
Some Thoughts on Time-Memory-Data Tradeoffs

Alex Biryukov

Katholieke Universiteit Leuven, Dept. ESAT/SCD-COSIC,
Kasteelpark Arenberg 10,
B–3001 Heverlee, Belgium

Abstract. In this paper we show that Time-Memory tradeoff by Hell-
man may be extended to Time-Memory-Key tradeoff thus allowing at-
tacks much faster than exhaustive search for ciphers for which typically
it is stated that no such attack exists. For example, as a result AES with
128-bit key has only 85-bit security if 243 encryptions of an arbitrary
fixed text under different keys are available to the attacker. Such attacks
are generic and are more practical than some recent high complexity
chosen related-key attacks on round-reduced versions of AES. They con-
stitute a practical threat for any cipher with 80-bit or shorter keys and
are marginally practical for 128-bit key ciphers. We also show that UNIX
password scheme even with carefully generated passwords is vulnerable
to practical tradeoff attacks. Finally we also demonstrate a combination
of rainbow tables with the time-memory-data tradeoff which results in a
new tradeoff curve.

1 Introduction

Hellman’s tradeoff [6] is a well-known way to invert arbitrary one-way functions.
In the context of block ciphers with reasonably long keys this attack is typically
not considered to be of a threat since its precomputation time is the same as the
exhaustive search of the key. Moreover the attack works for a single chosen plain-
text encryption and cannot benefit if more plaintext-ciphertext pairs are avail-
able to the attacker since the precomputed tables are “wired” to a fixed plaintext.
This is contrary to what happens in the case of stream ciphers, where two differ-
ent tradeoffs both involving data are available: the Babbage-Golic Time-Memory,
Data-Memory tradeoff [1, 5] and a more flexible Time-Memory-Data tradeoff by
Biryukov-Shamir [4]. More importantly, precomputation in these attack is way
below the exhaustive key search complexity.

It is easy to see that all the reasoning from the Time-Memory-Data tradeoff
in the case of stream ciphers [4] can be applied to the block-cipher “Time-
Memory-Key” case. Namely we no longer need a full coverage of the space N ,
but rather can cover a fraction N/Dk. Thus we will use t/Dk tables instead of t,
which means our memory requirements go down to M = mt/Dk (here m is the
number of Hellman’s tables). Our time requirements are T = t/Dk · t · Dk = t2

(less tables to check but for more data points), which is the same as in the original
Hellman’s tradeoff. Finally the matrix stopping rule is: N = mt2 which is the

condition to minimize the waste of matrix coverage due to birthday paradox
effects. Using the matrix stopping rule and eliminating the parameters m and t
we get a tradeoff formula:

N2 = T (MDk)
2.

This is exactly the same formula as the one derived in [4] for the case of stream
ciphers. For example, for the case of AES with 128-bit key, assuming that one
is given 232 encryptions of a plaintext “all zeroes” (or any other fixed text, like
16 spaces, “Hello Joe, ” etc.) under different unknown keys, one can recover one
of these keys after a single preprocessing of 296 steps, and using 256 memory
for table storage and 280 time for the actual key-search1. It is important to
note that unlike in Hellman’s original tradeoff the preprocessing time is much
lower than the exhaustive search and thus technically this is a break of cipher.
Though even better theoretical attacks for block-ciphers exist in this setting [2]
they are in direct correspondence to Babbage-Golic “birthday” tradeoff attacks
and thus suffer from the same lack of flexibility due to T = D. Such attack
will require impractical amount of 264 fixed text encryptions as well as high
storage complexity of 264. We believe that if one would try to implement these
attacks he would prefer to use less data and less memory at the expense of more
preprocessing and longer attack time. In Table 1 we summarize complexities
of TMD attacks for various schemes. For example we believe that the attack
on full Skipjack with 232 fixed plaintexts and 248 preprocessing complexity, 232

memory and time is tempting to implement and to try in practice. Another
important observation is that the attack is not exactly a chosen plaintext attack
– since the specific value of the fixed plaintext is irrelevant. Thus in order to
obtain the attack faster than exhaustive search the attacker will first check which
plaintext is the most frequently used in the specific application, collect the data
for various keys and then perform the attack. The attack is technically faster
than the exhaustive search even if the attacker obtains a relatively small number
of arbitrary fixed text encryptions. For example if the attacker obtains only 28

