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Abstrat

We present a fully symmetri onstant round authentiated group key agreement protool in dynami

senario. Our proposed sheme ahieves forward serey and is provably seure under DDH assumption

in the seurity model of Bresson et al. providing, we feel, better seurity guarantee than previously

published results. The protool is eÆient in terms of both ommuniation and omputation power.
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1 Introdution

A group key agreement protool allows a group of users ommuniating over an untrusted, open network

to ome up with a ommon seret value alled a session key. This session key an be used to failitate

desirable seurity servies, suh as on�dentiality and data integrity.

Authentiated group key agreement allows two or more parties to agree upon a ommon seret key even

in the presene of ative adversaries. These protools are designed to deal with the problem to ensure users

in the group that no other prinipals aside from members of the group an learn any information about

the session key. The design of seure and eÆient authentiated group key agreement protools gets muh

attention in urrent researh with inreasing appliability in numerous group-oriented and ollaborative

appliations [13, 17, 5, 18, 11, 19, 25, 31℄.

Construting forward seure authentiated key agreement sheme in a formal seurity model has re-

ently reeived muh importane. EÆieny is another ritial onern in designing suh protools for

pratial appliations. In partiular, number of rounds may be ruial in an environment where quite

a large number of users are involved and the group-membership is dynami. In a dynami group key

agreement, the users an join or leave the group at any time. Suh shemes must ensure that the session

key is updated upon every membership hange, so that the subsequent sessions are proteted from leaving

members and the previous sessions are proteted from joining members. The ost of updates assoiated

with group membership hanges should be minimum. There are quite a number of dynami group key

agreement protools [14, 15, 16, 28, 26, 27, 31℄. In this paper, we study the problem of dynami authenti-

ated group key agreement. We design our algorithm for join and leave to ensure minimum modi�ation

to the omputation already preomputed when a pool of users join or leave the group and the session key

is updated.

Our Contribution : The main ontribution of this paper is to obtain a provably seure onstant round
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authentiated group key agreement protool in dynami senario where a user an join or leave the group

at his desire with updated key. We propose in Setion 3 a sheme that is proven to be seure against passive

adversary assuming the intratability of deision DiÆe-Hellman (DDH) problem. Then we authentiate

this unauthentiated protool by inorporating digital signature and provide a onrete seurity analysis

against ative adversaries in the model as formalized by Bresson et al. [15℄. We appropriately modify the

Katz-Yung [25℄ tehnique to ahieve authentiation in our protool. Finally, we extend this stati authen-

tiated protool to dynami authentiated protool by introduing algorithms for join and leave. We prove

(Setion 4) that the seurity of both the stati and dynami authentiated protools rely on that of the

unauthentiated protool. The seurity model of Bresson et al. [15℄ is adopted for the seurity analysis of

the dynami ase. Our protool ahieves forward serey, is fully symmetri and being of onstant round,

is more eÆient as ompared to the protool of Bresson et al. [15℄ (whose round omplexity is linear in

the number of group members). Our seurity result holds in the standard model and thus provides better

seurity guarantees than previously published results in the random orale model.

More reently, Kim et al. [28℄ proposed a very eÆient onstant round dynami authentiated group key

agreement protool and provide a seurity analysis of their stati authentiated protool whih is shown

to be seure under omputation DiÆe-Hellman (CDH) assumption using random hash orale. They did

not onsider the seurity analysis of their dynami authentiated protool. Unlike [28℄, we have ahieved

the seurity of our dynami sheme in the standard model under standard DDH assumption without

using any random orale. We separately analyze the seurity of our stati unauthentiated protool,

stati authentiated protool and dynami authentiated protool and redue the seurity of the stati

authentiated protool and dynami authentiated protool to that of the unauthentiated protool.

Our proposed sheme onsiders the users U

1

; U

2

; : : : ; U

n

partiipating in the protool on a ring where

U

i�1

; U

i+1

are respetively the left and right neighbors of U

i

for 1 � i � n with U

0

= U

n

; U

n+1

= U

1

.

Only 2 rounds are required in our protool whih makes our protool eÆient from ommuniation point

of view. User U

i

; 1 � i � n, sends a message in �rst round only to its neighbors U

i�1

; U

i+1

and a message

in seond round to the rest of the n� 1 users. Eah user sends one message in eah round with bit length

at most 2jqj + 2jsj where jqj is the length of q, the order of the underlying group on whih DDH problem

is assumed to be hard and jsj is the length of signature. Eah group member omputes at most 3 modular

exponentiations (1 in round 1 and 2 in round 2), 2n� 2 modular multipliations (n� 1 multipliations for

reovery of all right keys and n � 1 multipliations for session key omputation), 1 division, 2 signature

generation and n+ 1 signature veri�ation.

