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Abstra
t

Time/memory trade-o� (TMTO) was introdu
ed by Hellman and later studied by many

other authors. The e�e
t of multiple data in Hellman TMTO was studied by Biryukov and

Shamir (BS). We 
ontinue the analysis of the general multiple data TMTO started in BS.

The trade-o�s of Babbage and Goli
 (BG) and Biryukov-Shamir are obtained as spe
ial 
ases.

Further, the general analysis is 
arried out under di�erent 
onditions in
luding that of Hellman

optimality (online time equal to memory). Our main 
ontribution is to identify a new 
lass of

single table multiple data trade-o�s whi
h 
annot be obtained either as BG or BS trade-o�.

In 
ertain 
ases, these new trade-o�s 
an provide more desirable parameters than the BG or

the BS methods. We 
onsider the analysis of the rainbow method of Oe
hslin and show that

for multiple data, the TMTO 
urve of the rainbow method is inferior to the TMTO 
urve of

the Hellman method. The 
osts of the rainbow method and the Hellman+DP method 
an be


omparable if the size of the sear
h spa
e is small and the 
ost of one table look-up is relatively

high.

Keywords: time/memory trade-o�, one-way fun
tion.

1 Introdu
tion

In 1980, Hellman [6℄ introdu
ed the te
hnique of time/memory trade-o� (TMTO) atta
k on blo
k


iphers. In its more general form, this 
an be visualised as a general one-way fun
tion inverter.

See [5℄ for theoreti
al work on TMTO. The original work by Hellman 
onsidered inverting a one-way

fun
tion f at a single data point.

TMTO appeared in the 
ontext of stream 
ipher in the works of Babbage [1℄ and Goli
 [4℄,

jointly 
alled the BG atta
k. The idea in these two atta
ks was to �nd the internal state of the

stream 
ipher. These two papers 
onsidered the use of multiple data in TMTO, i.e., the inversion

of f at any one of a set of points. In a later work, Biryukov and Shamir [2℄ 
ombined the BG atta
k

with the Hellman atta
k, to obtain a better multiple data TMTO.
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We perform an analysis of Hellman atta
k in the presen
e of multiple data. The BG and the

BS atta
ks are obtained as spe
ial 
ases of the general atta
k. So far, it has been believed that any

multiple data TMTO is either BG or BS. Our analysis shows that this is not true. In parti
ular,

we show that the BS atta
k is good for multiple tables. On the other hand, the BG atta
k uses a

single table and a single 
olumn. Our work reveals that there are other possible desirable trade-o�s

for single table multiple 
olumn atta
ks whi
h are not obtainable from either the BG or the BS

atta
k.

The general analysis is 
arried out under two di�erent assumptions: online time equal to memory

as 
onsidered originally by Hellman [6℄; and equal online and o�ine times as brie
y 
onsidered

in [2℄. Both these 
ases provide new single table trade-o�s whi
h were not known earlier. The

time required for table look-up 
an be redu
ed by using Rivest's idea of distinguished point (DP)

method. We analyze this method in a general setting. Finally, we 
onsider the rainbow method

and show that in the presen
e of multiple data, the TMTO 
urve of the rainbow method is inferior

to the TMTO 
urve of the Hellman method. For the 
ase of small size sear
h spa
e and relatively

high 
ost of one table look-up, the online time of both the atta
ks 
an be 
omparable.

We organize this paper as follows: Se
tion 2 presents the time/memory/data trade-o� method-

ology. In Se
tion 3, we analyze Hellman and DP methods in a general setting in the presen
e of

multiple data. Se
tion 4 provides the new single table trade-o� (single table multiple 
olumn). We

analyze the rainbow method in presen
e of multiple data in Se
tion 5. To in
rease the su

ess

probability in Hellman method with D = 1, Kim and Matsumoto [7℄ in
reases the sear
h spa
e

(total number of elements in the table whi
h are not ne
essarily distin
t) from N to �N for � > 1.

In Se
tion 6, we apply the same te
hnique in the presen
e of multiple data by 
onsidering the sear
h

spa
e to be �

N

D

where � � 1. Finally we 
on
lude in Se
tion 7.

2 Time/Memory/Data Trade-O� Methodology

The basi
 idea of Hellman's TMTO is quite simple. Suppose f : f0; 1g

n

! f0; 1g

n

be a one-way

fun
tion. The algorithm 
onsists of two stages: a one-time o�ine stage followed by an online stage.

In the online stage, we will be given D points y

1

; : : : ; y

D

in the range of f and we require to �nd

the pre-image of any one of these points. In the o�ine stage, a set of tables are prepared 
overing

N=D of the domain points, where N = 2

n

. Sin
e N=D domain points are 
overed and the online

stage involves D domain points, by the birthday bound, we are assured of 
onstant probability of

su

ess in �nding the pre-image of one of the y's.