128-bit key AES encryptions, then after preprocessing of 2120 steps and using 260

memory and 2120 analysis steps one of the keys would be recovered. In practical
applications it might be a rather non-trivial task to ensure that the attacker
never obtains encryptions of 28 fixed known plaintexts. This attack is much
better than the existing state of the art attacks on 128-bit AES, which barely
break 7-rounds of this cipher. Note that Biham’s attack for the same amount
of fixed text would formally have the same 2120 total complexity but would
require unrealistic amount of memory 2120 which is probably the reason why such
tradeoff attacks have not been viewed as a threat by the crypto community. In
addition to all said above note that intentionally malicious protocol design may
ensure that some fixed plaintext is always included into the encrypted stream
(for example by fixing a header in communication, using communication to a
fixed address or using fixed file header as is common in many applications).
Results shown in Table 1 compare favorably to the best attacks on such ciphers

1 At the moment of this writing 285 computations is approximately the power of all
computers on the internet during 1 year.

Table 1. Comparison of TMD attacks on various ciphers.

Cipher Key size Keys (Data) Time Memory Preprocessing

DES 56 214 228 228 242

Triple-DES 168 242 284 284 2126

Skipjack 80 232 232 232 248

AES 128 232 280 256 296

AES 192 248 296 296 2144

AES 256 285 2170 285 2170

Any cipher k 2k/4 2k/2 2k/2 23k/4

Any cipher k 2k/3 22k/3 2k/3 22k/3

Any cipher[2] k 2k/2 2k/2 2k/2 2k/2

as DES, Triple-DES, Skipjack and AES. Moreover the scenario of TMD attacks
is much more practical than that of related key attacks as is discussed in more
detail in Sect. 3. We believe that complexities of future cryptanalytic attacks
should be benchmarked against the time-memory-key attacks.

Due to the importance of some tradeoff points we provide Tables 2–5 for
several important ciphers (key lengths) and compare them with best attacks
known so far.

Table 2. Tradeoff attacks on Skipjack (and any other 80-bit cipher).

Attack Data Type Keys (Data) Time Memory Preprocessing

BS TMD FKP 28 260 242 272

BS TMD FKP 220 240 240 260

BS TMD FKP 232 232 232 248

Biham[2] FKP 240 240 240 240

BBS Imp.Diff∗[3] CP 234 278 264 264

∗ — the attack breaks 31 out of 32 rounds of Skipjack, the data is encrypted under a
single key. FKP – fixed known plaintext, CP – chosen plaintext.

2 Related Work

In [2] Biham shows that theoretic strength of a block-cipher in ECB mode cannot
exceed the square root of the size of the key space. What he shows is in fact
a Time-Memory tradeoff N = T · M for the case when encryptions of a fixed
plaintext under many varying keys are available. Interestingly this tradeoff is
a direct analogy of the Babbage-Golic tradeoff for the case of stream ciphers
(and discovered approximately at the same time). The tradeoff presented in this
paper is an analogy of the Time-Memory-Data tradeoffs for stream ciphers given
by Biryukov-Shamir [4]. See Table 6 for a description of this analogy.

Table 3. Tradeoff attacks on 128-bit key AES (and any other 128-bit key cipher).

Attack Data Type Keys (Data) Time Memory Preprocessing

BS TMD FKP 28 2120 260 2120

BS TMD FKP 220 2100 258 2108

BS TMD FKP 232 280 256 296

BS TMD FKP 243 284 243 285

Biham[2] FKP 264 264 264 264

GM collision∗ CP 232 2128 280 ?
FSW partial sum∗ CP 2128–2119 2120 264 ?

∗ — only 7 out of 10 rounds. FKP – fixed known plaintext, CP – chosen plaintext.

Table 4. Tradeoff attacks on 192-bit key AES (and any other 192-bit key cipher).

Attack Data Type Keys (Data) Time Memory Preprocessing

BS TMD FKP 248 296 296 2144

BS TMD FKP 264 2128 264 2128

Biham[2] FKP 296 296 296 296

FKP – fixed known plaintext.

Table 5. Tradeoff attacks on 256-bit key AES (and any other 256-bit key cipher).

