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Abstrat

Time/memory trade-o� (TMTO) was introdued by Hellman and later studied by many

other authors. The e�et of multiple data in Hellman TMTO was studied by Biryukov and

Shamir (BS). We ontinue the analysis of the general multiple data TMTO started in BS.

The trade-o�s of Babbage and Goli (BG) and Biryukov-Shamir are obtained as speial ases.

Further, the general analysis is arried out under di�erent onditions inluding that of Hellman

optimality (online time equal to memory). Our main ontribution is to identify a new lass of

single table multiple data trade-o�s whih annot be obtained either as BG or BS trade-o�.

In ertain ases, these new trade-o�s an provide more desirable parameters than the BG or

the BS methods. We onsider the analysis of the rainbow method of Oehslin and show that

for multiple data, the TMTO urve of the rainbow method is inferior to the TMTO urve of

the Hellman method. The osts of the rainbow method and the Hellman+DP method an be

omparable if the size of the searh spae is small and the ost of one table look-up is relatively

high.

Keywords: time/memory trade-o�, one-way funtion.

1 Introdution

In 1980, Hellman [6℄ introdued the tehnique of time/memory trade-o� (TMTO) attak on blok

iphers. In its more general form, this an be visualised as a general one-way funtion inverter.

See [5℄ for theoretial work on TMTO. The original work by Hellman onsidered inverting a one-way

funtion f at a single data point.

TMTO appeared in the ontext of stream ipher in the works of Babbage [1℄ and Goli [4℄,

jointly alled the BG attak. The idea in these two attaks was to �nd the internal state of the

stream ipher. These two papers onsidered the use of multiple data in TMTO, i.e., the inversion

of f at any one of a set of points. In a later work, Biryukov and Shamir [2℄ ombined the BG attak

with the Hellman attak, to obtain a better multiple data TMTO.
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We perform an analysis of Hellman attak in the presene of multiple data. The BG and the

BS attaks are obtained as speial ases of the general attak. So far, it has been believed that any

multiple data TMTO is either BG or BS. Our analysis shows that this is not true. In partiular,

we show that the BS attak is good for multiple tables. On the other hand, the BG attak uses a

single table and a single olumn. Our work reveals that there are other possible desirable trade-o�s

for single table multiple olumn attaks whih are not obtainable from either the BG or the BS

attak.

The general analysis is arried out under two di�erent assumptions: online time equal to memory

as onsidered originally by Hellman [6℄; and equal online and o�ine times as briey onsidered

in [2℄. Both these ases provide new single table trade-o�s whih were not known earlier. The

time required for table look-up an be redued by using Rivest's idea of distinguished point (DP)

method. We analyze this method in a general setting. Finally, we onsider the rainbow method

and show that in the presene of multiple data, the TMTO urve of the rainbow method is inferior

to the TMTO urve of the Hellman method. For the ase of small size searh spae and relatively

high ost of one table look-up, the online time of both the attaks an be omparable.

We organize this paper as follows: Setion 2 presents the time/memory/data trade-o� method-

ology. In Setion 3, we analyze Hellman and DP methods in a general setting in the presene of

multiple data. Setion 4 provides the new single table trade-o� (single table multiple olumn). We

analyze the rainbow method in presene of multiple data in Setion 5. To inrease the suess

probability in Hellman method with D = 1, Kim and Matsumoto [7℄ inreases the searh spae

(total number of elements in the table whih are not neessarily distint) from N to �N for � > 1.

In Setion 6, we apply the same tehnique in the presene of multiple data by onsidering the searh

spae to be �

N

D

where � � 1. Finally we onlude in Setion 7.

2 Time/Memory/Data Trade-O� Methodology

The basi idea of Hellman's TMTO is quite simple. Suppose f : f0; 1g

n

! f0; 1g

n

be a one-way

funtion. The algorithm onsists of two stages: a one-time o�ine stage followed by an online stage.

In the online stage, we will be given D points y

1

; : : : ; y

D

in the range of f and we require to �nd

the pre-image of any one of these points. In the o�ine stage, a set of tables are prepared overing

N=D of the domain points, where N = 2

n

. Sine N=D domain points are overed and the online

stage involves D domain points, by the birthday bound, we are assured of onstant probability of

suess in �nding the pre-image of one of the y's.

