of the different instances of ρ are independent
of each other. In our case, this independence does not hold since all executions use the same
common reference string.

The formalism from [12] provides a “wrapper layer” above the functionality that deals with
“joint state” among different copies of the protocol. Specifically, defining a functionality F also
defines (implicitly) the multi-session extension of F (denoted F̂) as follows: F̂ runs multiple indepen-
dent copies of F , where the copies are distinguished via sub-session IDs (SSIDs). In this extension,
each incoming message to F̂ is assumed to have (in addition to the standard SID) an additional
identifier, the SSID. The message is then forwarded by F̂ to the internal copy of F whose SID is
the SSID contained in the message. If no such copy exists then a new one is invoked.

Then, instead of proving that a protocol ρ realizes the functionality F , one proves that it realizes
the multi-session extension F̂ . The JUC theorem [12] asserts that composing a protocol π that uses
multiple independent copies of F , with a single copy of a protocol ρ that realizes F̂ , preserves the
security of π. This holds even for the special case where π consists of multiple independent instances
of a simpler protocol (e.g., multiple exchanges of a key), and each instance calls different copies of F .
In a nutshell, this means that once we have proven that our password-based key-exchange protocol
securely realizes F̂pwKE, all higher-level protocols can refer to the simpler single-session functionality
FpwKE, and security is preserved even if all of these calls use the same common reference string.

5.2 Our Main Theorem

Let F̂pwKE be the multi-session extension of FpwKE and let Fcrs be the ideal functionality that
provides a common reference string to all parties.

Theorem 1 (main theorem – restated): Assume that E is a CCA-secure labeled encryption
scheme, that E′ is a CPA-secure encryption scheme, that H is a family of smooth projective hash
functions with respect to E, that H′ is a family of smooth projections hash functions with respect
to E′, that the proof system is simulation-sound zero-knowledge, and that the one-time signature
scheme is secure. Then protocol Π of Figure 5 securely realizes the F̂pwKE functionality in the
Fcrs-hybrid model, in the presence of static-corruption adversaries.

In order to prove this theorem, we need to show that for any real-world adversary A (interacting
with parties running Π), there is an ideal-world adversary/simulator S (interacting with dummy
parties and the functionality F̂pwKE) such that any environment Z can distinguish between an
execution with A in the real world and S in the ideal world with at most negligible probability.
In Section 5.3 we describe the simulator S, and in Section 5.4 we prove indistinguishability between
A in the real world and S in the ideal world.

16

5.3 Description of the Simulator

When initialized with security parameter k, the simulator first runs the key-generation algorithms
of the encryption schemes E and E′, both with security parameter k, thus obtaining key pairs
(ske, pke) and (ske′, pke′). The simulator also chooses ŵ at random from the intersection of the
domains of E and E′.10 S also uses the first part of the zero-knowledge simulator SZK to obtain
(τ, γ) ← S1

ZK(k). Then S initializes the real-world adversary A, giving it the triple (pke, pke′, γ)
as the common reference string. Thereafter, the simulator S interacts with the environment Z, the
functionality F̂pwKE, and its subroutineA. For the most part, this interaction is implemented by the
simulator S just following the protocol Π on behalf of all the honest players. The only differences
between the simulated players and the real honest players are in the passwords that S uses to
simulate the players, and in the behavior of S in the zero-knowledge proof protocol. Specifically,
when S starts a simulation of a session ssid for an uncorrupted party P , it runs Π using the dummy
password ŵ. However, if A modifies a flow-zero or flow-one message that is delivered to P in session
ssid, then S decrypts that ciphertext (using ske′ or ske) and uses the recovered message w in a
TestPwd query to F̂pwKE. If this is a “correct guess”, then S replaces the “dummy password” ŵ in
the state of session ssid of P with the “correct password” w, and proceeds with the simulation. In
addition, instead of following the honest prover strategy, S uses the zero-knowledge simulator in
all the proofs. More details follow.

5.3.1 Session Initialization

On message (NewSession, sid, ssid, i, j, role) from F̂pwKE, S starts simulating a new session of the
protocol Π, for party Pi, peer Pj, session identifier ssid, and common reference string (pke, pke′, γ).
We denote this session (Pi, ssid). S initializes the session (Pi, ssid) with the “dummy password”
ŵ. If role = client, S generates the flow-zero message as in Π: it chooses r0, generates a ciphertext
c0 = E′

pke′(ŵ; r0), and gives (flow-zero, c0) to A on behalf of (Pi, ssid).

5.3.2 Protocol Messages

Assume A sends a message M to an active session of some party. If this message is formatted dif-
ferently from what is expected by the session, then S aborts that session and notifies A. Otherwise,
we have the following cases (where we denote a party in the client role as Pi and a party in the
server role as Pj):

Step 1. Assume a session (Pj , ssid) receives a message M = (flow-zero, c). As per the protocol, it
must be the case that Pj is a server and M is the first message received by this instance. If c
is not equal to any ciphertext c0 that was generated by S for a flow-zero message, then S uses
its secret key ske′ to decrypt the ciphertext and obtain w = Dske′(c),

11 and then S makes a
call (TestPwd, sid, ssid, j, w) to F̂pwKE. If this is a “correct guess”, then S resets the password
of this server session to w. (If this is a “wrong guess” then S keeps its password as ŵ.)

Either way, S generates the flow-one message as in Π. Denote by w′ the password now held
by this session. Then S generates (V K,SK) for a one-time signature scheme, chooses r1, sets

10we assume for convenience that the intersection of the domains of E and E′ includes all passwords and is super-
polynomial in size. In particular, ŵ will be different from all passwords input to the protocol with all but negligible
probability (and we assume this to be the case).

11Decryption may result in w =⊥. In this case S will set w = ŵ, to ensure that w is a “wrong guess” in a TestPwd

query. S will make an analogous substitution in Step 2 below.

17

ℓ1 = j◦i◦ssid◦V K, computes the ciphertext c1 = Epke(w
′; ℓ1; r1), and gives (flow-one, c1, V K)

to A on behalf of (Pj , ssid).

Step 2. Assume a session (Pi, ssid) receives a message M = (flow-one, c, V K ′). As per the proto-
col, it must be the case that Pi is a client who sent a flow-zero message and is now waiting
for the response.

Say (Pj , ssid
′) is a peer session (to (Pi, ssid)) if ssid = ssid′, session (Pi, ssid) has peer Pj ,

session (Pj , ssid) has peer Pi, and these two sessions have opposite roles (client/server). If the
pair (c, V K ′) is not equal to the pair (c1, V K) that was generated by S for a flow-one message
from peer session (Pj , ssid) (or if no such ciphertext was generated yet, or no such peer session
exists) then S sets ℓ1 = j ◦ i ◦ ssid ◦ V K, uses its secret key ske to compute w = Dske(c; ℓ1),
and then S makes a call (TestPwd, sid, ssid, i, w) to F̂pwKE. If this is a “correct guess”, S
resets the password of this client session to w. (If this is a “wrong guess” then S keeps the
password as ŵ.)

Either way, S generates the flow-two message as in Π. Denote by w′ the password now held
by this instance. S chooses a key hk for the hash family H and computes the projection hp =
α(hk; ℓ1, c). It chooses r2, generates a ciphertext c2 = E′

pke′(w
′; r2), and gives (flow-two, hp, c2)

to A on behalf of (Pi, ssid).

Next S engages on behalf of (Pi, ssid) in the proof protocol, but instead of using the honest
prover strategy, it uses the second part of the zero-knowledge simulator, S2

ZK(τ), to generate
a simulated proof.

Other messages. All other messages from A are handled by S by simply following the protocol
Π for each session (given the current state of the session). If a session aborts or terminates, S
reports it to A. If the session terminates with a session key sk, then S makes a NewKey call
to F̂pwKE, specifying the session key sk. (But recall that unless the session is compromised,

F̂pwKE will ignore the key specified by S.)

5.3.3 Other Interactions

Messages between Z and A are simply forwarded.

5.4 Proof of Indistinguishability

Roughly, the differences between the views of the environment in the real world and the ideal world
(with the above simulator S) are the following:

1. In the real world, the clients follow the honest prover strategy to prove that c0, c2 are en-
cryptions of the same password. In the simulated world, these proofs are generated by the
zero-knowledge simulator.

2. In the real world, any session that terminates successfully (and in particular any session where
the adversary delivers all messages unchanged) returns to the environment the sum of hashes
as the key. In the simulated world, on the other hand, fresh and interrupted sessions return a
random key.

3. In the real world, all the sessions between two players Pi and Pj use the passwords given by
the environment. In the simulated world all sessions use the “dummy password” ŵ, at least
until a correct password guess occurs.