Our protool is more eÆient as ompared to the protool of Burmester and Desmedt [18℄ (BD) in terms

of both ommuniation and omputation power. Moreover, we emphasize that our protool is dynami.

The authentiation in BD protool was introdued by Katz and Yung [25℄ (KY) that requires 3 rounds.

Table 1 analyzes the eÆieny of our stati authentiated protool and authentiated protool KY [25℄

where both the shemes are forward seure, ahieve provable seurity under DDH assumption in standard

model. We use the following notations:

n total number of users in a group

R total number of rounds

PTP maximum number of point-to-point ommuniation per user

Exp maximum number of modular exponentiations omputed per user

Mul maximum number of modular multipliations omputed per user

Div maximum number of divisions omputed per user

Sig maximum number of signatures generated per user

Ver maximum number of signature veri�ation per user
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Protool Communiation Computation Hardness Remarks

R PTP Exp Mul Div Sig Ver Assumption

KY [25℄ 3 3(n� 1) 3

n

2

2

+

3n

2

� 3 1 2 2(n� 1) DDH stati

Our protool 2 n+ 1 3 2n� 2 1 2 n+ 1 DDH dynami

Table 1: Protool omparison

In eah round of authentiated BD protool, a user sends message to the rest of the users (although

the ommuniation in the seond round an be redued). In ontrast, eah user in our protool sends a

message only to its two neighbors in the �rst round and a message to the rest of the users in the seond

round. Our protool di�ers from the BD protool in the way the session key is omputed after the rounds

are over. Eah user omputes

n

2

2

+

3n

2

� 3 modular multipliations in BD protool. On a more positive

note, eah user in our protool requires to ompute at most 2n modular multipliations. This makes our

protool muh more eÆient as ompared to BD protool. Besides, our protool has the ability to detet

the presene of a orrupted group member, although we annot detet who among the group members are

behaving improperly. If an invalid message is sent by a orrupted member, then this an be deteted by

all legitimate members of the group and the protool exeution may be stopped instantly. This feature

makes our protool interesting when the adversarial model no longer assumes that the group members are

honest.

2 Preliminaries

In this setion, we de�ne the Deision DiÆe-Hellman (DDH) problem and desribe the seurity model in

whih we prove the seurity of our group key agreement protool. We use the notation a � S to denote

that a is generated randomly from S.

2.1 Deision DiÆe-Hellman (DDH) problem

Let G = hgi be a multipliative group of some large prime order q. Then Deision DiÆe-Hellman (DDH)

problem on G is de�ned as follows:

Instane : (g

a

; g

b

; g



) for some a; b;  2 Z

�

q

.

Output : yes if  = ab mod q and output no otherwise.

We onsider two distributions as:

�

Real

= fa; b � Z

�

q

; A = g

a

; B = g

b

; C = g

ab

: (A;B;C)g

�

Rand

= fa; b;  � Z

�

q

; A = g

a

; B = g

b

; C = g



: (A;B;C)g:

The advantage of any probabilisti, polynomial-time, 0/1-valued distinguisher D in solving DDH problem

on G is de�ned to be : Adv

DDH

D;G

= jProb[(A;B;C) � �

Real

: D(A;B;C) = 1℄�Prob[(A;B;C) � �

Rand

:

D(A;B;C) = 1℄j. The probability is taken over the hoie of log

g

A; log

g

B; log

g

C and D's oin tosses. D

is said to be a (t; �)-DDH distinguisher for G if D runs in time at most t suh that Adv

DDH

D;G

(t) � �.

DDH assumption : There exists no (t; �)-DDH distinguisher forG. In other words, for every probabilisti,

polynomial-time, 0/1-valued distinguisher D, Adv

DDH

D;G

� � for suÆiently small � > 0.
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2.2 Seurity Model

We desribe below the adversarial model following Bresson et al.'s [15℄ formal seurity model that we

adopt for the seurity analysis of our protools. This model is more general in the sense that it overs

authentiated key agreement in group setting and suited for dynami groups.