In the o�ine stage r tables are prepared. Let f

1

; : : : ; f

r

be simple output modi�ations of

f (f

i

= g

i

Æ f), suh that the f

i

's an be assumed to be pairwise independent. The ith table is

prepared in the following manner. A total ofm random domain points are hosen. For eah domain

point, the funtion f

i

is iteratively applied t times to reah an end point. The pairs (start-point,

end-point) are stored as part of the ith table in the sorted order of the end points. The total storage

requirement is rm pairs of points, while the total overage is rmt points.

In the online stage, for eah data point y

j

we look for a pre-image in the set of points overed

by the tables. For searhing in the ith table, we �rst apply g

i

to y

j

to obtain y

0

j

, then we iteratively

apply f

i

a total of t times to y

0

j

. After eah appliation of f

i

, we look in the end points of the
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ith table for a math. If a math is found, we go to the orresponding start point and iterate f

i

until we reah y

0

j

. The preeding point is a possible pre-image of y, whih is veri�ed by applying

f to it and heking whether we obtain y. This requires a total of t appliations of f and t table

look-ups per table per data item. For more details regarding the method see the original paper by

Hellman [6℄. Also [2℄ provides a good desription of the method.

We disuss some general issues about TMTO. In Hellman's original sheme, D = 1; the table

preparation time is disregarded and only the online time and memory requirements are onsidered.

The assumption is that the tables would be prepared one for all in an o�ine phase. One the

tables are prepared, they will not hange and an be used to �nd di�erent pre-images. In this

senario, the table preparation time an be huge and even larger than exhaustive searh. Thus,

the seurity of a ryptographi algorithm with respet to this kind of TMTO has a hidden ost of

o�ine (and one time) exhaustive searh.

If multiple data is available, the atual table preparation time will be less than exhaustive

searh. An extension of Hellman's original priniple would be to disregard the table preparation

irrespetive of whether it is less or more than exhaustive searh.

On the other hand, in the presene of multiple data, we might wish to onsider the possibility of

a feasible attak even taking table preparation time into aount. Sine this is an o�ine ativity, it

might be reasonable to expet the table preparation time to be more than the online time but less

than exhaustive searh time. One possibility (briey onsidered in [2℄) is to onsider both o�ine

and online time to be of equal importane and require that they are both equal. This an lead to

interesting trade-o�s as we onsider later.

The amount of available data is ertainly a lower bound on the online time. It an also be

a lower bound on the memory requirement. This is beause the data usually needs to be stored

before proessing. Another possible senario is that the data is proessed as it is reeived thus

doing away with the neessity of storing it in whih ase the data an be more than the memory.

This might happen, for example, in the BG attak.

The preomputation time will be in general more than the memory requirement. In the table

preparation stage, the entire table will have to be omputed and only a fration of it stored. This

shows that the o�ine time will be at least as large as the memory requirement.

Hellman in his original paper [6℄, onsidered the ondition where the online time is equal to

the memory requirement. This provides a kind of optimality ondition, whih we will all Hellman

optimality. In the presene of multiple data, it is perhaps more pratial to require the data

and memory requirement to be less than the online and o�ine time requirements. This has been

onsidered in [2℄. We onsider the situation where the data and memory requirement are taken to

be equal and less than the online and o�ine times whih are also taken to be equal.

The data requirement denotes the number of bloks of data. Eah blok is n bits and D is the

data requirement, then it might appear that the total data requirement is nD bits. However, it

an be substantially lower [1, 4℄. For a bit oriented stream ipher, using a one-bit sliding window,

D bloks might be obtainable from as low as D + n� 1 bits.
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3 The Hellman Attak

Suppose r tables eah of dimension m� t are used and the online data onsists of D points. Then

from the Hellman attak we have the following relations.

T

f

= r(t� 1)D (# f invoations in the online phase)

T

t

= rtD (# table look-ups in the online phase)

P = rmt (# f invoations in the pre-omputation phase)

=

N

D

(overage)

M = rm (memory)

mt

2

� N (birthday bound)

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

(1)

If t � 1, we an assume t � 1 � t and T

f

� rtD = T

t

. We will usually make this assumption,

exept for the analysis of the BG attak, where t = 1. Let  be the ratio of the time required for

performing one table look-up to the time required for one invoation of f , i.e.,

 =

time for one table look-up

time for one invoation of f

: (2)

We assume that one unit of time orresponds to one invoation of f (i.e., one unit of time = time

required for ompleting one invoation of f). The time required for the table look-ups is then rtD.