18

Accordingly, we describe a sequence of “hybrid experiments”, starting from the real world and
ending in the simulated world, where in each experiment we change some aspect of the simulation
and show that the environment cannot detect that change. Basically we make changes following
the order given above, except that to make the proof more tractable we divide changes (2) and (3)
into smaller steps. In particular, we proceed through a series of ten hybrids where in each hybrid
we change certain real session keys to random session keys and then let parties in those sessions
use dummy passwords, since the encryptions in those sessions will not affect the (now randomly
generated) session keys. Also, by dividing the hybrids in this way, we are able to highlight the
particular security assumptions necessary for each change.

Note that for our proof we will assume all ciphertexts and one-time signature verification keys
generated by honest parties are unique (not previously used by any parties or the adversary) and
all ssid’s are unique. The first assumption is true with high probability, and the second is a
requirement of the universal composability framework.

Let H0 be the real-world experiment. Say a value is t-oracle generated if it is generated in step t
in some session. For a client session (Pi, ssid), a pair (c1, V K) is peer-oracle generated if it is 1-oracle
generated by a peer session (Pj , ssid). Say a ciphertext c1 is valid for (Pi, ssid) if w = Dske(c1; ℓ1)
where w is the password given to (Pi, ssid) by the environment and the label ℓ1 is the one that is
computed by (Pi, ssid). Say a ciphertext c0 (resp., c2) is valid for (Pj , ssid) if w′ = D′

ske′(c0) (resp.,
w′ = D′

ske′(c2)) where w′ is the password given to (Pj , ssid) from the environment. Intuitively,
a ciphertext is valid if it decrypts to the “correct” password. Say (Pi, ssid) and (Pj , ssid) are
matching sessions if (Pj , ssid) is a peer session of (Pi, ssid) and the two sessions agree on the
values of V K, c1, and c2. Then we have the following hybrid experiments:

H1 modifies how the zero-knowledge proofs are performed. Specifically, instead of using the honest-
prover strategy, all the proofs in which the prover is an honest player are simulated using
the zero-knowledge simulator. (Note that the γ value in the common reference string is
also simulated.) Since the proofs are (concurrent) zero-knowledge, the environment cannot
distinguish between H1 and H0. That is, if an environment could distinguish between these
hybrids, one could construct an adversary to break the (unbounded) zero-knowledge property
of the proof protocol.

H2 computes c0 as an encryption of the “dummy password” ŵ for every client session (Pi, ssid)
(instead of computing c0 as an encryption of the password w given to this session by the
environment). Since the encryption scheme is semantically secure, the environment cannot
distinguish between H2 and H1. Note that the zero-knowledge proofs (ZKPs) are already
simulated, and thus do not require knowledge of how c0 is generated. Furthermore, this
knowledge is not used anywhere else in the protocol. So if an environment could distinguish
between these two hybrids, then one could construct an adversary to break the semantic
security of E′ using a simple hybrid argument.12

H3 substitutes a random session key sk for each client session (Pi, ssid) that receives a peer-oracle-
generated pair (c1, V K) from a peer session (Pj , ssid) in step 2. If (Pi, ssid) and (Pj , ssid)
are matching sessions and have the same password given to them by the environment, and
(Pj , ssid) received a 0-oracle-generated c0, then the same random sk is given to (Pj , ssid).
(Actually, sk is given to Pj first, since (Pj , ssid) terminates first.) In Section 5.5 we prove
the environment cannot distinguish between H3 and H2.

12Note that the hybrids we refer to in this reduction are “sub-hybrids” between H2 and H1, based on the number
of ciphertexts c0 generated by honest parties.

19

H4 computes c2 as an encryption of the “dummy password” ŵ for every client session (Pi, ssid)
that receives a peer-oracle-generated pair (c1, V K) in step 2 (instead of computing c2 as an
encryption of the password w given to this session by the environment). Then, as in H2, since
the encryption scheme E′ is semantically secure, the environment cannot distinguish between
these cases. Note that the session key of such client sessions are already chosen randomly,
and the ZKPs are already simulated. Thus, neither depend on how c2 is generated.

H5 substitutes a random session key sk for all server sessions (Pj , ssid) that receive a 2-oracle-
generated ciphertext c2 from a client session (Pi, ssid

′) in step 3, where (Pi, ssid
′) received

a peer-oracle-generated pair (c1, V K) in step 2. If (Pi, ssid
′) and (Pj , ssid) are matching

sessions and were given the same password by the environment, and (Pj , ssid) received a
0-oracle-generated c0, then the session key of (Pj , ssid) is already random (from H3), and
is not changed in this hybrid. In Section 5.5 we prove the environment cannot distinguish
between H5 and H4.

H6 checks whether ciphertext c1 is valid in client sessions (Pi, ssid) that receive a non-peer-oracle-
generated pair (c1, V K) in step 2. (To perform this validity test, one needs to generate the
key pair (ske, pke) and use pke in the common reference string.) If not, the session key sk is
chosen randomly. This change is indistinguishable since Hhk(w, ℓ1, c1) is statistically close to
uniform, given pke, hp, w, ℓ1, and c1.

H7 computes c2 as an encryption of the “dummy password” ŵ for every client session (Pi, ssid)
that receives a non-peer-oracle-generated pair (c1, V K) in step 2 with non-valid ciphertext
c1 (instead of computing c2 as an encryption of the password w given to this session by the
environment). Note that the session key of such client sessions are already chosen randomly,
and the ZKPs are already simulated; thus, neither depend on how c2 is generated. Also note
that in the reduction to the security of E′ with public key pke′, one can still test validity of c1

encryptions (as required for hybrid H6), since such ciphertexts are encrypted with the other
public key pke and can be decrypted using ske.

As in H2 and H4, since the encryption scheme E′ is semantically secure the environment
cannot distinguish between H6 and H7.

H8 substitutes a random session key sk′ for all server sessions (Pj , ssid) that receive a 0-oracle-
generated ciphertext c0 in step 1. In Section 5.5 we prove the environment cannot distinguish
between H8 and H7.

H9 checks whether ciphertext c0 is valid in server sessions (Pj , ssid) that receive a non-0-oracle-
generated ciphertext c0 in step 1. (To perform this validity test, one needs to generate the
key pair (ske′, pke′) and set pke′ in the common reference string.) If not, the session key
sk′ is chosen randomly. This is indistinguishable since H ′

hk′(w, c2) is statistically close to
uniform, given pke′, hp′, w, and c2. Note that we rely on the simulation-soundness of the
zero-knowledge proof here to guarantee that c2 is not valid for (Pj , ssid). In particular,
no client session (Pi, ssid

′) will generate a ZKP for a tuple with c0 as the first component,
and thus (by simulation-soundness) any proof with c0 as first component must, except with
negligible probability, be of a valid tuple (c0, c1, ℓ1, c2). But then c2 is not valid for (Pj , ssid),
since c0 is not valid for (Pj , ssid).

H10 computes c1 as an encryption of the “dummy password” ŵ for every server session (Pj , ssid)
that receives a 0-oracle-generated ciphertext c0 in step 1 or a non-0-oracle-generated and non-
valid ciphertext c0 in step 1 (this is instead of computing c1 as an encryption of the password

20

w given to this session by the environment). Since E is CCA-secure, the environment cannot
distinguish between H9 and H10. (Note that the session key sk′ is already chosen randomly
in this case, and thus does not depend on c1. Also note that in the reduction to the security
of E with public key pke, one can still test the validity of c0 encryptions since they are
encrypted with the other public key pke′ and can be decrypted using ske′, and one can use
the decryption oracle to decrypt any non-peer-oracle-generated encryption c1.)

Now we argue that H10 is perfectly indistinguishable from the ideal world experiment with
simulator S, as long as the adversary does not forge a one-time signature corresponding to a
verification key sent by a server session. By the security of the one-time signature scheme, this will
imply that the real world experiment and ideal world experiment are indistinguishable. We use
IWE to denote the ideal world experiment with simulator S.

First we show that the behavior of a server session (Pj , ssid) is identical. We break this into
two cases, depending on whether the ciphertext c0 received by (Pj , ssid) was 0-oracle-generated.
For the case of 0-oracle-generated c0, we divide this into subcases depending on whether (Pj , ssid)
has a matching session (Pi, ssid) or not. For the case of non-0-oracle-generated c0, we divide this
into subcases depending on whether the ciphertext c0 is valid or not.

1. 0-oracle-generated c0: In both H10 and IWE, since (Pj , ssid) receives a 0-oracle-generated c0,
we have that c1 is an encryption of ŵ (see H10 and step 1 of IWE).

In H10, if (Pj , ssid) does not abort, its session key will be random (see H8). In IWE, the
session key will also be random, since no TestPwd query is made to F̂pwKE for (Pj , ssid), and
thus the ideal server session will be fresh. However, we still must show that the session key
is set equal to the session key of a client session (Pi, ssid

′) in H10 if and only if it is set equal
to the session key of (Pi, ssid

′) in IWE.