Let P = fU

1

; : : : ; U

n

g be a set of n (�xed) users or partiipants. At any point of time, any subset of

P may deide to establish a session key. Thus a user an exeute the protool for group key agreement

several times withdi�erent partners, an join or leave the group at his desire by exeuting the protools for

Join or Leave. We identify the exeution of protools for key agreement, member(s) join and member(s)

leave as di�erent sessions. The adversarial model onsists of allowing eah user an unlimited number of

instanes with whih it exeutes the protool for key agreement or inlusion or exlusion of a user or a

set of users. We assume adversary never partiipates as a user in the protool. This adversarial model

allows onurrent exeution of the protool. The interation between the adversary A and the protool

partiipants our only via orale queries, whih model the adversary's apabilities in a real attak. Let

S; S

1

; S

2

be three sets de�ned as:

S = f(V

1

; i

1

); : : : ; (V

l

; i

l

)g; S

1

= f(V

l+1

; i

l+1

); : : : ; (V

l+k

; i

l+k

)g; S

2

= f(V

j

1

; i

j

1

); : : : ; (V

j

k

; i

j

k

)g

where fV

1

; : : : ; V

l

g is any non-empty subset of P. We will require the following notations.

�

i

U

: i-th instane of user U .

sk

i

U

: session key after exeution of the protool by �

i

U

.

sid

i

U

: session identity for instane �

i

U

. We set sid

i

U

= S = f(U

1

; i

1

); : : : ; (U

k

; i

k

)g

suh that (U; i) 2 S and �

i

1

U

1

; : : : ;�

i

k

U

k

wish to agree upon a ommon key.

pid

i

U

: partner identity for instane �

i

U

, de�ned by pid

i

U

= fU

1

; : : : ; U

k

g,

suh that (U

j

; i

j

) 2 sid

i

U

for all 1 � j � k.

a

i

U

: 0=1-valued variable whih is set to be 1 by �

i

U

upon normal termination of

the session and 0 otherwise.

We will make the assumption that in eah session at most one instane of eah user partiipates. Further, an

instane of a partiular user partiipates in exatly one session. This is not a very restritive assumption,

sine a user an spawn an instane for eah session it partiipates in. On the other hand, there is an

important onsequene of this assumption. Suppose there are several sessions whih are being onurrently

exeuted. Let the session ID's be sid

1

; : : : ; sid

k

. Then for any instane �

i

U

, there is exatly one j suh

that (U; i) 2 sid

j

and for any j

1

6= j

2

, we have sid

j

1

\ sid

j

2

= ;. Thus at any partiular point of time, if

we onsider the olletion of all instanes of all users, then the relation of being in the same session is an

equivalene relation whose equivalene lasses are the session IDs.

We assume that the adversary has omplete ontrol over all ommuniations in the network. All

information that the adversary gets to see is written in a transript. So a transript onsists of all the

publi information owing aross the network. The following orales model an adversary's interation with

the users in the network:

{ Send(U; i;m) : This query models an ative attak, in whih the adversary may interept a message

and then either modify it, reate a new one or simply forward it to the intended partiipant. The

output of the query is the reply (if any) generated by the instane �

i

U

upon reeipt of message m.

The adversary is allowed to prompt the unused instane �

i

U

to initiate the protool with partners

U

2

; : : : ; U

l

; l � n, by invoking Send(U; i; hU

2

; : : : ; U

l

i).
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{ Exeute(S) : This query models passive attaks in whih the attaker eavesdrops on honest exeution of

group key agreement protool among unused instanes �

i

1

V

1

; : : : ;�

i

l

V

l

and outputs the transript of the

exeution. A transript onsists of the messages that were exhanged during the honest exeution of

the protool.

{ Join(S; S

1

) : This query models the insertion of user instanes �

i

l+1

V

l+1

; : : : ;�

i

l+k

V

l+k

in the group fV

1

; : : : ; V

l

g �

P for whih Exeute have already been queried. The output of this query is the transript generated

by the invoation of algorithm Join. If Exeute(S) has not taken plae, then the adversary is given

no output.

{ Leave(S; S

2

) : This query models the removal of user instanes �

i

j

1

V

j

1

; : : : ;�

i

j

k

V

j

k

from the group fV

1

; : : : V

l

g �

P. If Exeute(S) has not taken plae, then the adversary is given no output. Otherwise, algorithm

Leave is invoked. The adversary is given the transript generated by the honest exeution of proedure

Leave.

{ Reveal(U; i) : This outputs session key sk

i

U

. This query models the misuse of the session keys, i.e known

session key attak.

{ Corrupt(U) : This outputs the long-term seret key (if any) of player U . The adversarial model that we

adopt is a weak-orruption model in the sense that only the long-term seret keys are ompromised,

but the ephemeral keys or the internal data of the protool partiipants are not orrupted. This

query models (perfet) forward serey.

{ Test(U; i) : This query is allowed only one, at any time during the adversary's exeution. A bit

b 2 f0; 1g is hosen uniformly at random. The adversary is given sk

i

U

if b = 1, and a random session

key if b = 0. This orale omputes the adversary's ability to distinguish a real session key from a

random one.