De�ne T = max(T

f

; T

t

) = rtD. The parameter T is a measure of the time required during the

online phase. The atual online time is proportional to T

f

+ T

t

. However, this is only at most

twie the value of T . Thus, we will perform the analysis with T instead of T

f

+ T

t

.

For the present, we will assume that  = 1 (and T = T

t

� T

f

), i.e., the ost of one invoation

of f is equal to the ost of one table look-up. The value of  need not atually be one; even if it is

a small onstant (or a negligible fration of N), we an assume it to be one and that will not a�et

the asymptoti analysis. On the other hand, [2℄ mentions that  may be as large as one million

(� 2

20

). If N is only moderately large (like 2

64

for A5/1), then  an be a signi�ant proportion

of N . In suh a situation, we annot assume  = 1 and the ost of table look-up will dominate the

total online ost. This ase will be onsidered later.

Using (1), we an solve for r, m and t as follows.

t =

N

MD

� 1 (number of olumns)

m =

N

T

(number of rows)

r =

MT

N

� 1 (number of tables)

mt

2

=

N

3

TM

2

D

2

� N (birthday bound)

9

>

>

>

=

>

>

>

;

(3)

Note that all three of r;m and t must be at least 1. Sine m = N=T and for a valid attak we must

have N > T , the ondition on m is trivially satis�ed. The advantage of writing in the form of (3)

is that given values for T , M and D satisfying the proper onstraints, we an immediately design

a table struture whih ahieves these values.

Let D = N

a

for some 0 � a < 1. Sine PD = N , we have P = N

1�a

. The ondition on r,

shows that MT � N . We write MT = N

b

for b � 1. Also let M = N



; for a valid attak we
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must have 0 �  < 1. Sine MT = N

b

, we have T = N

b�

and again for a valid attak, we must

have 0 � b�  < 1. The available online data D is a lower bound on M and T and hene we have

a � ; b� . Sine the birthday bound tells us that mt

2

� N , we write mt

2

= N

d

, for some d with

0 � d � 1. Substituting in the last equation of (3), we obtain 2a + b +  + d = 3. The ondition

on t shows that MD � N , whih translates to a +  � 1. Thus, any set of values for a; b;  and d

whih satisfy the following onstraints onstitute a valid attak.

C1: 2a+ b+ + d = 3

C2: 0 � a < 1

C3: 0 � ; b�  < 1 � b

C4: a+  � 1

C5: 0 � d � 1

9

>

>

>

>

>

=

>

>

>

>

>

;

(4)

The so-alled TMTO urve an be obtained as the following relations.

TM

2

D

2

= N

3�d

PD = N

MD � N �MT

M;D; T < N:

9

>

>

>

=

>

>

>

;

(5)

Also, we have the following values of r;m and t.

r = N

b�1

; m = N

1�(b�)

; t = N

1�a�

: (6)

Sine MT = N

b

� N , we have r = 1 if and only if MT = N . With r = 1, we have only one table

and hene if there are more than one tables, then MT is stritly greater than N .

BG Attak [1, 4℄: In this ase, we have r = t = 1. This implies T

f

= 0, i.e., the online phase does

not require invoation of f . The ost in the online phase is T = T

t

and we have MD = N = MT

and hene T = D; M = N=D. This orresponds to the onditions a+  = 1; b = 1; d = 1� a:

BS Attak [2℄: In [2℄, r = t=D and d = 1 is used. Then T = t

2

, M = mt=D and hene

r = N

�a+(b�)=2

. Sine r � 1, we have the restrition 0 � 2a � b�  (i.e., 1 � D

2

� T ) in addition

to (4).

The onditions d = 1 and r = t=D are related (e.g., if r = 1, then t = D and T = t

2

= D

2

). In

the following analysis, we will proeed without these two onditions. Later, we show the situation

under whih making these two assumptions is useful.