Attack Data Type Keys (Data) Time Memory Preprocessing

BS TMD FKP 264 2128 2128 2192

BS TMD FKP 285 2170 285 2170

Biham[2] FKP 2128 2128 2128 2128

FKP – fixed known plaintext.

Table 6. Relation between block and stream cipher tradeoff attacks.

Block ciphers (varying keys or IV’s) Stream ciphers (varying keys or IV’s)

Type of Biham’s collision [2] Babbage-Golic birthday [1, 5]
tradeoff this paper and [8] Biryukov-Shamir TMD [4, 8]

Both tradeoff attacks can be avoided by increasing the “state-size” of the
cipher for example by introducing random IVs, or using any other way to make
the state-size twice the keysize.

At the rump session of ASIACRYPT’04 Hong and Sarkar [7] have demon-
strated that stream ciphers with short IVs can be attacked via the Biryukov-
Shamir time-memory-data tradeoff [4] in a frequent re-synchronization scenario.
More recently in [8] they also provide a careful study of time-memory-data trade-
off attack in the context of various modes of operation of block-ciphers noticing
that these essentially constitute a stream cipher. However we believe that they
overlooked important cases of ECB (a mode typically assumed in theoretical
cryptanalysis) or CBC with known IV’s which directly lead to very powerful
attacks. They also describe attacks which have preprocessing times higher than
the complexity of exhaustive search and thus seem to be less relevant.

3 Types of Cryptanalytic Attacks and Key-size

Considerations

Cryptanalytic attacks may be divided into three main classes by the type of
access to an encryption/device. In the first class of attacks which we call fixed

key attacks, we assume that a black box with the encryption/decryption device
is given to the attacker. The attacker is then able to make arbitrary number of
queries (with unknown, known or chosen inputs) to the device. The goal of the
attacker is to find the secret key of the box, which remains unchanged during
the attack. Note that the queries could be performed adaptively (i.e. based on
the results of previous queries). For example: differential, linear, boomerang or
multiset attacks are of this type. Moreover linear cryptanalysis requires a fixed
key scenario, while differential, boomerang or multiset attacks may tolerate key
changes which are not too frequent during the attack.

The second type of attack which we call variable key attacks, assumes that
the attacker is given both the black box with the encryption/decryption device
as well as a black box of the key-schedule device. The attacker can then perform
both the fixed key attacks as well as re-keying the cipher to a new secret key
value at any given moment. The goal of the attacker is to find one of the keys
of the device. This scenario is strictly more powerful than the fixed key scenario
and can be efficiently exploited for example in the “weak key” attacks or in
time-memory-key tradeoff attacks.

The third type of attacks is what is called related key scenario. In this case
the attacker is not only allowed to change the keys of the device. He is essen-
tially given access to two or more encryption/decryption devices and he knows
or even chooses the relations between the keys used in these devices. This sce-
nario is highly unrealistic in practice but may identify undesirable certificational
weaknesses in the key-schedule of a cipher.

Applicability of the attack scenarios described above in practice may be hin-
dered by the use of certain mode of operation (which for example may preclude
the use of chosen plaintext queries) or by the key-change provision, which may

enforce a key-change every 1000 encryptions thus rendering statistical attacks
which assume fixed key scenario — impractical.

3.1 Key-size Consideration

Modern symmetric ciphers typically have keys larger or equal to 128 bits and
they assume that exhaustive search is the best way one could recover a secret
key2.

As this note shows however in a variable key scenario no k-bit cipher can offer
a k-bit security against some quite practical attacks. One may assume that this
problem can be cured by introducing the IV which has to be of the same size
as the key. However in such popular block-cipher modes of operation like CBC
due to a simple XOR of the known IV with the first plaintext block the attacker
capable of mounting chosen plaintext attack can easily obtain encryptions of
arbitrary fixed text under different keys. In the less likely but still not impossible
case of a chosen IV attack other modes of operation like CFB, OFB or counter
mode become vulnerable as well. A careful study of what should be the IV size
in order to avoid tradeoff attacks is given in [8], however a simple rule of a thumb
is that the IV size should be at least equal to the key-size, since the state of the
cipher at any given moment has to be twice the key-size in order to avoid birthday
time-data attacks [2, 1, 5]. XORing of the IV into the plaintext/ciphertext should
be avoided.