(a) matching session (Pi, ssid):

Note that (Pj , ssid) is the peer session of (Pi, ssid). First consider the case where the
same password is given by the environment to both (Pj , ssid) and (Pi, ssid). In H10, the
session key of (Pj , ssid) will be set to the (random) session key of (Pi, ssid) (see H3).
To see that this is what occurs in the ideal world, note that the functionality F̂pwKE will
receive (NewSession, sid, ssid, i, j, w, role) and (NewSession, sid, ssid, j, i, w, role) queries,
and S will not send any (TestPwd, sid, ssid, j, w′) or (TestPwd, sid, ssid, i, w′) queries
(since c0 is 0-oracle-generated and (c1, V K) is from the peer session of (Pi, ssid)). Thus,
F̂pwKE will return a matching (random) key in the NewKey query for each session.

Now consider the case where different passwords are passed in from the environment. In
H10, the session key sk of (Pj , ssid) will be independent of the session key of any client
session, because sk is not set in H3. In IWE, the session key of (Pj , ssid) will also be
independent of the session key of any client session, by definition of F̂pwKE.

(b) no matching conversation:

It is clear that in H10, the session key sk for (Pj , ssid) is independent of the session
key of any client session, because sk is not set in H3. In IWE, note that the only way
F̂pwKE will generate matching keys is if F̂pwKE receives (NewSession, sid, ssid, i, j, w, role)
and (NewSession, sid, ssid, j, i, w, role) queries, and S sends NewKey queries for sessions
(Pi, ssid) and (Pj , ssid) without sending any TestPwd queries for those sessions. But if
these two sessions do not have a matching conversation, then they must differ in either
V K, c1, or c2. If they differ in c1 or V K, S will send a TestPwd query for session

21

(Pi, ssid), because (c1, V K) will be non-peer-oracle-generated. If they differ only in c2,
then by the security of the one-time signature scheme, (Pi, ssid) will abort, because the
signature generated by (Pj , ssid) will be for a different c2, and we have assumed no
forgeries.

2. non-0-oracle-generated c0:

(a) c0 is valid: In both H10 and IWE, we will show that since (Pj , ssid) receives a valid
non-0-oracle-generated c0, the ciphertext c1 and the session key are generated as in the
real protocol.

First we examine the generation of c1. Computation of c1 in the case we are dealing
with here (i.e., when the incoming c0 is valid and non-0-oracle-generated) is not changed
in any of the hybrid games H1–H10, and so c1 is generated as in the real protocol in
this case. In IWE, S determines w by making a TestPwd query in Step 1 that returns
“correct guess.” Then S will generate c1 as in the real protocol.

Now we examine the generation of the session key. Generation of the session key in the
case we are dealing with here is not changed in any of the hybrid games (at least not
without (Pj , ssid) aborting). In particular, note that (Pj , ssid) will not have its session
key set in H3, because it received a non-0-oracle-generated c0. Also, it will not have its
session key set in H5 without aborting, because every 2-oracle-generated c2 generated
by a session (Pi, ssid) that received a peer-oracle-generated (c1, V K) is invalid (see H4),
and — by simulation-soundness of the ZKP — if (Pj , ssid) receives a 2-oracle-generated
c2, it will reject any ZKP generated (i.e., simulated) by any client (because the client
will have a different c0) or produced by the adversary (because c0 is valid but c2 is not).

In IWE, recall that S will determine w by making a TestPwd query in Step 1 that returns
“correct guess.” Then S will run (Pj , ssid) as in the real protocol. At this point, the
ideal session is compromised, so when S calls NewKey with the sk value it has generated,
F̂pwKE will set the session key to sk.

(b) c0 is invalid: In H10, since (Pj , ssid) receives an invalid non-0-oracle-generated c0, the
ciphertext c1 is an encryption of ŵ (see H10). In IWE, c1 is also an encryption of ŵ,
since S makes a TestPwd query in Step 1 that returns “wrong guess.”

In H10, the session key of (Pj , ssid) is generated randomly (see H9). Also, it is inde-
pendent of the session key generated by any client session. The reason is that it was not
set in H3 since (Pj , ssid) received a non-0-oracle-generated c0. In IWE, the session key
of (Pj , ssid) is random and independent of any other session keys because the TestPwd

query causes the ideal session to be interrupted.

Now we argue that the behavior of a client session (Pi, ssid) is identical in H10 and IWE. First
note that in both H10 and IWE, every c0 generated by a client is an encryption of ŵ, and every
ZKP is simulated. (See H1 and H2.)

We break the remainder of the analysis into two cases, depending on whether the pair (c1, V K)
received by (Pi, ssid) was peer-oracle generated or not. For the case of non-peer-oracle-generated
(c1, V K), we divide this into subcases depending on whether c1 is valid.

1. peer-oracle-generated (c1, V K):

22

In H10, since (Pi, ssid) receives a peer-oracle-generated pair (c1, V K) (say from a peer session
(Pj , ssid)), c2 is an encryption of ŵ (see H4). In IWE, c2 is also an encryption of ŵ (see step 2).

In H10, the session key of (Pi, ssid) will be random (see H3). In IWE, the session key of
(Pi, ssid) will also be random, since S will not call TestPwd for this session, and thus the
ideal session will be fresh. (Whether the session key is equal to the session key of a server
session (Pj , ssid) is taken care of in our analysis of the server sessions above.)

2. non-peer-oracle-generated (c1, V K): Note that there will be no matching session, since no
peer server session (Pj , ssid) generated (c1, V K).

(a) c1 valid: In both H10 and the ideal world, we will show that since (Pi, ssid) receives a
valid, non-peer-oracle-generated pair (c1, V K), the ciphertext c2 and the session key are
generated as in the real protocol.

First we examine the generation of c2. Computation of c2 in the case we are dealing with
here (i.e., when the incoming c1 is valid and non-peer-oracle-generated) is not changed
in any of the hybrid games H1–H10, so it is generated as in the real protocol. In IWE,
S will determine w by making a TestPwd query in Step 2 that returns “correct guess.”
Then S will generate c2 as in the real protocol.

Now we examine the generation of the session key. Computation of the session key in
the case we are dealing with here is not changed in any of the hybrid games, so it is
computed as in the real protocol. In particular, note that (Pi, ssid) will not have its
session key set in H3 because it received a non-peer-oracle-generated c1. Also, such a
session will not have its session key set in H6 because c1 is valid.

In IWE, S will determine w by making a TestPwd query in step 2 that returns “correct
guess.” Then S will run (Pi, ssid) as in the real protocol. At this point, the ideal session
is compromised, so when S calls NewKey with the sk value it has generated, F̂pwKE will
set the session key to sk.

(b) c1 invalid: In H10, since (Pi, ssid) receives a non-peer-oracle-generated pair (c1, V K)
with invalid c1, ciphertext c2 is an encryption of ŵ (see H7). In IWE, c2 is also an
encryption of ŵ since S makes a TestPwd query in Step 2 that returns “wrong guess.”

In H10, the session key of (Pi, ssid) is generated randomly (see H6), independent of any
server session. In IWE, the session key of (Pj , ssid) is random and independent of any
other session keys because the TestPwd query causes the ideal session to be interrupted

5.5 Further Details

Indistinguishability of H3 and H2 First we show that no PPT environment can distinguish
H3 from H2 with non-negligible probability. We split the proof into two parts. Define hybrid Mix

just like H3 except that a random sk is only substituted when c1 is invalid.

• Indistinguishability of Mix and H2: By the definition of smooth projective hashing, given
an invalid c1, with Pi’s password w and the label ℓ1 computed by Pi, the distribution
{pke, c1, ℓ1, w, hp,Hhk(w, ℓ1, c1)} is statistically close to {pke, c1, ℓ1, w, hp, g}, where g ←R G.
Since the session key sk for Pi has Hhk(w, ℓ1, c1) as a component, the session key generated is

23

statistically close to uniform, and thus contributes negligibly to the distinguishability of Mix

and H2.

Note that if c1 is invalid, then the corresponding sessions of Pi and Pj either do not have a
matching conversation, or were given different passwords by the environment, so Pj will not
be given the same sk as Pi in Mix.

• Indistinguishability of H3 and Mix: We show that any environment that distinguishes H3

from Mix in this case can be used to construct a distinguisher between Expt-Hash and Expt-Unif

as defined in [19][Section 3.3], violating Corollary 3.3 in that paper.

We first state the explicit constructions of the experiments Expt-Hash and Expt-Unif in our
terminology:

Expt-Hash(D): A public key pke′ is chosen and given to the machine D. D can query two
oracles: Encrypt(·) and Hash(·). Oracle Encrypt(m) generates randomness r and a ciphertext
c = E′

pke′(m; r). Oracle Hash(c), for some c output by Encrypt(m), chooses hk′ from H′ with
respect to pke′ and computes the projection hp′ = α′(hk′, c); then it outputs (hp′,H ′

hk′(m, c)).
(Note that Hash(c) only answers when its input c is output by the Encrypt oracle.) Finally,
the output of Expt-Hash(D) is the output of D.