3.1 Condition P = T

Sine both P and T represent time, the ase P = T puts equal emphasis on both the o�ine and the

online times. The ondition P = T impliesP = N

1�a

= T = N

b�

and som = N

1�(b�)

= N

a

= D.

(On the other hand, P = M is possible only if t = 1.) Sine PD = N , we have T = N=D and

so the urve beomes M

2

D = N

2�d

. If P = T , then r = M=D. If further M = D, then

M = D = N

(2�d)=3

and P = T = N

(1+d)=3

.
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Proposition 1 If P = T and M = D in (5), then M = D = N

(2�d)=3

and P = T = N

(1+d)=3

.

Further, r = 1, i.e., exatly one table is required.

Proposition 1 gives us a nie way to ontrol the trade-o� between time and data/memory require-

ment by varying d. Choosing d = 1, orresponds to (P;D;M; T ) = (N

2=3

; N

1=3

; N

1=3

; N

2=3

) and

has been observed in [2℄; hoosing d = 1=2 orresponds to (P;D;M; T ) = (N

1=2

; N

1=2

; N

1=2

; N

1=2

)

whih is the square root birthday (BG) attak.

3.2 Condition T =M

The ondition T =M was onsidered by Hellman [6℄ to be an optimality ondition. We perform an

analysis of (5) with T =M . Then  = b�, whene  = b=2. Condition C1 beomes 2a+3+d = 3

and so

b

2

=  = 1�

2a+ d

3

: (7)

Using a +  � 1, we obtain a � d. Also sine b � 1, we have  = b=2 � 1=2. This along with (7)

gives d � 3=2� 2a. Sine, we already know d � 1, we obtain

a � d � min(1;

3

2

� 2a): (8)

Thus, any non-negative solution in a and d to (8) gives a valid attak with T =M = N



.

We are interested in minimizing the value of . From (7), we see that the value of  is minimized

by maximizing the value of d. In fat, using (8), we an hoose d = 1 as long as 1 �

3

2

� 2a, i.e.,

2� (1=2a) � 0 or a � 1=4. Thus, for a � 1=4, we obtain T =M = N

b=2

= N

(2�2a)=3

.

In the ase 3=2 � 2a � 1, we have a � d � 3=2 � 2a. For the gap to be non-empty we must

have a � 1=2. For minimizing , we use the upper bound, i.e., d = 3=2 � 2a � 1. Thus, for

1=4 � a � 1=2, we have  = 1=2 and T =M = N

1=2

. Finally, we obtain the following result.

Theorem 2 If T =M , then D � N

1=2

and the following onditions hold.

1. N

1=2

� T =M = N

(2�2a)=3

� N

2=3

, for 1=4 � a � 0.

2. T =M = N

1=2

, for 1=4 � a � 1=2.

For the �rst ase we have, (a; b; ; d) = (a; 2(2 � 2a)=3; (2 � 2a)=3; 1) and for the seond ase we

have (a; b; ; d) = (a; 1; 1=2; 3=2 � 2a). The orresponding values of (r;m; t) are

(N

(1�4a)=3

; N

(1+2a)=3

; N

(1�a)=3

) and (1; N

1=2

; N

1=2�a

) respetively.

In the seond ase of Theorem 2, exatly one table is required. However, it is not the BG attak,

sine the number of olumns an be more than one. Also, we have T � P � N . The situation with

T < P < N is interesting, sine the pre-omputation time is less than exhaustive searh. Even

though P is more than T , sine it is an o�ine ativity, we might wish to spend more time in the

pre-omputation part than in the online attak.
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3.3 Distinguished Point Method

We now onsider the ase where  � 1. In this ase, a diret appliation of the Hellman method

leads to T = rtD, i.e., the time required for the table look-ups dominate the online time. It is

useful to onsider the distinguised point method of Rivest to redue the number of table look-ups.

See [2℄ for a desription of the DP method.

Using the distinguished point method results in reduing the number of table look-ups from rtD

to rD, i.e., one table look-up per table per data. Then T

t

= rD = N

a+b�1

. (Note T

t

= N

a

= D,

i.e., only one table look-up is required per data item if and only if b = 1 = r, i.e., MT = N .)