In the o�ine stage r tables are prepared. Let f

1

; : : : ; f

r

be simple output modi�
ations of

f (f

i

= g

i

Æ f), su
h that the f

i

's 
an be assumed to be pairwise independent. The ith table is

prepared in the following manner. A total ofm random domain points are 
hosen. For ea
h domain

point, the fun
tion f

i

is iteratively applied t times to rea
h an end point. The pairs (start-point,

end-point) are stored as part of the ith table in the sorted order of the end points. The total storage

requirement is rm pairs of points, while the total 
overage is rmt points.

In the online stage, for ea
h data point y

j

we look for a pre-image in the set of points 
overed

by the tables. For sear
hing in the ith table, we �rst apply g

i

to y

j

to obtain y

0

j

, then we iteratively

apply f

i

a total of t times to y

0

j

. After ea
h appli
ation of f

i

, we look in the end points of the
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ith table for a mat
h. If a mat
h is found, we go to the 
orresponding start point and iterate f

i

until we rea
h y

0

j

. The pre
eding point is a possible pre-image of y, whi
h is veri�ed by applying

f to it and 
he
king whether we obtain y. This requires a total of t appli
ations of f and t table

look-ups per table per data item. For more details regarding the method see the original paper by

Hellman [6℄. Also [2℄ provides a good des
ription of the method.

We dis
uss some general issues about TMTO. In Hellman's original s
heme, D = 1; the table

preparation time is disregarded and only the online time and memory requirements are 
onsidered.

The assumption is that the tables would be prepared on
e for all in an o�ine phase. On
e the

tables are prepared, they will not 
hange and 
an be used to �nd di�erent pre-images. In this

s
enario, the table preparation time 
an be huge and even larger than exhaustive sear
h. Thus,

the se
urity of a 
ryptographi
 algorithm with respe
t to this kind of TMTO has a hidden 
ost of

o�ine (and one time) exhaustive sear
h.

If multiple data is available, the a
tual table preparation time will be less than exhaustive

sear
h. An extension of Hellman's original prin
iple would be to disregard the table preparation

irrespe
tive of whether it is less or more than exhaustive sear
h.

On the other hand, in the presen
e of multiple data, we might wish to 
onsider the possibility of

a feasible atta
k even taking table preparation time into a

ount. Sin
e this is an o�ine a
tivity, it

might be reasonable to expe
t the table preparation time to be more than the online time but less

than exhaustive sear
h time. One possibility (brie
y 
onsidered in [2℄) is to 
onsider both o�ine

and online time to be of equal importan
e and require that they are both equal. This 
an lead to

interesting trade-o�s as we 
onsider later.

The amount of available data is 
ertainly a lower bound on the online time. It 
an also be

a lower bound on the memory requirement. This is be
ause the data usually needs to be stored

before pro
essing. Another possible s
enario is that the data is pro
essed as it is re
eived thus

doing away with the ne
essity of storing it in whi
h 
ase the data 
an be more than the memory.

This might happen, for example, in the BG atta
k.

The pre
omputation time will be in general more than the memory requirement. In the table

preparation stage, the entire table will have to be 
omputed and only a fra
tion of it stored. This

shows that the o�ine time will be at least as large as the memory requirement.

Hellman in his original paper [6℄, 
onsidered the 
ondition where the online time is equal to

the memory requirement. This provides a kind of optimality 
ondition, whi
h we will 
all Hellman

optimality. In the presen
e of multiple data, it is perhaps more pra
ti
al to require the data

and memory requirement to be less than the online and o�ine time requirements. This has been


onsidered in [2℄. We 
onsider the situation where the data and memory requirement are taken to

be equal and less than the online and o�ine times whi
h are also taken to be equal.

The data requirement denotes the number of blo
ks of data. Ea
h blo
k is n bits and D is the

data requirement, then it might appear that the total data requirement is nD bits. However, it


an be substantially lower [1, 4℄. For a bit oriented stream 
ipher, using a one-bit sliding window,

D blo
ks might be obtainable from as low as D + n� 1 bits.
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3 The Hellman Atta
k

Suppose r tables ea
h of dimension m� t are used and the online data 
onsists of D points. Then

from the Hellman atta
k we have the following relations.