Expt-Unif(D): This experiment is exactly the same as Expt-Hash(D), except that the Hash

oracle outputs a random element g from G′ (where G′ is the range of H ′) in place of the
output of the smooth projective hash function.

Now we show that |Pr[Expt-Hash(D) = 1] − Pr[Expt-Unif(D) = 1]| bounds (to within a
negligible amount) the probability of the environment distinguishing H3 from Mix.

Let D be a machine that receives a randomly chosen public key pke′ and emulates the experi-
ment H3 with the following changes. On receiving a flow-one query to (Pi, ssid) containing a
valid peer-oracle-generated (c1, V K), D does not directly compute the ciphertext c2. Instead,
it queries Encrypt(w) (where w is the password given to (Pi, ssid) by the environment) and
sets c2 equal to the value returned. If (Pj , ssid) receives the unmodified ciphertext c2 in its
flow-two message, D queries Hash(c2) and receives (s′, η′). Then it sets hp′ ← s′, and uses
η′ in place of h′

hp′(w, c2; r2)). (Note that η′ = h′
hp′(w, c2; r2) in Expt-Hash, where r2 was the

randomness used in the Encrypt(w) query that generated c2.) Then if (Pi, ssid) receives the
unmodified projected key hp′(= s′), it also uses η′ for the appropriate portion of the session
key. At the conclusion of the execution D outputs whatever the environment does.

First, if (Pi, ssid) received a valid peer-oracle-generated (c1, V K) where the peer session
(Pj , ssid) received a non-0-oracle-generated c0, then (Pi, ssid) will abort in H3 and Mix

(with all but negligible probability) due to an invalid signature. Specifically, the signature of
(Pj , ssid) will use a different c0, and by the security of the signature scheme the adversary
will not be able to forge a signature, except with negligible probability.

Second, if (Pi, ssid) receives any projected key other than hp′ (i.e., where hp′ is generated
by peer session (Pj , ssid) that also generated the pair (c1, V K) (received by (Pi, ssid)) and
received an unmodified c2), then (Pi, ssid) will again abort in H3 and Mix with all but
negligible probability, due to an invalid signature. Specifically, the signature of (Pj , ssid) will
use a different hp′, and by the security of the signature scheme, the adversary will not be able
to forge a signature, except with negligible probability.

24

Now if D interacts in Expt-Hash, then D emulates Mix. Specifically, when (Pi, ssid) receives
a valid peer-oracle-generated (c1, V K) (say from peer session (Pj , ssid)) and does not abort,
then (Pj , ssid) must have received a 0-oracle-generated c0, and the session key of (Pi, ssid) will
equal Hhk(w, ℓ1, c1) + η′, where η′ = h′

hp′(w, c2; r2). Furthermore, if (Pi, ssid) and (Pj , ssid)
have the same c1 and c2 in their views (even if (Pi, ssid) aborts), and (Pj , ssid) receives a
0-oracle-generated c0, then (Pj , ssid) also receives the η′ portion of the session key. Note that
if (Pi, ssid) does not abort and assuming the adversary does not forge a one-time signature,
(Pi, ssid) will have the same values of c0, c1, c2, hp, and hp′ as (Pj , ssid). Thus they will
compute the same session key, and in particular, the session key would be computed as in
Mix (and the real protocol).

If D interacts in Expt-Unif, then D emulates H3. Specifically, the session keys for the following
instances are chosen uniformly: (1) any (Pi, ssid) receiving a valid peer-oracle-generated
(c1, V K) and not aborting, since it uses η′ which was generated uniformly, and (2) for each
such (Pi, ssid) in (1), a peer session (Pj , ssid) that receives a 0-oracle-generated c0, generates
the pair (c1, V K) and receives c2 from (Pi, ssid), since (Pj , ssid) also uses η′ which was
generated uniformly. In (2), if (Pi, ssid) does not abort, then (Pi, ssid) and (Pj , ssid) generate
the same session key (unless the one-time signature is forged).

Thus, we conclude that D distinguishes between Expt-Hash and Expt-Unif with probability
negligibly close to the probability that the environment distinguishes Mix from H3. By [19,
Corollary 3.3], this is negligible.

Indistinguishability of H5 and H4 This is similar to the indistinguishability of H3 and H2,
except that in experiment H4 (and thus H5), it is impossible for (Pj , ssid) to receive a valid 2-
oracle-generated ciphertext c2 that was generated in a session (Pi, ssid

′) that received a peer-oracle-
generated pair (c1, V K), since in H4, such a session of Pi would generate c2 as an encryption of ŵ.
Thus we only need to consider the case where c2 is invalid. In this case, by the definition of smooth
projective hashing, with (Pj , ssid)’s password w′, the distribution {pke′, c2, w

′, hp′,H ′
hk′(w′, c2)} is

statistically close to {pke′, c2, w
′, hp′, g}, where g ←R G′. Since the session key sk for (Pj , ssid)

has H ′
hk′(w′, c2) as a component, the session key generated is statistically close to uniform and thus

contributes negligibly to the distinguishability of H5 and H4.

Indistinguishability of H8 and H7 If (Pj , ssid) receives a ciphertext c2 that is invalid, then
by the definition of smooth projective hashing, H ′

hk′(w′, c2) is statistically close to uniform and so
substituting a random session key makes at most a negligible difference. The following two cases
show that if (Pj , ssid) receives a ciphertext c2 that is valid, then that session will abort.

Case 1 Assume c2 is 2-oracle-generated and valid for (Pj , ssid). Then it must have been generated
by a client session (Pi, ssid

′) that received a non-peer-oracle-generated (c1, V K). If this pair
is not generated by (Pj , ssid), then the ZKP generated by (Pi, ssid

′) will be rejected for using
a different c1 or ℓ1 value than (Pj , ssid) (since our ZKPs are uniquely applicable). If (c1, V K)
was generated by (Pj , ssid), then (Pj , ssid) is not a peer session of (Pi, ssid

′), so the ZKP
generated by (Pi, ssid

′) will be rejected for using a different ℓ1 value than (Pj , ssid) (again
since our ZKPs are uniquely applicable). Any ZKP from any other session (Pi′ , ssid

′′) will be
rejected because it uses a different c2. Finally, by simulation-soundness, any adversarially-
generated ZKP will be rejected because c0 is an encryption of ŵ whereas c2 is valid (and thus
is not an encryption of ŵ.) Therefore, when c2 is 2-oracle-generated and valid for Pj , Pj will
reject the ZKP and abort.

25

Case 2 Assume c2 is non-2-oracle-generated and valid for (Pj , ssid). Then a ZKP generated by
any client Pi will be rejected because it uses a different c2 value (and our ZKPs are uniquely
applicable). Also, by simulation-soundness, any adversarially-generated ZKP will be rejected
because c0 is an encryption of ŵ whereas c2 is valid (and thus is not an encryption of ŵ.)
Therefore Pj will reject the ZKP and abort.

6 Password-Based Secure Channels

Arguably, the typical use of a key-exchange protocol is the establishment of secure channels that
enable the parties to communicate privately and reliably. The case of password-based key-exchange
is no exception. In this section, we show that our definition of password-based key-exchange suffices
for obtaining secure channels (of course, with the limitation that secure channels are not obtained
if the adversary succeeds in guessing the secret password).

We begin by presenting a password-based secure channels functionality FpwSC in Figure 6. This
definition is analogous to the password-based key exchange functionality as presented in Section 2.
One key difference in the addition of a ready state, whose purpose is to signify that the parties have
finished establishing the channel and are now ready to use it. Technically, we introduce this state
in order to preclude protocols that allow the adversary to make password guesses after the parties
have begun communicating using the secure channel they have established.

Notice that if two parties have sent NewSession queries with the same identifiers and passwords,
and the adversary has not guessed this password or interrupted the session, then the functionality
faithfully passes messages from one party to the other. Furthermore, the adversary learns only the
length of the message sent and is unable to send any messages of his own. Thus, the functionality
provides reliable and private communication, as desired.

Realizing the FpwSC functionality. Given a secure password-based key-exchange protocol, re-
alizing the password-based secure channels functionality FpwSC is quite straightforward: simply use
the key-exchange protocol to generate a shared secret key, and then use the shared secret key to
protect the traffic using standard encryption and message authentication (along with some shared
counter to protect against replay attacks).

Formally, in Figure 7, we present a protocol that securely realizes FpwSC in the FpwKE-hybrid
model. The protocol uses the key generated by FpwKE in order to apply symmetric encryption and
secure message authentication to messages that parties wish to send to each other. In the figure,
MAC designates a secure message authentication algorithm, and (E,D) designates a symmetric
encryption scheme that is semantically secure against chosen plaintext attacks.

Theorem 2 If MAC is a secure message authentication algorithm and (E,D) is a semantically
secure symmetric encryption scheme, each with key-length of k/2 bits, then protocol SC from Fig-
ure 7 securely realizes functionality FpwSC in the FpwKE-hybrid model, against static-corruption
adversaries.