The total ost of the table look-ups is rD whereas the ost of invoking the one-way funtion is

rtD. In this ase, the ratio of the two osts is =t. If t � , then the ratio is at most one. Hene, we

an again ignore the ost of table look-up and perform the analysis by onsidering simply the ost

of invoking the one-way funtion. The atual runtime will be at most twie the runtime obtained

by suh an analysis.

Suppose t < . Then the analysis performed above does not hold. We now investigate the

situation under whih t <  holds. This ertainly holds for t = 1 (the BG attak), but in the BG

attak the entire online omputation onsists of table look-ups and hene the general analysis is

not required. Reall that t = N

1�(a+)

= 2

n(1�(a+))

, D = N

a

and M = N



. Suppose  = 2

e

.

Then t �  if and only if a +  � 1 � (e=n). The value of e is a onstant whereas n inreases.

Hene, (1 � e=n) ! 1 as n grows. Thus, we an have a +  > 1 � e=n only for small values of n.

The smallest value of n for whih we an expet to have a seure ryptographi algorithm is 64.

Further, as mentioned in [2℄, e an be at most around 20 and so 1� e=n � 2=3 for n � 64.

Consider a =  = 1=3, as in the solution (a; b; ; d) = (1=3; 1; 1=3; 1) orresponding to P = T =

N

2=3

; M = D = N

1=3

; r = 1 of [2℄. If n � 64, then a +  = 2=3 � 1 � e=n and the time analysis

assuming T = rtD = tD holds. On the other hand, for the solution (a; b; ; d) = (3=8; 1; 3=8; 7=8)

orresponding to P = T = N

5=8

; M = D = N

3=8

; r = 1 onsidered in Setion 4, we have

a +  = 3=4. For n = 64, a +  > 1 � e=n and we have to assume T = rD = D, whereas for

n = 100, a +  � 1 � e=n and we an assume T = rtD = tD. Thus, for relatively small n, we

should solve (4) with the onstraint a +  � 1 � e=n instead of a +  � 1. This disallows some of

the otherwise possible trade-o�s.

There is another issue that needs to be onsidered. We have to ensure that t is large enough to

ensure the ourrene of a DP in a hain. Let 2

�p

be the probability of a point being a DP. Hene,

we an expet one DP in a random olletion of 2

p

points. Thus, if t � 2

p

, we an expet a DP in a

hain of length t. This implies p � log

2

t. Any attempt to design the tables with t < 2

p

, will mean

that several trials will be required to obtain a hain terminating in a DP. This will inrease the

pre-omputation time. In fat, [2℄ has shown that use of the DP method in the BG attak divides

into two di�erent trade-o�s leading to unrealisti requirements on data and memory.

Using (6), we have

p

n

� 1 � (a+ ). This leads to the ondition a+  � 1�

p

n

(MD � N

1�

p

n

)

instead of the ondition a+ � 1 (resp. MD � N) in (4) (resp. (5)). For small n, this ondition has

to be ombined with a+ � 1�e=n and we should solve (4) with the onstraint a+ � 1�

1

n

max(p; e)

instead of the onstraint a+  � 1. This puts further restritions on otherwise allowed trade-o�s.
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3.3.1 BSW Sampling

There is an elegant appliation of TMTO in [3℄, whih uses a speial type of sampling tehnique

alled the BSW sampling. This tehnique uses only part of the available online data and also

redues the searh spae. The trade-o� urve does not hange, but the number of table look-ups

redues signi�antly. Use of this tehnique allowed partiularly eÆient attaks on A5/1.

Use of the BSW tehnique redues the amount of available online data. This makes it diÆult

to use a single table to arry out the TMTO. In suh a situation, our analysis does not lead to any

new insight into the BSW tehnique. On the other hand, if the available online data (even after

sampling) is large enough to allow the use of a single table, then our analysis applies and one an

onsider a wider variety of trade-o�s.

4 Single Table Attak

The ase N = 2

100

has been onsidered in [2℄. It has been mentioned in [2℄ that the Hellman

attak with D = 1; T = M = N

2=3

= 2

66

requires unrealisti amount of disk spae and the

BG attak with T = D = N

2=3

= 2

66

; M = N

1=3

= 2

33

requires unrealisti amount of data.