T

f

= r(t� 1)D (# f invo
ations in the online phase)

T

t

= rtD (# table look-ups in the online phase)

P = rmt (# f invo
ations in the pre-
omputation phase)

=

N

D

(
overage)

M = rm (memory)

mt

2

� N (birthday bound)

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

(1)

If t � 1, we 
an assume t � 1 � t and T

f

� rtD = T

t

. We will usually make this assumption,

ex
ept for the analysis of the BG atta
k, where t = 1. Let 
 be the ratio of the time required for

performing one table look-up to the time required for one invo
ation of f , i.e.,


 =

time for one table look-up

time for one invo
ation of f

: (2)

We assume that one unit of time 
orresponds to one invo
ation of f (i.e., one unit of time = time

required for 
ompleting one invo
ation of f). The time required for the table look-ups is then 
rtD.

De�ne T = max(T

f

; 
T

t

) = 
rtD. The parameter T is a measure of the time required during the

online phase. The a
tual online time is proportional to T

f

+ 
T

t

. However, this is only at most

twi
e the value of T . Thus, we will perform the analysis with T instead of T

f

+ 
T

t

.

For the present, we will assume that 
 = 1 (and T = T

t

� T

f

), i.e., the 
ost of one invo
ation

of f is equal to the 
ost of one table look-up. The value of 
 need not a
tually be one; even if it is

a small 
onstant (or a negligible fra
tion of N), we 
an assume it to be one and that will not a�e
t

the asymptoti
 analysis. On the other hand, [2℄ mentions that 
 may be as large as one million

(� 2

20

). If N is only moderately large (like 2

64

for A5/1), then 
 
an be a signi�
ant proportion

of N . In su
h a situation, we 
annot assume 
 = 1 and the 
ost of table look-up will dominate the

total online 
ost. This 
ase will be 
onsidered later.

Using (1), we 
an solve for r, m and t as follows.

t =

N

MD

� 1 (number of 
olumns)

m =

N

T

(number of rows)

r =

MT

N

� 1 (number of tables)

mt

2

=

N

3

TM

2

D

2

� N (birthday bound)

9

>

>

>

=

>

>

>

;

(3)

Note that all three of r;m and t must be at least 1. Sin
e m = N=T and for a valid atta
k we must

have N > T , the 
ondition on m is trivially satis�ed. The advantage of writing in the form of (3)

is that given values for T , M and D satisfying the proper 
onstraints, we 
an immediately design

a table stru
ture whi
h a
hieves these values.

Let D = N

a

for some 0 � a < 1. Sin
e PD = N , we have P = N

1�a

. The 
ondition on r,

shows that MT � N . We write MT = N

b

for b � 1. Also let M = N




; for a valid atta
k we

4



must have 0 � 
 < 1. Sin
e MT = N

b

, we have T = N

b�


and again for a valid atta
k, we must

have 0 � b� 
 < 1. The available online data D is a lower bound on M and T and hen
e we have

a � 
; b� 
. Sin
e the birthday bound tells us that mt

2

� N , we write mt

2

= N

d

, for some d with

0 � d � 1. Substituting in the last equation of (3), we obtain 2a + b + 
 + d = 3. The 
ondition

on t shows that MD � N , whi
h translates to a + 
 � 1. Thus, any set of values for a; b; 
 and d

whi
h satisfy the following 
onstraints 
onstitute a valid atta
k.

C1: 2a+ b+ 
+ d = 3

C2: 0 � a < 1

C3: 0 � 
; b� 
 < 1 � b

C4: a+ 
 � 1

C5: 0 � d � 1

9

>

>

>

>

>

=

>

>

>

>

>

;

(4)

The so-
alled TMTO 
urve 
an be obtained as the following relations.

TM

2

D

2

= N

3�d

PD = N

MD � N �MT

M;D; T < N:

9

>

>

>

=

>

>

>

;

(5)

Also, we have the following values of r;m and t.

r = N

b�1

; m = N

1�(b�
)

; t = N

1�a�


: (6)

Sin
e MT = N

b

� N , we have r = 1 if and only if MT = N . With r = 1, we have only one table

and hen
e if there are more than one tables, then MT is stri
tly greater than N .

BG Atta
k [1, 4℄: In this 
ase, we have r = t = 1. This implies T

f

= 0, i.e., the online phase does

not require invo
ation of f . The 
ost in the online phase is T = T

t

and we have MD = N = MT

and hen
e T = D; M = N=D. This 
orresponds to the 
onditions a+ 
 = 1; b = 1; d = 1� a:

BS Atta
k [2℄: In [2℄, r = t=D and d = 1 is used. Then T = t

2

, M = mt=D and hen
e

r = N

�a+(b�
)=2

. Sin
e r � 1, we have the restri
tion 0 � 2a � b� 
 (i.e., 1 � D

2

� T ) in addition

to (4).

The 
onditions d = 1 and r = t=D are related (e.g., if r = 1, then t = D and T = t

2

= D

2

). In

the following analysis, we will pro
eed without these two 
onditions. Later, we show the situation

under whi
h making these two assumptions is useful.