Proof (sketch): We need to exhibit a simulator S in the FpwSC model for every hybrid-world
adversary A in the FpwKE-hybrid model. The only interesting case is when neither Pi nor Pj are
corrupted (since otherwise S knows all the “secrets” and can perfectly simulate everything that the
non-corrupted player does). In this case, the simulator proceeds as follows.

• Upon receiving a message (NewSession, sid, Pi, Pj , role) from FpwSC, S records this session
(and the fact that it is still fresh) and forward the message to A as if coming from FpwKE.

26

Functionality FpwSC

The functionality FpwSC is parameterized by a security parameter k, and maintains a list of “messages in
transit” which is initially empty and a counter that is initialized to zero. It interacts with an adversary S

and a set of parties via the following queries:

Upon receiving a query (NewSession, sid, Pi, Pj , pw, role) from party Pi:

Send (NewSession, sid, Pi, Pj , role) to S. In addition, if this is the first NewSession query, or if this is
the second NewSession query and there is a record (Pj , Pi, pw′), then record (Pi, Pj , pw) and mark
this record fresh.

Upon receiving a query (TestPwd, sid, Pi, pw′) from the adversary S:

If there is a record of the form (Pi, Pj , pw) which is fresh, then do: If pw = pw′, mark the record
compromised and reply to S with “correct guess”. If pw 6= pw′, mark the record interrupted and
reply with “wrong guess”.

Upon receiving a query (Ready, sid, Pi) from the adversary S:

If there is a record of the form (Pi, Pj , pw) which is fresh, and if neither Pi nor Pj are corrupted, and
if there is a record (Pj , Pi, pw′) with pw′ = pw that is either fresh or ready, then mark the record
(Pi, Pj , pw) as ready and reply to S with “ready”. Otherwise reply with “not ready”.

Upon receiving a query (Send, sid, m) from Pi:

If there is a record of the form (Pi, Pj , pw) then:

• If this record is compromised or Pi is corrupted, then send (sid,Send, Pi, m) to S.

• If this record is ready then send (sid, Send, Pi, |m|, t) to S where t is the current counter value,
record the pair (m, t) in the list of messages and increment the counter.

• In any other case, ignore this query.

Upon receiving a query (Deliver, sid, Pi, Pj , m, t) from the adversary S:

If Pj is corrupted or if there is a record of the form (Pj , Pi, pw) which is compromised, then send
(Received, sid, m) to Pj .

Otherwise, if there is a record of the form (Pj , Pi, pw) which is ready and the list of messages contains
a pair (m′, t) (with the same counter value t as in the query), then send (Received, sid, m′) to Pj

and remove the pair (m′, t) from the list.

Figure 6: The password-based secure channels functionality FpwSC

27

Password-based secure channels protocol SC

Protocol steps:

1. When Pi is activated with input (NewSession, sid, Pi, Pj , pw, role), it forwards it to FpwKE. Upon
receiving a key K from FpwKE, it partitions the key into two keys KE and KA to be used for
encryption and authentication, respectively.

2. When Pi is activated with input (Send, sid, m) after receiving a key K from FpwKE, it computes
c = EKE

(m) and a = MACKA
(c, i, l), where l is a counter that is initialized to zero and incremented

for each message sent, and sends (sid, c, l, a) to Pj . (If Pi has not obtained a key K then it ignores
this request.)

3. Upon receiving a message (sid, c, l, a) after obtaining a key K from FpwKE, party Pi first verifies
that a is a valid tag for (c, j, l) with respect to key Ka and that no message with counter value l was
previously received in this session. If so, it computes m = DKe

(c) and outputs (Received, sid, m).
(If Pi does not yet have a key K then it ignores this request.)

4. When Pi is activated with input (ExpireSession, sid), it erases all the session state (local keys and
randomness). All future messages are ignored.

Figure 7: Realizing secure channels using key-exchange

• If A makes a query (TestPwd, sid, Pi, pw′) aimed at FpwKE then S makes the same query to
FpwSC and reports the reply back to A. Note that the reply from FpwSC is sufficient for S to
determine the status of the session (i.e., compromised or interrupted).

• When A makes a query (NewKey, sid, Pi, sk) aimed at the functionality FpwKE, then S makes
the query (Ready,sid,Pi) to FpwSC. If the session (sid, Pi, Pj) is compromised then S records
the secret key sk for that session.

Else, if FpwKE replies with “ready” and S already recorded a secret key sk′ for a session
(sid, Pj , Pi), then S records the same secret key sk′ also for the session (sid, Pi, Pj).

Else, S chooses a new random k-bit string sk′′ and records it for the session (sid, Pi, Pj).

• When S gets a message (Send, sid, Pi,m) from FpwSC (i.e., when Pi is corrupted or the session
is compromised) it does the following: If S has a recorded key K for (sid, Pi, Pj) (for some Pj)
then it partitions the key into two segments, treated as two keys KE and KA, computes
c = EKE

(m) and a = MACKA
(c, i, l), where l is a counter that is initialized to zero and

incremented for each message sent, and sends (sid, c, l, a) to A on behalf of Pi.

Upon receiving a message (Send, sid, Pi, |m|, t) from FpwSC, S behaves similarly except that
it computes c = EKE

(0|m|). (I.e., it encrypts the all-zero message of the appropriate length
instead of the “real message” that it doesn’t know.) Also, in this case S records the tuple
(sid, c, l, a, t) in a list of “fake ciphertexts”.

• When S receives a message (sid, c, l, a) from A to Pi on behalf of Pj , S does the following:

If S finds a tuple (sid, c, l, a, t) in the list of “fake ciphertexts” (for the same (sid, c, l, a) and
some t), then it makes a query (Receive, sid, Pi, Pj ,⊥, t) to FpwSC and removes that record
from the fake-ciphertext list.

Otherwise, S looks up the session (sid, Pi, Pj). If it has a key K for this session then it
partitions the key into two segments, treated as two keys KE and KA, and checks that
a = MACKA

(c, j, l) and that no message with counter value l was previously received in this

28

session. If so, S computes m = DKe(c) and makes a query (Receive, sid, Pi, Pj ,m,⊥) to
FpwSC.

It is fairly straightforward to prove indistinguishability between the FpwSC world with S and
the FpwKE-hybrid world with A and SC. The only differences in the views of the environment in
the two worlds are:

• In the FpwKE-hybrid world with A and SC the environment always sees encryptions of the
“right” message m when it makes a query (Send, sid, Pi,m), whereas in the FpwSC world
with S it sometimes sees an encryption of 0|m| instead.

• In the FpwKE-hybrid world with A and SC, a received message that was not sent by the
“honest peer” but still passes the MAC verification will always be decrypted and returned to
the environment. In the FpwSC world with S, on the other hand, it will only be returned to
the environment if the receiver is corrupted or the session is compromised (cf. the description
of the (Deliver, . . .) query in FpwSC).

It can be shown that the second difference is only present if the transcript of the interaction in the
FpwKE-hybrid world includes MAC forgeries, and therefore only occurs with negligible probability
assuming MAC is a secure message authentication algorithm. Also, it is easy to reduce the first
difference to the security of the encryption scheme. ✷

Some variations. There are some standard variations that can be made to the functionality
FpwSC above. In particular, to capture forward-secresy we could add an expiry interface, namely
a query (ExpireSession, sid) that player Pi can send. (This will change the state of the recorded
session (Pi, Pj , pw) from ready to interrupted.) Also, we could augement FpwSC to ensure ordered
delivery of message by replacing the list of messages with a FIFO queue. Additionally, we could
allow “labeled messages” (ℓ,m) instead of the simple messages m, where on query (Send, sid, ℓ,m)
the adversary S is shown ℓ and |m|.

7 Impossibility of Realizing FpwKE in the Plain Model

In this section, we show that the FpwKE functionality cannot be securely realized in the “plain”
model (e.g., without using a common random string or some other augmentation to the basic
model). Our proof follows very similar lines to the proofs of impossibility in [11]. The basic idea is
as follows. Consider the environment Z that internally runs the code of one of the honest parties.
The ideal-model simulator S for Z must succeed while interacting with Z in a “straight-line”
manner (i.e., with black-box access to Z and without rewinding, as required by the UC framework).
Now, if simulation can be carried out in such a scenario, then the (different) environment Z ′ which
internally runs S can carry out such a simulation while interacting with a real honest party. In other
words, anything the ideal-model simulator S can do with respect to Z, the second environment Z ′

can do with respect to an honest party in the real world. In particular, in order for S’s simulation
of Z to succeed, S must be able to set the session key output by Z to be equal to the session key
output by the ideal functionality. But then Z ′ can also do this, in contradiction to the security
requirements of a key-exchange protocol.