(Note T = M = D = N

1=2

= 2

50

also gives a BG attak. However, as mentioned in [2℄ in

a di�erent ontext, data and memory requirement of more than 2

40

is unrealisti.) Further, [2℄

mentions P = T = 2

66

and D =M = 2

33

to be a (barely) feasible attak. This orresponds to the

parameters (a; b; ; d) = (1=3; 1; 1=3; 1) and (r;m; t) = (1; N

1=3

; N

1=3

).

From Proposition 1, if we hoose d = 7=8, then we obtain M = D = N

3=8

= 2

37:5

and

P = T = N

5=8

= 2

62:5

. The orresponding parameters are (a; b; ; d) = (3=8; 1; 3=8; 7=8) and

(r;m; t) = (1; N

3=8

; N

1=4

). This brings down the attak time while keeping the data and memory

within feasible limits. Sine t > 1, this annot be obtained from the BG attak. Further, hoosing

d = 7=8 and D

2

> T ensures that this attak annot also be obtained from the BS attak. We

would like to point out that [2℄ mentions that hoosing d < 1 is \wasteful". The above example

shows that this is not neessarily the ase and hoosing d < 1 an lead to more exible trade-o�s.

We show below the ondition under whih hoosing d < 1 is indeed \wasteful".

The hoie of the parameter r = t=D is motivated in [2℄ by mentioning that this redues the

number of table look-ups. The number of table look-ups in the �rst ase is rtD = tD = N

2=3

whereas in the seond ase, it is rtD = tD = N

5=8

. Thus, the above example shows that the

ondition r = t=D is not neessary for reduing the number of table look-ups.

As mentioned earlier, we have one table (i.e., r = 1) if and only if MT = N . The reason for

moving to more than one tables is when mt

2

> N and we begin to have more and more repetitions

within a table.

Proposition 3 There is a solution to (5) with r = 1 = b (and hene MT = N = PD) if and only

if 2a+  � 1.

Proof : Suppose r = 1. Then b = 1 and 2a+ + d = 2. Hene d = 2� (2a+ ). Sine d � 1, this

shows 2a+  � 1.

On the other hand assume that 2a +  � 1. Choose b = 1 and set d = 2 � (2a + ) � 1. This

hoie satis�es the onditions of (5). Further, sine b = 1, we have r = 1.

8



Suppose 2a+  < 1. Then b+ d > 2 and b > 2� d. Sine MT = N

b

, we would like to minimize

b and hene we hoose d = 1. We an now modify the suggestion of [2℄ and say that it is \wasteful"

to hoose mt

2

< N if there are more than one table. Sine b > 1, we have 2a+  < 1 < b and hene

2a < b�  whih gives D

2

< T and we are bak to the situation desribed in [2℄.

Thus, the analysis of [2℄ atually applies to the situation where the data is small enough to

require more than one tables. On the other hand, for the ase of one table, the restritions of [2℄

are not required and removing these restritions provide more exible trade-o�s. We would like to

point out that there are interesting situations where a single table an be used. Apart from the

examples D = M = N

1=3

and D = M = N

3=8

already onsidered, other possible examples are

(D = N

0:3

, M = N

0:4

); (D = N

0:25

, M = N

0:5

), etetra.

Going bak to the example of N = 2

100

, both (P;D;M; T ) = (N

2=3

; N

1=3

; N

1=3

; N

2=3

) of [2℄

and (P;D;M; T ) = (N

5=8

; N

3=8

; N

3=8

; N

5=8

) desribed above have r = 1. As mentioned above, the

seond one is better with respet to the number of table look-ups. In onlusion, there are reasonable

hoies of data and memory requirements whih lead to a single table. In suh situations, the trade-

o� in [2℄ is not the only possible one. Other (and perhaps better) trade-o�s an be obtained following

the approah desribed here. We highlight some of the other interesting single table trade-o�s that

an be obtained.

Condition P = T = N

(1+d)=3

; M = D = N

(2�d)=3

: From Proposition 1, we have r = 1, i.e., all

trade-o�s attaining this ondition use a single table. In the plausible situation, M = D � P = T ,

we have 1=2 � d � 1. The ase d = 1 an be obtained from the BS analysis. In the BG analysis, we

have d = 1� a. Sine a� (2� d)=3, this ondition leads to d = 1=2. Thus, the range 1=2 < d < 1

for whih the ondition P = T = N

(1+d)=3

; M = D = N

(2�d)=3

an be attained was not known

earlier.