3.1 Condition P = T

Sin
e both P and T represent time, the 
ase P = T puts equal emphasis on both the o�ine and the

online times. The 
ondition P = T impliesP = N

1�a

= T = N

b�


and som = N

1�(b�
)

= N

a

= D.

(On the other hand, P = M is possible only if t = 1.) Sin
e PD = N , we have T = N=D and

so the 
urve be
omes M

2

D = N

2�d

. If P = T , then r = M=D. If further M = D, then

M = D = N

(2�d)=3

and P = T = N

(1+d)=3

.
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Proposition 1 If P = T and M = D in (5), then M = D = N

(2�d)=3

and P = T = N

(1+d)=3

.

Further, r = 1, i.e., exa
tly one table is required.

Proposition 1 gives us a ni
e way to 
ontrol the trade-o� between time and data/memory require-

ment by varying d. Choosing d = 1, 
orresponds to (P;D;M; T ) = (N

2=3

; N

1=3

; N

1=3

; N

2=3

) and

has been observed in [2℄; 
hoosing d = 1=2 
orresponds to (P;D;M; T ) = (N

1=2

; N

1=2

; N

1=2

; N

1=2

)

whi
h is the square root birthday (BG) atta
k.

3.2 Condition T =M

The 
ondition T =M was 
onsidered by Hellman [6℄ to be an optimality 
ondition. We perform an

analysis of (5) with T =M . Then 
 = b�
, when
e 
 = b=2. Condition C1 be
omes 2a+3
+d = 3

and so

b

2

= 
 = 1�

2a+ d

3

: (7)

Using a + 
 � 1, we obtain a � d. Also sin
e b � 1, we have 
 = b=2 � 1=2. This along with (7)

gives d � 3=2� 2a. Sin
e, we already know d � 1, we obtain

a � d � min(1;

3

2

� 2a): (8)

Thus, any non-negative solution in a and d to (8) gives a valid atta
k with T =M = N




.

We are interested in minimizing the value of 
. From (7), we see that the value of 
 is minimized

by maximizing the value of d. In fa
t, using (8), we 
an 
hoose d = 1 as long as 1 �

3

2

� 2a, i.e.,

2� (1=2a) � 0 or a � 1=4. Thus, for a � 1=4, we obtain T =M = N

b=2

= N

(2�2a)=3

.

In the 
ase 3=2 � 2a � 1, we have a � d � 3=2 � 2a. For the gap to be non-empty we must

have a � 1=2. For minimizing 
, we use the upper bound, i.e., d = 3=2 � 2a � 1. Thus, for

1=4 � a � 1=2, we have 
 = 1=2 and T =M = N

1=2

. Finally, we obtain the following result.

Theorem 2 If T =M , then D � N

1=2

and the following 
onditions hold.

1. N

1=2

� T =M = N

(2�2a)=3

� N

2=3

, for 1=4 � a � 0.

2. T =M = N

1=2

, for 1=4 � a � 1=2.

For the �rst 
ase we have, (a; b; 
; d) = (a; 2(2 � 2a)=3; (2 � 2a)=3; 1) and for the se
ond 
ase we

have (a; b; 
; d) = (a; 1; 1=2; 3=2 � 2a). The 
orresponding values of (r;m; t) are

(N

(1�4a)=3

; N

(1+2a)=3

; N

(1�a)=3

) and (1; N

1=2

; N

1=2�a

) respe
tively.

In the se
ond 
ase of Theorem 2, exa
tly one table is required. However, it is not the BG atta
k,

sin
e the number of 
olumns 
an be more than one. Also, we have T � P � N . The situation with

T < P < N is interesting, sin
e the pre-
omputation time is less than exhaustive sear
h. Even

though P is more than T , sin
e it is an o�ine a
tivity, we might wish to spend more time in the

pre-
omputation part than in the online atta
k.
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3.3 Distinguished Point Method

We now 
onsider the 
ase where 
 � 1. In this 
ase, a dire
t appli
ation of the Hellman method

leads to T = 
rtD, i.e., the time required for the table look-ups dominate the online time. It is

useful to 
onsider the distinguised point method of Rivest to redu
e the number of table look-ups.

See [2℄ for a des
ription of the DP method.

Using the distinguished point method results in redu
ing the number of table look-ups from rtD

to rD, i.e., one table look-up per table per data. Then T

t

= rD = N

a+b�1

. (Note T

t

= N

a

= D,

i.e., only one table look-up is required per data item if and only if b = 1 = r, i.e., MT = N .)