The impossibility result below refers to non-trivial protocols. A protocol is non-trivial if two
honest parties are ensured to agree on matching session keys at the conclusion of a protocol ex-
ecution (except perhaps with negligible probability), provided that (1) both parties use the same

29

password, and (2) the adversary passes all messages between the parties without modifying them
or inserting any messages of its own. The non-triviality requirement is needed since the “empty”
protocol where parties do nothing securely realizes FpwKE (the ideal-model simulator simply never
issues a NewKey query to the functionality and so the parties never actually obtain keys). The
notion of non-trivial protocols has been used before for similar reasons; see [11] for example.

Theorem 3 There does not exist a non-trivial protocol Π that securely realizes the FpwKE func-
tionality in the plain model.

Proof: Assume for the sake of contradiction that there exists a non-trivial protocol Π that securely
realizes FpwKE in the plain model. Consider an environment Z who plays the role of P2 and runs
an execution of the protocol with P1 and the “canonical real-world adversary” A who corrupts no
parties (recall that such an A simply forwards messages between Z and the players as instructed).

The environment Z comes equipped with some arbitrary dictionary D of size at least 2, from
which it chooses passwords. Z chooses a random password pw ∈R D and provides (NewSession, sid,
P1, P2, pw, client) as input to P1. Next, Z internally runs protocol Π, honestly following the instruc-
tions that P2 would follow upon receiving input (NewSession, sid, P2, P1, pw, server). Furthermore,
Z instructs A to forward all messages between itself and P1. When the protocol terminates, Z
compares the session-key sk2 that it obtained by playing P2 and compares it to the session-key sk1

that P1 writes to its output tape. If sk1 = sk2 6=⊥ and neither P1 or P2 have been corrupted,
then Z outputs 1.13 Otherwise, Z outputs 0. Now, recall that A is the canonical (dummy) real-life
adversary. Therefore, it just forwards messages between Z and P1 without doing anything else.
Since Z plays the honest P2 and party P1 is not corrupted, it follows that this execution is the same
as one between two honest parties that use the same, randomly chosen password. (A crucial point
in this argument is the fact that protocol Π runs in the unauthenticated channels model. Therefore,
P1 cannot distinguish messages sent by the real (honest) P2 and messages sent by Z in the name of
P2.) By the assumption that Π is non-trivial, we have that in a real execution Z outputs 1 except
with negligible probability. That is,

Pr[sk2 = sk1 6=⊥ | Z in real world] ≥ 1− negl(k).

Next, consider the ideal-world simulator S that is guaranteed to exist by the security of Π. Simulator
S interacts with the FpwKE functionality and with Z (who follows the same strategy as above).
We claim that except with negligible probability, it holds that sk2 = sk1 6=⊥ in this execution;
otherwise, the probability that Z outputs 1 in the ideal execution is non-negligibly far from the
probability that it outputs 1 in the real execution, in contradiction to the security of Π. That is,

Pr[sk2 = sk1 6=⊥ | Z in ideal world] ≥ 1− negl(k).

Intuitively, it is difficult for S to provide a “good” simulation for Z since S must somehow send
the correct password pw to FpwKE, while its only way of obtaining information about pw is through
a “real” execution of the protocol with Z (who plays the honest P2). See Figure 8 for a diagram
describing the flow of the proof; so far, we have seen cases (a) and (b).

A different scenario. Until now, we have considered an environment Z who internally plays the
role of P2, while P1 is played by the (real) honest party. We now switch sides and consider an envi-
ronment Z ′ who internally plays the role of P1 (albeit in a strange way), while P2 is played by the

13For simplicity, we denote the output of a party who failed to successfully conclude the protocol by ⊥. In the
definition of FpwKE, in such a case no output would be generated. This makes no difference.

30

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

FpwKE

S

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

S

FpwKE

..
...
...
...
...
...
...
...
...
...
....
...
...
...
...
...
....
...
...
...
...
..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
...
....
...
...
...
...
...
...
....
....
...
...
...
...
...
....
...
...
...
...
...

....
...
...
...
...
...
...
...
...
...
....
...
...
...
...
...
....
...
...
...
...
..

Zsk1

pw

sk2

pw

P2S

FpwKE

(b) Z in ideal world, Pr[sk1 = sk2] ≈ 1

..

..

..
...
...
...
...
...
...
...
...
...
....
...
...
...
...
...
....
...
...
...
...
..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
...
...
....
...
...
...
...
...
...
.....
...
...
...
...
...
...
....
...
...
...
...

....
...
...
...
...
...
...
...
...
...
....
...
...
...
...
...
....
...
...
...
...
..

....
...
...
...
...
...
...
...
...
...
....
...
...
...
...
...
....
...
...
...
...
..

...
...
...
...
...
...
...
...
...
...
.....
...
...
...
...
...
...
...
...
...
...
...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
...
...
...
...
...
...
...
...
...
....
...
...
...
...
...
....
...
...
...
...
..

..
...
...
...
...
...
...
...
...
...
....
...
...
...
...
...
....
...
...
...
...
..

....
...
...
...
...
...
...
...
...
...
....
...
...
...
...
...
....
...
...
...
...
.. ..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

(d) Z ′ in ideal world, Pr[sk1 = sk2]≪ 1

Z ′

(c) Z ′ in real world, Pr[sk1 = sk2] ≈ 1

sk1

pw

sk2

pw

P2

FpwKE

S

pw

sk2

pw

sk1

Z ′

sk1

pw

sk2

pw

Z

P2P1

(a) Z in real world, Pr[sk1 = sk2] ≈ 1

Figure 8: The four cases in the proof of Theorem 3.

real honest party. As above, in the real world Z ′ runs together with a dummy adversary A′ who cor-
rupts no parties and forwards all messages as instructed. The aim of Z ′ in its behavior is to emulate
the ideal execution of Z with S, while interacting with the external (real) P2. Such an emulation
is conceivable because in the ideal world from above, the simulator S essentially interacts with the
honest P2 (this is the case because Z plays the honest P2, and S interacts with Z); see Figure 8.
Specifically, Z ′ internally plays the simulator S from above, a copy of the functionality FpwKE, and
the honest ideal-model party P1. That is, Z ′ uses the same dictionary D that Z used, it chooses
a random password pw ∈R D and internally hands the message (NewSession, sid, P1, P2, pw, client)
to its internal ideal-model P1 (which will simply forward this to the internal simulation of FpwKE).
Then, Z ′ internally invokes S and a copy of the functionality FpwKE, forwarding all appropriate
messages between them and between the internal (ideal) P1. Finally, Z ′ hands the external, honest
real-model party P2 the input (NewSession, sid, P2, P1, pw, server) and forwards to it all the mes-
sages that S wishes to send to Z; likewise, messages received from P2 are forwarded back to S
as if they were received from Z. (This communication between Z ′ and P2 is carried out through
the canonical real-model adversary A′ who, as in the previous scenario, has corrupted no parties.)
Z ′ continues until P2 outputs a session key sk2 and the internal copy of FpwKE sends a key sk1

to the internal copy of P1. Once this happens, Z ′ outputs 1 if and only if the above keys fulfill

31

the condition that sk1 = sk2 6=⊥, and neither P1 nor P2 were corrupted. The main observation of
this proof is that the real execution of Z ′ with A′ and the real honest P2 is identical to the ideal
execution of Z above with S and FpwKE. It therefore holds that

Pr[sk2 = sk1 6=⊥ | Z
′ in real world] = Pr[sk2 = sk1 6=⊥ | Z in ideal world] ≥ 1− negl(k)

and so by the definition of Z ′, it outputs 1 in this real execution except with negligible probability
(recall that the real adversary A′ never corrupts P1 or P2).

We now reach the last scenario, in which Z ′ runs in the ideal world. Notice that in this scenario,
Z ′ runs an internal copy of S (by its above described behavior), while interacting with an external
copy of S (because this is an ideal-world execution); we denote these respective copies by Sint and
Sext. (Similarly, Z ′ runs an internal copy of FpwKE, while Sext and the honest P2 interact with
an external copy of FpwKE.) We claim that Z ′ outputs 1 in this scenario with probability that is
non-negligibly less than 1. In order to see this, notice that when Z ′ runs in the ideal world, all
of the messages that the “real simulator” Sext sees are generated by the “internal simulator” Sint

that is run by Z ′. Furthermore, neither copy of S is given the password pw that Z ′ hands to the
internal P1 and the external (ideal-world) honest P2. Therefore, as long as neither simulator makes
a password guess to its copy of FpwKE, their execution is independent of the password pw. Now,
Z ′ outputs 1 if and only if the session-key sk1 that is generated by the internal copy of FpwKE for
the internal P1 equals the session-key sk2 that is generated by the external copy of FpwKE for the
external P2. Since neither P1 nor P2 are corrupted, it follows that the copies of S can influence the
session-key if and only if they both correctly guess the value of pw (this is the only way that FpwKE

will not choose a random sk ∈R {0, 1}
k). From the definition of Z ′, we have that pw ∈R D and so

the correct password can be guessed with probability at most 1/|D|. That is,

Pr[sk2 = sk1 6=⊥ | Z
′ in ideal world] ≤

1

|D|
+ 2−k

and so Z ′ outputs 1 in this scenario with probability at most 1/|D|+2−k . Since D is of size at least
2, it follows that Z ′ outputs 1 in the ideal world with probability that is non-negligibly less than
the probability that it outputs 1 in the real world. This contradicts the assumed security of Π and
concludes the proof.