Following these simple observations it is clear that 80-bit (or less) key ciphers
should not be used since they allow for practical attacks in real-life scenarios,
while 128-bit ciphers (which in practice provide security of about 80-bits) should
not be used when full 128-bit security is required. At least 192-bit keys should
be used for this security level.

One may argue that generic tradeoff attacks do not exploit weaknesses of
specific designs and thus should be considered separately from other attacks.
There are two counter-arguments to this point: first of all we have at the moment
no proof that existing tradeoff attacks (such as Hellman’s attack) are the best
possible and thus a popular maxim “The attacks only become better, they do
not get worse” may still apply. Moreover tradeoff attacks may be sped up by
specific properties of the design, for example by what is called in a stream cipher
case — cipher’s sampling resistance [4]. In the case of stream cipher LILI-128
low sampling resistance was used to obtain tradeoff attack [11] with a complexity
much lower than a naive application of a tradeoff technique would suggest.

It seems that we will have to give up the convenient world in which we
assumed a k-bit security for a good k-bit cipher.

2 Depending on the mode of operation used, there are also distinguishing attacks which
may require about 264 fixed key data, and do not lead to key-recovery. Those attacks
are not considered to be of a threat by the community and are typically taken care
of by key-change provisions.

4 Time-Memory-Data tradeoffs with Rainbow Tables

In [10] Oechslin has proposed an alternative way to perform Hellman’s tradeoff.
His idea is to use a single table of mt starting points (called rainbow table), in
which reduction function is changed every column. He has shown that this way
one does not obtain asymptotic improvements, but practical implementations
become easier and faster by a constant factor 2-8.

It is natural to check how rainbow tables would perform in the context of
time-memory-data tradeoff if the attacker is given D > 1 data points (encryp-
tions of the same plaintext under different keys in the case of block ciphers or
stream prefixes produced by different (key, IV) pairs in the case of stream ci-
phers). It seems that this way one gets a flexible generalization of “birthday”
tradeoff.

The main difference between Hellman’s and Oechslin’s approaches is the use
of multiple small tables in the first case versus a single (rainbow) table in the
later case. Inside each table in Hellman’s case a single function is used, while
in Oechslin’s case each column has a different function. Given two parameters
m and t the rainbow table has mt rows and t columns, and requires M = mt
memory for storage, and T = t2/2 time for scanning. The matrix stopping rule
is N = mt2, which results in the same tradeoff formula as in Hellman’s case up
to a small constant speedup factor.

A natural way to cut the coverage of the rainbow table would be thus to
cut its width. If we cut the width of the table from t to t/D, the time becomes

T ≈
1

2
(t

D
)2 · D = t

2

2D
. This is under condition that t2 > D2 and thus T > D.

Memory and space size are parameterized as follows: M = mt and N = mt2 and
thus after eliminating the parameters we get a tradeoff:

N2 = M2TD, P =
N

D
, T > D.

This tradeoff formula is not particularly exciting compared to the other TMD
tradeoff curve discussed in this paper though it is still more flexible than the
“birthday” tradeoff curve.

5 Application to the Unix Password Scheme

The attacks described in this paper are not limited to block or stream ciphers,
they are applicable to other one-way constructions, for example to hash func-
tions.

Time-memory-data tradeoff [4] (N = TM2D2) could be used to analyze Unix
password scheme for example, if the attacker obtains access to a file storing
password hashes of a large organization (D = 1000 password hashes). Indeed
the tradeoff space consists of 56-bits of the unknown key (i.e. password) and
12-bits of known salt. Since the salt size is much shorter than the key-size its
effect on making the tradeoff harder is not very significant. Suppose that the
attacker knows that passwords are selected from a set of arbitrary 8-character

alphanumeric passwords, including capital letters and two additional symbols
like dot and comma which in total can be encoded in 48-bits. Thus together
with a 12-bit salt the state is N = 260 bits. For example the following attack
parameters seem quite practical: preprocessing time done once: P = N/D = 250

Unix hash computations, parallelizable. A memory of M = 234 8-byte entries
(12+48 bits) which takes one 128 Gbyte hard disk. This way we store 234 start-
end pointers. Attack time is then T = 232 Unix hash evaluations — about an
hour on a fast PC or about 8 seconds on a BEE2 FPGA [9]. The attack will
recover one password from about every 1000 new password hashes supplied. This
is two – three orders of magnitude faster than the results described in [9]. The
relatively lengthy preprocessing step may be performed in parallel on a network
of PC’s (hundred PC’s may take less than a month) or it may take about 1.5
months for a single BEE2 FPGA. The number of tables computed in parallel
may be as high as t/D = 217/1000 = 27. In order to reduce the number of hard
disk accesses the attack will need to use distinguished points with 16-bit prefixes.
This will allow to make only 216 disk accesses (which is less than 6 minutes).