The total 
ost of the table look-ups is 
rD whereas the 
ost of invoking the one-way fun
tion is

rtD. In this 
ase, the ratio of the two 
osts is 
=t. If t � 
, then the ratio is at most one. Hen
e, we


an again ignore the 
ost of table look-up and perform the analysis by 
onsidering simply the 
ost

of invoking the one-way fun
tion. The a
tual runtime will be at most twi
e the runtime obtained

by su
h an analysis.

Suppose t < 
. Then the analysis performed above does not hold. We now investigate the

situation under whi
h t < 
 holds. This 
ertainly holds for t = 1 (the BG atta
k), but in the BG

atta
k the entire online 
omputation 
onsists of table look-ups and hen
e the general analysis is

not required. Re
all that t = N

1�(a+
)

= 2

n(1�(a+
))

, D = N

a

and M = N




. Suppose 
 = 2

e

.

Then t � 
 if and only if a + 
 � 1 � (e=n). The value of e is a 
onstant whereas n in
reases.

Hen
e, (1 � e=n) ! 1 as n grows. Thus, we 
an have a + 
 > 1 � e=n only for small values of n.

The smallest value of n for whi
h we 
an expe
t to have a se
ure 
ryptographi
 algorithm is 64.

Further, as mentioned in [2℄, e 
an be at most around 20 and so 1� e=n � 2=3 for n � 64.

Consider a = 
 = 1=3, as in the solution (a; b; 
; d) = (1=3; 1; 1=3; 1) 
orresponding to P = T =

N

2=3

; M = D = N

1=3

; r = 1 of [2℄. If n � 64, then a + 
 = 2=3 � 1 � e=n and the time analysis

assuming T = rtD = tD holds. On the other hand, for the solution (a; b; 
; d) = (3=8; 1; 3=8; 7=8)


orresponding to P = T = N

5=8

; M = D = N

3=8

; r = 1 
onsidered in Se
tion 4, we have

a + 
 = 3=4. For n = 64, a + 
 > 1 � e=n and we have to assume T = 
rD = 
D, whereas for

n = 100, a + 
 � 1 � e=n and we 
an assume T = rtD = tD. Thus, for relatively small n, we

should solve (4) with the 
onstraint a + 
 � 1 � e=n instead of a + 
 � 1. This disallows some of

the otherwise possible trade-o�s.

There is another issue that needs to be 
onsidered. We have to ensure that t is large enough to

ensure the o

urren
e of a DP in a 
hain. Let 2

�p

be the probability of a point being a DP. Hen
e,

we 
an expe
t one DP in a random 
olle
tion of 2

p

points. Thus, if t � 2

p

, we 
an expe
t a DP in a


hain of length t. This implies p � log

2

t. Any attempt to design the tables with t < 2

p

, will mean

that several trials will be required to obtain a 
hain terminating in a DP. This will in
rease the

pre-
omputation time. In fa
t, [2℄ has shown that use of the DP method in the BG atta
k divides

into two di�erent trade-o�s leading to unrealisti
 requirements on data and memory.

Using (6), we have

p

n

� 1 � (a+ 
). This leads to the 
ondition a+ 
 � 1�

p

n

(MD � N

1�

p

n

)

instead of the 
ondition a+
 � 1 (resp. MD � N) in (4) (resp. (5)). For small n, this 
ondition has

to be 
ombined with a+
 � 1�e=n and we should solve (4) with the 
onstraint a+
 � 1�

1

n

max(p; e)

instead of the 
onstraint a+ 
 � 1. This puts further restri
tions on otherwise allowed trade-o�s.
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3.3.1 BSW Sampling

There is an elegant appli
ation of TMTO in [3℄, whi
h uses a spe
ial type of sampling te
hnique


alled the BSW sampling. This te
hnique uses only part of the available online data and also

redu
es the sear
h spa
e. The trade-o� 
urve does not 
hange, but the number of table look-ups

redu
es signi�
antly. Use of this te
hnique allowed parti
ularly eÆ
ient atta
ks on A5/1.

Use of the BSW te
hnique redu
es the amount of available online data. This makes it diÆ
ult

to use a single table to 
arry out the TMTO. In su
h a situation, our analysis does not lead to any

new insight into the BSW te
hnique. On the other hand, if the available online data (even after

sampling) is large enough to allow the use of a single table, then our analysis applies and one 
an


onsider a wider variety of trade-o�s.

4 Single Table Atta
k

The 
ase N = 2

100

has been 
onsidered in [2℄. It has been mentioned in [2℄ that the Hellman

atta
k with D = 1; T = M = N

2=3

= 2

66

requires unrealisti
 amount of disk spa
e and the

BG atta
k with T = D = N

2=3

= 2

66

; M = N

1=3

= 2

33

requires unrealisti
 amount of data.