We remark that the proof holds as long as Z chooses passwords according to any distribution
that does not place almost all of the support on a single point. Specifically, all that is required is
that a password guess by S should fail to be correct (i.e., equal the password chosen by Z ′) with
non-negligible probability.

References

[1] B. Barak, Y. Lindell, and T. Rabin, Protocol Initialization for the Framework of Univer-
sal Composability. Manuscript. Available from the ePrint archive, report 2004/006 from
http://eprint.iacr.org.

[2] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations Among Notions of Security
for Public-Key Encryption Schemes. Advances in Cryptology – Crypto 1998, LNCS vol. 1462,
Springer-Verlag, pp. 26–45, 1998

[3] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated Key Exchange Secure Against
Dictionary Attacks. Advances in Cryptology – Eurocrypt 2000, LNCS vol. 1807, Springer-
Verlag, pp. 139–155, 2000.

32

[4] M. Bellare and P. Rogaway. Entity Authentication and Key Distribution. Advances in Cryp-
tology – Crypto 1993, LNCS vol. 773, Springer-Verlag, pp. 232–249, 1993.

[5] S. M. Bellovin and M. Merritt. Encrypted Key Exchange: Password-Based Protocols Secure
Against Dictionary Attacks. Proc. IEEE Security and Privacy, IEEE, pp. 72–84, 1992.

[6] M. Boyarsky. Public-Key Cryptography and Password Protocols: The Multi-User Case. 7th
Annual Conference on Computer and Communications Security, ACM, pp. 63–72, 1999.

[7] V. Boyko. On All-or-Nothing Transforms and Password-Authenticated Key Exchange. PhD
thesis, MIT, EECS department, 2000.

[8] V. Boyko, P. MacKenzie, and S. Patel. Provably Secure Password Authentication and Key
Exchange Using Diffie-Hellman. Advances in Cryptology – Eurocrypt 2000, LNCS vol. 1807,
Springer-Verlag, pp. 156–171, 2000.

[9] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols.
42nd IEEE Symposium on Foundations of Computer Science (FOCS), IEEE, pp. 136–145,
2001.

[10] R. Canetti and H. Krawczyk. Universally Composable Notions of Key Exchange and Secure
Channels. Advances in Cryptology – Eurocrypt 2002, LNCS vol. 2332, Springer-Verlag, pp.
337–351, 2002.

[11] R. Canetti, E. Kushilevitz and Y. Lindell. On the Limitations of Universal Composable Two-
Party Computation Without Set-Up Assumptions. In EUROCRYPT 2003, Springer-Verlag
(LNCS 2656), pages 68–86, 2003.

[12] R. Canetti and T. Rabin. Universal Composition with Joint State. Advances in Cryptology –
Crypto 2003, LNCS vol. 2729, Springer-Verlag, pp. 265–281, 2003.

[13] R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of Partial Knowledge and Simplified
Design of Witness Hiding Protocols. Advances in Cryptology – Crypto 1994, LNCS vol. 839,
Springer-Verlag, pp. 174–187, 1994.

[14] R. Cramer and V. Shoup. Universal Hash Proofs and a Paradigm for Adaptive Chosen Ci-
phertext Secure Public-Key Encryption. Advances in Cryptology – Eurocrypt 2002, LNCS vol.
2332, Springer-Verlag, pp. 45–64, 2002.

[15] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Robust Non-
Interactive Zero-Knowledge. Advances in Cryptology – Crypto 2001, LNCS vol. 2139, Springer-
Verlag, pp. 566–598, 2001.

[16] D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. SIAM J. Computing 30(2):
391–437, 2000.

[17] S. Even, O. Goldreich, and S. Micali. On-Line/Off-Line Digital Signatures. J. Cryptology
9(1):35-67, 1996.

[18] J. Garay, P. MacKenzie, and K. Yang. Strengthening Zero-Knowledge Protocols Using Signa-
tures. Advances in Cryptology – Eurocrypt 2003, LNCS vol. 2656, Springer-Verlag, pp. 177–194,
2003.

33

[19] R. Gennaro and Y. Lindell. A Framework for Password-Based Authenticated Key Exchange.
Advances in Cryptology – Eurocrypt 2003, LNCS vol. 2656, Springer-Verlag, pp. 524–543, 2003.

[20] O. Goldreich and Y. Lindell. Session-Key Generation using Human Passwords Only. Advances
in Cryptology – Crypto 2001, LNCS vol. 2139, Springer-Verlag, pp. 408–432, 2001.

[21] S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and System Sci-
ences 28:270–299, 1984.

[22] L. Gong, M. Lomas, R. Needham, and J. Saltzer. Protecting Poorly Chosen Secrets from
Guessing Attacks. IEEE Journal on Selected Areas in Communications, 11(5): 648–656, 1993.

[23] Shai Halevi and Hugo Krawczyk. Public-Key Cryptography and Password Protocols. ACM
Trans. on Information and Systems Security, 2(3):230–268, 1999.

[24] J. Katz, P. MacKenzie, G. Taban, and V. Gligor. Two-Server Password-Only Authenticated
Key Exchange. Applied Cryptography and Network Security (ACNS) 2005, LNCS vol. 3531,
Springer-Verlag, pp. 1–16, 2005.

[25] J. Katz, R. Ostrovsky, and M. Yung. Efficient Password-Authenticated Key Exchange Using
Human-Memorable Passwords. Advances in Cryptology – Eurocrypt 2001, LNCS vol. 2045,
Springer-Verlag, pp. 475–494, 2001.

[26] P. MacKenzie, S. Patel, and R. Swaminathan. Password-Authenticated Key Exchange Based
on RSA. Adv. in Cryptology — Asiacrypt 2000, LNCS vol. 1976, Springer-Verlag, pp. 599–613,
2000.

[27] P. MacKenzie and K. Yang. On Simulation-Sound Trapdoor Commitments. Advances in Cryp-
tology – Eurocrypt 2004, LNCS vol. 3027, Springer-Verlag, pp. 382–400, 2004. Available from
the ePrint archive, report 2003/252 from http://eprint.iacr.org.

[28] M.H. Nguyen and S. Vadhan. Simpler Session-Key Generation from Short Random Pass-
words. Proceedings of the 1st Theory of Cryptography Conference (TCC’04), LNCS vol. 2951,
Springer-Verlag, pp. 442–445, 2004.

[29] C. Rackoff and D. Simon. Non-Interactive Zero-Knowledge Proof of Knowledge and Chosen
Ciphertext Attack. Advances in Cryptology – Crypto 1991, LNCS vol. 576, Springer-Verlag,
pp. 433–444, 1991.

[30] A. Sahai. Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen-Ciphertext
Security. 40th IEEE Symposium on Foundations of Computer Science (FOCS), IEEE, pp.
543–553, 1999.

[31] V. Shoup. A Proposal for an ISO Standard for Public Key Encryption (version 2.1). December,
2001. Available from the ePrint archive, report 2001/112 from http://eprint.iacr.org.

A Relation to Prior Notions of Security

Perhaps the best justification for our definition of the ideal functionality in Section 2 is that the
notion suffices to obtain password-based secure channels, as discussed in Section 6. When intro-
ducing a new definition, however, it is always useful to explore how the definition compares to prior

34

definitions (as a “sanity check”, if nothing else). We show here that our definition ensures some
security properties one would naturally expect, and in fact that any protocol secure with respect
to our definition is also secure with respect to the commonly used definition of Bellare, et al. [3].
(Due to technical differences between the definitions regarding the use of session identifiers, the
implication actually only holds when the protocol that is secure under our definition is modified in
a trivial way so that it doesn’t assume externally-provided session-identifiers; see Section 5.1.)

In this section we consider two-party protocols for password-based key exchange with the fol-
lowing properties: (1) the protocol always terminates in some (fixed) polynomial number of rounds;
and (2) if two parties execute the protocol honestly using matching passwords, and without any
interference from the adversary, then the parties obtain matching (non-null) session keys with
probability one.

Security against eavesdroppers. We begin with a technical lemma which may be interesting in
its own right. Let Π be a protocol that securely realizes F̂pwKE (i.e., the multi-session extension14

of FpwKE), and let S be a simulator for the “dummy adversary” who interacts with the parties
executing Π while exactly following the instructions of the environment. We show that if the
environment instructs the adversary to only eavesdrop on a particular session, then S will not make
a TestPwd query for this session. This result indicates that any protocol that securely realizes FpwKE

is secure against an eavesdropping adversary, even if this adversary knows the password being used.
Formally, consider the “canonical” real-world adversary interacting with players executing Π

and fix any simulator S for this adversary. For any environment Z, define SpuriousGuess(S,Z; k)
to be the event that Z initiates a session between two players, instructs the adversary/simulator to
pass messages between these players unmodified (i.e., to only eavesdrop on this session), and yet S
makes a TestPwd query to F̂pwKE for this session.