Condition M = T : In the seond ase of Theorem 2, we have r = 1 and M = T = N

1=2

. The

allowed range of a for this ase is 1=4 � a � 1=2. The ase a = 1=4 an be obtained from the

BS analysis and the ase a = 1=2 an be obtained from the BG analysis. However, the range

1=4 < a < 1=2 for whih T = M = N

1=2

an be attained, annot be obtained from either the BG

or the BS analysis and provide previously unknown trade-o�s. The advantage is that the data an

be inreased (thus lowering o�ine time) without inreasing either time or memory.

Small N Consider N = 2

64

, as in A5/1. It is mentioned in [3℄ that M � 2

35

and D � 2

22

are

reasonable hoies. We onsider two trade-o�s, orresponding to the seond ase of Theorem 2.

Trade-O� 1: (P;D;M; T ) = (2

46

; 2

18

; 2

32

; 2

32

): The table parameters are (r;m; t) = (1; 2

32

; 2

14

):

Trade-O� 2: (P;D;M; T ) = (2

42

; 2

22

; 2

32

; 2

32

): The table parameters are (r;m; t) = (1; 2

32

; 2

10

):

None of the above two trade-o�s are obtainable as BG trade-o�s, sine in both ases t > 1. Also,

neither an be onsidered to be BS trade-o�s sine D

2

> T . For both trade-o�s, the data and

memory are within reasonable limits and the online times are the same. The o�ine time is lower

9



for the seond trade-o� and is within doable limits (espeially as an o�ine one-time ativity), while

for the �rst attak it is probably just outside the doable limit.

The total ost of online table look-up for both the attak is tD. Sine the value of  is a

signi�ant proportion of N the ost of table look-up dominates the online ost. Use of the DP

method redues the total ost of table look-ups to D. If  is around 2

20

as mentioned in [2℄, we

have the table look-up osts to be 2

38

and 2

42

respetively. This pushes up the online ost of both

the attaks to make them less of a threat. On the other hand, if  an be brought down to around

2

10

by the deployment of speial purpose high speed memory, then the table look-up osts ome

down to 2

28

and 2

32

respetively. This will make both the attaks serious threats. We note that

with  � 2

20

, the attak of [3℄ remains the most eÆient one.

5 The Rainbow Attak

The rainbow attak was introdued in [8℄. The number of table look-ups of the rainbow method is

omparable to that of the Hellman+DP method. See [8℄ for a disussion of the relative advantages

of the rainbow method with respet to the DP method.

In the rainbow attak, we use a table of size m� t and suppose there are D online data points.

Then the total number of invoations of the one-way funtion is t

2

D=2 while the ost of the table

look-ups is tD. Again, we will ignore the fator of two in the runtime sine it does not signi�antly

a�et the analysis. Then, the total number of invoations of f is t

2

D and the total number of table

look-ups is tD. Also, we have mt = N=D.

If we assume  � 1, then the ost of invoking f dominates the online ost and we have M = m

and T = t

2

D. Assume D = N

a

and M = N



as in the ase of Hellman analysis. Then sine

mt = N=D = N

1�a

, we have t = N

1�a�

and T = t

2

D = N

2�a�2

. Also, sine t � 1, we must have

a+  � 1. The TMTO urve for rainbow in the presene of multiple data is TM

2

D = N

2

whih is

inferior to the Hellman TMTO urve when D > 1.

We now ompare the rainbow parameters (P;D;M; T ) = (N

1�a

; N

a

; N



; N

2�a�2

) with the

Hellman parameters for same data and memory. For multiple table Hellman, we hoose d = 1

and hene the orresponding Hellman parameters are (P;D;M; T ) = (N

1�a

; N

a

; N



; N

2�2a�2

). If

a > 0, i.e., if multiple data is available, then learly Hellman time is less than rainbow time.

If  is a signi�ant fration of N , then the ost of table look-ups is tD while the ost of invoking

f is still t

2

D. In the ase  > t, whih happens for relatively small N (around 2

64

or so), the ost of

table look-up dominates the online ost. To ompare to the Hellman method we have to onsider

the Hellman+DP algorithm. For the ase  > t, the online ost of the Hellman method is also tD.