(Note T = M = D = N

1=2

= 2

50

also gives a BG atta
k. However, as mentioned in [2℄ in

a di�erent 
ontext, data and memory requirement of more than 2

40

is unrealisti
.) Further, [2℄

mentions P = T = 2

66

and D =M = 2

33

to be a (barely) feasible atta
k. This 
orresponds to the

parameters (a; b; 
; d) = (1=3; 1; 1=3; 1) and (r;m; t) = (1; N

1=3

; N

1=3

).

From Proposition 1, if we 
hoose d = 7=8, then we obtain M = D = N

3=8

= 2

37:5

and

P = T = N

5=8

= 2

62:5

. The 
orresponding parameters are (a; b; 
; d) = (3=8; 1; 3=8; 7=8) and

(r;m; t) = (1; N

3=8

; N

1=4

). This brings down the atta
k time while keeping the data and memory

within feasible limits. Sin
e t > 1, this 
annot be obtained from the BG atta
k. Further, 
hoosing

d = 7=8 and D

2

> T ensures that this atta
k 
annot also be obtained from the BS atta
k. We

would like to point out that [2℄ mentions that 
hoosing d < 1 is \wasteful". The above example

shows that this is not ne
essarily the 
ase and 
hoosing d < 1 
an lead to more 
exible trade-o�s.

We show below the 
ondition under whi
h 
hoosing d < 1 is indeed \wasteful".

The 
hoi
e of the parameter r = t=D is motivated in [2℄ by mentioning that this redu
es the

number of table look-ups. The number of table look-ups in the �rst 
ase is rtD = tD = N

2=3

whereas in the se
ond 
ase, it is rtD = tD = N

5=8

. Thus, the above example shows that the


ondition r = t=D is not ne
essary for redu
ing the number of table look-ups.

As mentioned earlier, we have one table (i.e., r = 1) if and only if MT = N . The reason for

moving to more than one tables is when mt

2

> N and we begin to have more and more repetitions

within a table.

Proposition 3 There is a solution to (5) with r = 1 = b (and hen
e MT = N = PD) if and only

if 2a+ 
 � 1.

Proof : Suppose r = 1. Then b = 1 and 2a+ 
+ d = 2. Hen
e d = 2� (2a+ 
). Sin
e d � 1, this

shows 2a+ 
 � 1.

On the other hand assume that 2a + 
 � 1. Choose b = 1 and set d = 2 � (2a + 
) � 1. This


hoi
e satis�es the 
onditions of (5). Further, sin
e b = 1, we have r = 1.
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Suppose 2a+ 
 < 1. Then b+ d > 2 and b > 2� d. Sin
e MT = N

b

, we would like to minimize

b and hen
e we 
hoose d = 1. We 
an now modify the suggestion of [2℄ and say that it is \wasteful"

to 
hoose mt

2

< N if there are more than one table. Sin
e b > 1, we have 2a+ 
 < 1 < b and hen
e

2a < b� 
 whi
h gives D

2

< T and we are ba
k to the situation des
ribed in [2℄.

Thus, the analysis of [2℄ a
tually applies to the situation where the data is small enough to

require more than one tables. On the other hand, for the 
ase of one table, the restri
tions of [2℄

are not required and removing these restri
tions provide more 
exible trade-o�s. We would like to

point out that there are interesting situations where a single table 
an be used. Apart from the

examples D = M = N

1=3

and D = M = N

3=8

already 
onsidered, other possible examples are

(D = N

0:3

, M = N

0:4

); (D = N

0:25

, M = N

0:5

), et
etra.

Going ba
k to the example of N = 2

100

, both (P;D;M; T ) = (N

2=3

; N

1=3

; N

1=3

; N

2=3

) of [2℄

and (P;D;M; T ) = (N

5=8

; N

3=8

; N

3=8

; N

5=8

) des
ribed above have r = 1. As mentioned above, the

se
ond one is better with respe
t to the number of table look-ups. In 
on
lusion, there are reasonable


hoi
es of data and memory requirements whi
h lead to a single table. In su
h situations, the trade-

o� in [2℄ is not the only possible one. Other (and perhaps better) trade-o�s 
an be obtained following

the approa
h des
ribed here. We highlight some of the other interesting single table trade-o�s that


an be obtained.

Condition P = T = N

(1+d)=3

; M = D = N

(2�d)=3

: From Proposition 1, we have r = 1, i.e., all

trade-o�s attaining this 
ondition use a single table. In the plausible situation, M = D � P = T ,

we have 1=2 � d � 1. The 
ase d = 1 
an be obtained from the BS analysis. In the BG analysis, we

have d = 1� a. Sin
e a� (2� d)=3, this 
ondition leads to d = 1=2. Thus, the range 1=2 < d < 1

for whi
h the 
ondition P = T = N

(1+d)=3

; M = D = N

(2�d)=3


an be attained was not known

earlier.