In fact it is clear that such tradeoff can analyze all passwords typable on a
keyboard. The space is N = 848

· 212 = 263. Assuming again D = 210, we get
precomputation time P = 253, M = 235 8-byte entries or one 256 Gb hard disk,
T = 236 hash evaluations.

Table 7. Tradeoff attacks on UNIX password scheme.

Passwords attacked State Size (bits) Data Time Memory Preprocessing

Alphanumeric 60 28 234 234 (128 Gb) 252

Alphanumeric 60 210 232 234 250

Full keyboard 63 210 236 235 (256 Gb) 253

Alphanumerica[9] 60 1 240 240 260

a The paper provides analysis for a single fixed salt value.

6 Summary

In this paper we show several applications of Time-Memory-Data tradeoffs [4]
to block-ciphers. As a simple application of this technique we argue that 80-bit
ciphers allow practical attacks in real world scenarios (232 data, memory and
time, with 248 steps for preprocessing), while 128-bit ciphers provide only about
80-bits of security. We also show practical attacks on Unix password hashing
scheme even if strong passwords are chosen. Finally we apply TMD tradeoffs to
rainbow tables [10].

References

[1] S. Babbage, “Improved “exhaustive search” attacks on stream ciphers,” in ECOS
95 (European Convention on Security and Detection), no. 408 in IEE Conference
Publication, May 1995.

[2] E. Biham, “How to decrypt or even substitute DES-encrypted messages in 228

steps,” Information Processing Letters, vol. 84, pp. 117–124, 2002.
[3] E. Biham, A. Biryukov, and A. Shamir, “Cryptanalysis of Skipjack reduced to 31

rounds using impossible differentials,” in Proceedings of Eurocrypt’99 (J. Stern,
ed.), no. 1592 in Lecture Notes in Computer Science, pp. 12–23, Springer-Verlag,
1999. To appear in the Journal of Cryptology.

[4] A. Biryukov and A. Shamir, “Cryptanalytic time/memory/data tradeoffs for
stream ciphers,” in Proceedings of Asiacrypt’00 (T. Okamoto, ed.), no. 1976 in
Lecture Notes in Computer Science, pp. 1–13, Springer-Verlag, 2000.

[5] J. D. Golic, “Cryptanalysis of alleged A5 stream cipher,” in Advances in Cryptol-
ogy – EUROCRYPT’97 (W. Fumy, ed.), vol. 1233 of Lecture Notes in Computer
Science, pp. 239–255, Springer-Verlag, 1997.

[6] M. E. Hellman, “A cryptanalytic time-memory tradeoff,” IEEE Transactions on
Information Theory , vol. 26, pp. 401–406, 1980.

[7] J. Hong and P. Sarkar, “Time memory tradeoff attacks on streamciphers,” 2004.
Rump session talk at ASIACRYPT’04.

[8] J. Hong and P. Sarkar, “Rediscovery of time memory tradeoffs,” 2005. http:

//eprint.iacr.org/2005/090.
[9] N. Mentens, L. Batina, B. Preneel, and I. Verbauwhede, “Cracking Unix passwords

using FPGA platforms,” 2005. Presented at SHARCS’05, in submission.
[10] P. Oechslin, “Making a faster cryptanalytic time-memory trade-off,” in Advances

in Cryptology – CRYPTO 2003 (D. Boneh, ed.), vol. 2729 of Lecture Notes in
Computer Science, pp. 617–630, Springer-Verlag, 2003.

[11] M.-J. O. Saarinen, “A time-memory trade-off attack against LILI-128,” in Pro-
ceedings of Fast Software Encryption – FSE’02 (J. Daemen and V. Rijmen, eds.),
no. 2365 in Lecture Notes in Computer Science, pp. 231–236, Springer-Verlag,
2002.