Hene, for this ase, the osts of online time for the rainbow and the Hellman+DP methods are

equal. In this situation, one might prefer to use the rainbow method for the possibly lower rate of

false alarms ompared to the DP method [8℄.

Thus, we onlude that in the presene of multiple data, in general the Hellman attak is

better than the rainbow attak. For the ase of small N , the online times of both attaks an be

omparable and one might prefer rainbow for obtaining other possible advantages.
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6 Inreasing Coverage Spae

The suess probability of the Hellman method is onstant. It has been observed [7℄ that this

value is around 60%. To inrease the suess probability, one an inrease the overage spae of

all the tables. The tables together over a total of rmt points. We assume that rmt = �(N=D)

for some � � 1. By hoosing � > 1, it is possible to inrease the suess probability. Kim and

Matsumoto [7℄, have desribed this tehnique for the basi Hellman attak with D = 1. Below we

show that essentially the same tehnique also works for D > 1.

Let y

1

; : : : ; y

D

be the D data points and let x

1

; : : : ; x

D

be suh that f(x

i

) = y

i

. We de�ne P

Su

,

the suess probability to be the probability that at least one of x

i

is in the tables. Let P

1

be the

probability that a random point is overed by the tables and E

i

be the event that x

i

is not in the

tables. Then Prob(E

i

) = 1� P

1

for 1 � i � D.

P

Su

= 1� Prob(E

1

\E

2

\ : : : \E

D

)

= 1�

D

Y

i=1

Prob(E

i

)

= 1� (1� P

1

)

D

(9)

To �nd P

1

, we proeed as follows. Let PS

single

be the probability that the randomly hosen point is in

a single table andA

j

be the event that the point is not in the j

th

table. Then, Prob(A

j

) = 1�PS

single

:

P

1

= 1� Prob(A

1

\A

2

\ : : : \A

r

)

= 1�

r

Y

i=1

Prob(A

i

)

= 1� (1� PS

single

)

r

(10)

Hene,

P

Su

= 1� (1� P

1

)

D

= 1� (1 � PS

single

)

rD

:

In [6℄, Hellman provided the expression

PS

single

�

1

N

m

X

i=1

t

X

j=1

�

1�

it

N

�

j

:

Later Kim and Matsumoto [7℄ made the following simpli�ation:

PS

single

�

1

N

m

X

i=1

t

X

j=1

�

1�

it

N

�

j

�

1

t

m

X

i=1

1� e

�it

2

N

it

N

t

N

�

1

t

Z
mt

N

0

1� e

�tx

x

dx � h(u)

mt

N

;

where h(u) =

1

u

R

u

0

1�e

�x

x

dx and u =

mt

2

N

: This gives

P

Su

= 1� (1� PS

single

)

rD

� 1�

�

1� h(u)

mt

N

�

rD

� 1� e

(�h(u)

rmtD

N

)

= 1� e

(�h(u)��)

;

11



where � =

rmtD

N

: Now h(u) =

1

u

R

u

0

1�e

�x

x

dx < 1 for all u > 0. This implies that the suess

probability inreases with the value of �.

Thus, we should �rst �x � to ahieve the desired suess probability. Sine � usually turns out

to be a small onstant, its e�et on P; T;M and D is negligible. Hene, the analysis arried out

above will hold, with the atual attak parameters inreasing by at most a onstant fator.

7 Conlusion

We have studied the general problem of utilising multiple data in time/memory trade-o� attaks

introdued by Hellman in [6℄. We build on the analysis performed by Biryukov and Shamir [2℄. Our

general analysis shows that the Babbage-Goli attak and the Biryukov-Shamir attaks are speial

ases of the general Hellman attak. We also analyse under the Hellman optimality ondition

(T = M) and under the assumption P = T . Our main new ontribution is the identi�ation of a

new lass of single table trade-o�s whih are not obtainable as either the BG or the BS attaks. In

ertain ases, these new trade-o�s an be more desirable than the previous BG or the BS attaks.

Finally, we onsider the rainbow attak of Oehslin and show that with the utilization of multiple

data, the TMTO urve of the rainbow attak is inferior to the TMTO urve of the Hellman attak.

On the other hand, for small N and relatively high ost of one table look-up, the online time for

both the rainbow and the Hellman+DP methods are omparable.
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