Condition M = T : In the se
ond 
ase of Theorem 2, we have r = 1 and M = T = N

1=2

. The

allowed range of a for this 
ase is 1=4 � a � 1=2. The 
ase a = 1=4 
an be obtained from the

BS analysis and the 
ase a = 1=2 
an be obtained from the BG analysis. However, the range

1=4 < a < 1=2 for whi
h T = M = N

1=2


an be attained, 
annot be obtained from either the BG

or the BS analysis and provide previously unknown trade-o�s. The advantage is that the data 
an

be in
reased (thus lowering o�ine time) without in
reasing either time or memory.

Small N Consider N = 2

64

, as in A5/1. It is mentioned in [3℄ that M � 2

35

and D � 2

22

are

reasonable 
hoi
es. We 
onsider two trade-o�s, 
orresponding to the se
ond 
ase of Theorem 2.

Trade-O� 1: (P;D;M; T ) = (2

46

; 2

18

; 2

32

; 2

32

): The table parameters are (r;m; t) = (1; 2

32

; 2

14

):

Trade-O� 2: (P;D;M; T ) = (2

42

; 2

22

; 2

32

; 2

32

): The table parameters are (r;m; t) = (1; 2

32

; 2

10

):

None of the above two trade-o�s are obtainable as BG trade-o�s, sin
e in both 
ases t > 1. Also,

neither 
an be 
onsidered to be BS trade-o�s sin
e D

2

> T . For both trade-o�s, the data and

memory are within reasonable limits and the online times are the same. The o�ine time is lower
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for the se
ond trade-o� and is within doable limits (espe
ially as an o�ine one-time a
tivity), while

for the �rst atta
k it is probably just outside the doable limit.

The total 
ost of online table look-up for both the atta
k is 
tD. Sin
e the value of 
 is a

signi�
ant proportion of N the 
ost of table look-up dominates the online 
ost. Use of the DP

method redu
es the total 
ost of table look-ups to 
D. If 
 is around 2

20

as mentioned in [2℄, we

have the table look-up 
osts to be 2

38

and 2

42

respe
tively. This pushes up the online 
ost of both

the atta
ks to make them less of a threat. On the other hand, if 
 
an be brought down to around

2

10

by the deployment of spe
ial purpose high speed memory, then the table look-up 
osts 
ome

down to 2

28

and 2

32

respe
tively. This will make both the atta
ks serious threats. We note that

with 
 � 2

20

, the atta
k of [3℄ remains the most eÆ
ient one.

5 The Rainbow Atta
k

The rainbow atta
k was introdu
ed in [8℄. The number of table look-ups of the rainbow method is


omparable to that of the Hellman+DP method. See [8℄ for a dis
ussion of the relative advantages

of the rainbow method with respe
t to the DP method.

In the rainbow atta
k, we use a table of size m� t and suppose there are D online data points.

Then the total number of invo
ations of the one-way fun
tion is t

2

D=2 while the 
ost of the table

look-ups is tD. Again, we will ignore the fa
tor of two in the runtime sin
e it does not signi�
antly

a�e
t the analysis. Then, the total number of invo
ations of f is t

2

D and the total number of table

look-ups is tD. Also, we have mt = N=D.

If we assume 
 � 1, then the 
ost of invoking f dominates the online 
ost and we have M = m

and T = t

2

D. Assume D = N

a

and M = N




as in the 
ase of Hellman analysis. Then sin
e

mt = N=D = N

1�a

, we have t = N

1�a�


and T = t

2

D = N

2�a�2


. Also, sin
e t � 1, we must have

a+ 
 � 1. The TMTO 
urve for rainbow in the presen
e of multiple data is TM

2

D = N

2

whi
h is

inferior to the Hellman TMTO 
urve when D > 1.

We now 
ompare the rainbow parameters (P;D;M; T ) = (N

1�a

; N

a

; N




; N

2�a�2


) with the

Hellman parameters for same data and memory. For multiple table Hellman, we 
hoose d = 1

and hen
e the 
orresponding Hellman parameters are (P;D;M; T ) = (N

1�a

; N

a

; N




; N

2�2a�2


). If

a > 0, i.e., if multiple data is available, then 
learly Hellman time is less than rainbow time.

If 
 is a signi�
ant fra
tion of N , then the 
ost of table look-ups is 
tD while the 
ost of invoking

f is still t

2

D. In the 
ase 
 > t, whi
h happens for relatively small N (around 2

64

or so), the 
ost of

table look-up dominates the online 
ost. To 
ompare to the Hellman method we have to 
onsider

the Hellman+DP algorithm. For the 
ase 
 > t, the online 
ost of the Hellman method is also 
tD.