Lemma A.1 If a protocol Π securely realizes F̂pwKE, then for every environment Z it holds that
Pr[SpuriousGuess(S,Z; k)] = negl(k).

Proof (sketch): On a high level, this is because the simulator S cannot have any information on
the passwords that Z actually gives to the parties. Thus, even if S “believes” it knows the password
that will be used, Z can always “switch” the password and “catch” S making an inappropriate
TestPwd query. Details follow.

Consider an environment Z ′ that behaves just as Z, except that it chooses at random one
session during the run and selects the password pw for both players in that session at random from
{0, 1}k . If that session happens to be the one in which event SpuriousGuess occurs, then in the real
world (i.e., when interacting with the canonical adversary who follows instructions) Z ′ observes
that the players in that session compute matching session keys with probability 1. However, in the
simulated world (i.e., when interacting with S), matching session keys result only with negligible
probability (matching keys will occur only if S correctly guesses pw, or if it makes an incorrect
guess but the independently-generated session keys happen to be equal). The environment can
therefore distinguish the real and ideal executions with probability that is negligibly close to the
value Pr[SpuriousGuess(S,Z; k)]. The lemma follows from the security of Π. ✷

The definition of [3]. We now show that any protocol that securely realizes F̂pwKE is secure also
with respect to the commonly-used definition of Bellare, et al. [3] (modulo technicalities relating to

14Of course, Lemma A.1 is true also for FpwKE (and the proof is even a bit simpler). But we need the multi-session
extension for our proof of Proposition A.2.

35

session identifiers). Recall that the definition in [3] adapts the definition of security used for “basic”
key exchange [4] to the password-based setting. In particular, the adversary interacts with “oracles”
that represent instances of players. All the communication in the network, as well as all corruptions
and key exposures, are done via oracle queries of the adversary. In addition, the adversary has a
special “test” query: in that query the adversary specifies one “fresh” instance, and is given either
the actual key for that instance or a random key. In the definition of [3], a password-based protocol
is secure if whenever the passwords are chosen uniformly at random from a dictionary D and the
adversary “actively interacts” with at most q user instances,15 the advantage of the adversary in
distinguishing the real key from a random key is at most q/|D| (plus some negligible quantity).

To show that our notion of security implies the notion of [3], we first need to reconcile a
small discrepancy between the communication models used by the two definitions. As discussed in
Section 5.1, the UC framework assumes that each communicating party obtains a session-identifier
(SID) as an input to the protocol (and in particular, in advance of protocol execution), and that
different sessions always have different SIDs. The model of [3], on the other hand, does not assume
that SIDs are agreed upon in advance of protocol execution; instead, in their model the SID
of an instance is defined after execution of the protocol (based on the resulting transcript). As
explained in Section 5.1, however, any two-party protocol Π that assumes unique SIDs can be
trivially transformed to a protocol Π′ that does not: Π′ simply has the parties exchange nonces
and then uses the concatenation of these nonces as a SID for an execution of the original protocol
Π. In this case, we refer to Π′ as the “SID-enhancement” of Π. What we show here, then, is that if
a protocol Π is secure according to our notion, then its “SID-enhancement” Π′ is secure according
to the definition of [3]. We stress that our proposition relates to the weak corruption model defined
in [3] in which a Corrupt query reveals the password used by that party (but not its internal state).

Proposition A.2 Let Π and Π′ be as discussed above. If Π securely realizes F̂pwKE in the presence
of static adversaries, then Π′ is secure according to the definition of [3] for the weak corruption
model.

Proof (sketch): On a high level, we view an adversary Â within the model of [3] as an environment
in our model (once the issue of SIDs is taken care of as discussed above). The security of Π in
our model then implies that Â cannot distinguish an interaction with the real protocol from an
interaction with the simulator S and the ideal functionality F̂pwKE. In the latter case, however, the

session keys are chosen uniformly at random (and hence Â has advantage 0) unless the simulator
makes a successful TestPwd query. Now, by Lemma A.1, the number of TestPwd queries is at most
q (since S does not make a TestPwd queries when Â only eavesdrops), and hence the probability
of a successful TestPwd query is at most q/|D|. (We assume passwords chosen at uniform from D,
but the proof can be modified appropriately for arbitrary password distributions.)

We now provide the details. (The description below assumes the reader is familiar with the
model of [3] and the terms used therein.) Fix some dictionary D (with |D| ≥ 2) and any ppt

adversary Â attacking Π′ within the model of [3]. The advantage of Â (in the sense of [3]) is
denoted by Adv

Â
(k). Let q = q(k) denote the number of Send queries made by Â.

We construct an environment Z which either interacts with the “canonical” real-world adversary
A (who simply follows the instructions of Z) and players executing the real protocol Π, or with a
simulator S and F̂pwKE. Environment Z will run Â as a subroutine, simulating executions of Π′ for

Â as follows:

15In the model of [3], “active interactions” are measured by the number of queries to a “send” oracle (as opposed
to queries to an “execute” oracle which indicate passive eavesdropping).

36

• Z obtains from A any common random string used for Π, and gives this string to Â. The
environment also chooses a password pwi,j uniformly from D for each pair of parties Pi, Pj .

• When Â queries Execute(i, j),16 environment Z chooses random nonces ni and nj of length
k and sets sid = ni|nj . It then gives input (NewSession, sid, i, j, pwi,j , client) to Pi, input
(NewSession, sid, j, i, pwi,j , server) to Pj , and the command (execute, sid, i, j) to A. Adversary
A then forwards messages to and from Pi and Pj, and returns the resulting transcript τ to
Z. Finally, Z hands Â the transcript (ni, nj, τ).

• When Â requests (via a Send query) that Pi initiate an interaction with Pj , environment Z
chooses a random string ni of length k and gives ni to Â. If Â later sends message nj to this
instance, Z sets sid = ni|nj and gives input (NewSession, sid, i, j, pwi,j , client) to Pi and the
command (send, sid, i, client) to A. Adversary A then forwards messages to and from (this
instance of) Pi and Z, who in turn forwards these messages to and from Â each time Â makes
a subsequent Send query to this instance.

When Â, impersonating Pi in the role of a client, initiates an interaction with Pj by send-
ing a message ni, environment Z chooses a random nj of length k, returns nj to Â, sets
sid = ni|nj, gives input (NewSession, sid, j, i, pwi,j , server) to Pj , and gives the command
(send, sid, j, server) to A. Then Z and A proceed as above.

• Note that any time a party completes execution of the protocol, Z learns the value of the
session key output by that party (this is because the environment obtains the outputs directly
from the parties’ output tapes). Therefore, when Â makes a Reveal query for a particular
instance, Z finds the corresponding session key and returns that key to Â.

• When Â makes a Corrupt query for a particular instance, Z replies with the password that
was chosen for that instance (i.e., for the pair of parties taking part in that instance).17

• When Â makes a Test query for a particular instance, Z finds the corresponding session key
sk and flips a coin b. If b = 0 then Z gives sk to Â; otherwise, it gives Â a randomly-chosen
key of the appropriate length.

Finally, Z outputs 1 iff Â correctly guesses the value of b. Clearly, the probability that Z outputs 1
in the real world is 1/2 · (1 + Adv

Â
(k)) by definition of the advantage of Â.

Since Π securely realizes F̂pwKE, there exists a simulator S for the adversary A described above.
By Lemma A.1, S does not make any TestPwd queries to its functionality when it receives a
command (execute, sid, i, j) from Z (except possibly with negligible probability). We now observe
the following:

1. S is (essentially) limited to at most q TestPwd queries (corresponding to the q Send queries of
Â). Thus, S will obtain a “correct guess” in response to one of these queries with probability
at most q/|D|.

2. Assuming S never correctly guesses a password, the session keys generated by the functionality
(and thus obtained by Z) are random, independent of the rest of the experiment, and in

16Technically, an Execute query should also specify particular instances of parties i and j, but we have left these
out for simplicity since they are inconsequential to our proof.

17In the model of [3] the adversary is also allowed to replace a password when it makes a Corrupt query. In such
a case, Z will just use the new (adversarially-chosen) password in all subsequent (new) protocol executions for the
relevant parties.

37

particular independent of the view of Â. In such a case, Â guesses b correctly with probability
exactly 1/2.

We therefore conclude that the probability that Z outputs 1 when interacting with S is at most
q/|D| + (1 − q/|D|) · 1/2 = q/2|D| + 1/2. Since Π securely realizes F̂pwKE (implying that the
probability that Z outputs 1 in the real world is negligibly close to the probability that it outputs 1
in the ideal world), we have that |Adv

Â
(k)− q/|D|| is negligible, as desired. ✷

38