Hen
e, for this 
ase, the 
osts of online time for the rainbow and the Hellman+DP methods are

equal. In this situation, one might prefer to use the rainbow method for the possibly lower rate of

false alarms 
ompared to the DP method [8℄.

Thus, we 
on
lude that in the presen
e of multiple data, in general the Hellman atta
k is

better than the rainbow atta
k. For the 
ase of small N , the online times of both atta
ks 
an be


omparable and one might prefer rainbow for obtaining other possible advantages.
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6 In
reasing Coverage Spa
e

The su

ess probability of the Hellman method is 
onstant. It has been observed [7℄ that this

value is around 60%. To in
rease the su

ess probability, one 
an in
rease the 
overage spa
e of

all the tables. The tables together 
over a total of rmt points. We assume that rmt = �(N=D)

for some � � 1. By 
hoosing � > 1, it is possible to in
rease the su

ess probability. Kim and

Matsumoto [7℄, have des
ribed this te
hnique for the basi
 Hellman atta
k with D = 1. Below we

show that essentially the same te
hnique also works for D > 1.

Let y

1

; : : : ; y

D

be the D data points and let x

1

; : : : ; x

D

be su
h that f(x

i

) = y

i

. We de�ne P

Su



,

the su

ess probability to be the probability that at least one of x

i

is in the tables. Let P

1

be the

probability that a random point is 
overed by the tables and E

i

be the event that x

i

is not in the

tables. Then Prob(E

i

) = 1� P

1

for 1 � i � D.

P

Su



= 1� Prob(E

1

\E

2

\ : : : \E

D

)

= 1�

D

Y

i=1

Prob(E

i

)

= 1� (1� P

1

)

D

(9)

To �nd P

1

, we pro
eed as follows. Let PS

single

be the probability that the randomly 
hosen point is in

a single table andA

j

be the event that the point is not in the j

th

table. Then, Prob(A

j

) = 1�PS

single

:

P

1

= 1� Prob(A

1

\A

2

\ : : : \A

r

)

= 1�

r

Y

i=1

Prob(A

i

)

= 1� (1� PS

single

)

r

(10)

Hen
e,

P

Su



= 1� (1� P

1

)

D

= 1� (1 � PS

single

)

rD

:

In [6℄, Hellman provided the expression

PS

single

�

1

N

m

X

i=1

t

X

j=1

�

1�

it

N

�

j

:

Later Kim and Matsumoto [7℄ made the following simpli�
ation:

PS

single

�

1

N

m

X

i=1

t

X

j=1

�

1�

it

N

�

j

�

1

t

m

X

i=1

1� e

�it

2

N

it

N

t

N

�

1

t

Z
mt

N

0

1� e

�tx

x

dx � h(u)

mt

N

;

where h(u) =

1

u

R

u

0

1�e

�x

x

dx and u =

mt

2

N

: This gives

P

Su



= 1� (1� PS

single

)

rD

� 1�

�

1� h(u)

mt

N

�

rD

� 1� e

(�h(u)

rmtD

N

)

= 1� e

(�h(u)��)

;
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where � =

rmtD

N

: Now h(u) =

1

u

R

u

0

1�e

�x

x

dx < 1 for all u > 0. This implies that the su

ess

probability in
reases with the value of �.

Thus, we should �rst �x � to a
hieve the desired su

ess probability. Sin
e � usually turns out

to be a small 
onstant, its e�e
t on P; T;M and D is negligible. Hen
e, the analysis 
arried out

above will hold, with the a
tual atta
k parameters in
reasing by at most a 
onstant fa
tor.

7 Con
lusion

We have studied the general problem of utilising multiple data in time/memory trade-o� atta
ks

introdu
ed by Hellman in [6℄. We build on the analysis performed by Biryukov and Shamir [2℄. Our

general analysis shows that the Babbage-Goli
 atta
k and the Biryukov-Shamir atta
ks are spe
ial


ases of the general Hellman atta
k. We also analyse under the Hellman optimality 
ondition

(T = M) and under the assumption P = T . Our main new 
ontribution is the identi�
ation of a

new 
lass of single table trade-o�s whi
h are not obtainable as either the BG or the BS atta
ks. In


ertain 
ases, these new trade-o�s 
an be more desirable than the previous BG or the BS atta
ks.

Finally, we 
onsider the rainbow atta
k of Oe
hslin and show that with the utilization of multiple

data, the TMTO 
urve of the rainbow atta
k is inferior to the TMTO 
urve of the Hellman atta
k.

On the other hand, for small N and relatively high 
ost of one table look-up, the online time for

both the rainbow and the Hellman+DP methods are 
omparable.
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