An adversary whih has aess to the Exeute, Join, Leave, Reveal, Corrupt and Test orales, is onsidered

to be passive while an ative adversary is given aess to the Send orale in addition. (For stati ase,

there is no Join or Leave queries as a group of �xed size is onsidered.)

The adversary an ask Send, Exeute, Join, Leave, Reveal and Corrupt queries several times, but Test

query is asked only one and on a fresh instane. We say that an instane �

i

U

is fresh unless either the

adversary, at some point, queried Reveal(U; i) or Reveal(U

0

; j) with U

0

2 pid

i

U

or the adversary queried

Corrupt(V ) (with V 2 pid

i

U

) before a query of the form Send(U; i; �) or Send(U

0

; j; �) where U

0

2 pid

i

U

.

Finally adversary outputs a guess bit b

0

. Suh an adversary is said to win the game if b = b

0

where b is

the hidden bit used by the Test orale.

Let Su denote the event that the adversary A wins the game for a protool XP. We de�ne

Adv

A;XP

:= j2 Prob[Su℄� 1j

to be the advantage of the adversary A in attaking the protool XP.

The protool XP is said to be a seure unauthentiated group key agreement (KA) protool if there is no

polynomial time passive adversary with non-negligible advantage. In other words, for every probabilisti,

polynomial-time, 0/1 valued algorithm A, Adv

A;XP

<

1

M

L

for every �xed L > 0 and suÆiently large

integer M . We say that protool XP is a seure authentiated group key agreement (AKA) protool if there

is no polynomial time ative adversary with non-negligible advantage. Next we de�ne
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Adv

KA

XP

(t; q

E

) := the maximum advantage of any passive adversary attaking protool XP,

running in time t and making q

E

alls to the Exeute orale.

Adv

AKA

XP

(t; q

E

; q

S

) := the maximum advantage of any ative adversary attaking protool XP,

running in time t and making q

E

alls to the Exeute orale and q

S

alls

to the Send orale.

Adv

AKA

XP

(t; q

E

; q

J

; q

L

; q

S

) := the maximum advantage of any ative adversary attaking protool XP,

running in time t and making q

E

alls to the Exeute orale, q

J

alls to

Join orale, q

L

alls to the Leave orale and q

S

alls to the Send orale.

3 Protool

Suppose a set of n users P = fU

1

; : : : ; U

n

g wish to establish a ommon session key among themselves.

Quite often, we identify a user U

i

with it's instane �

d

i

U

i

(for some integer d

i

that is session spei�) during

a protool exeution. We onsider the users U

1

; : : : ; U

n

partiipating in the protool are on a ring and

U

i�1

; U

i+1

are respetively the left and right neighbors of U

i

for 1 � i � n, U

0

= U

n

; U

n+1

= U

1

and U

n+i

is taken to be U

i

. As mentioned earlier, we onsider a multipliative group G of some large prime order q

with g as a generator. We also onsider a hash funtion H : f0; 1g

�

! Z

�

q

.

3.1 Unauthentiated Key Agreement Protool

U

1

U

2

U

3

U

4

U

5

� � � � �

x

1

x

2

x

3

x

4

x

5

g

x

1

g

x

2

g

x

3

g

x

4

g

x

5

: Round-1

Communiations �! U

i

sends g

x

i

to U

i�1

; U

i+1

, 1 � i � 5, U

0

= U

5

; U

6

= U

1

.

U

i

omputes K

L

i

= g

x

i�1

x

i

, K

R

i

= g

x

i

x

i+1

, 1 � i � 5, x

0

= x

5

; x

6

= x

1

K

R

1

K

L

1

K

R

2

K

L

2

K

R

3

K

L

3

K

R

4

K

L

4

K

R

5

K

L

5

: Round-2

Communiations �! U

i

, 1 � i � 5 sends

K

R

i

K

L

i

to U

j

, 1 � j � 5; j 6= i

U

i

, 1 � i � 5 reovers K

R

j

, 1 � j � 5; j 6= i

The session key sk = K

R

1

K

R

2

K

R

3

K

R

4

K

R

5

= g

x

1

x

2

+x

2

x

3

+x

3

x

4

+x

4

x

5

+x

5

x

1

Figure 1: The unauthentiated group key agreement among n = 5 users.

First we informally desribe our unauthentiated protool KeyAgree that involves two rounds and a
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key omputation phase. At the start of the session, eah user U

i

= �

d

i

U

i

hooses randomly a private key

x

i

2 Z

�

q

. In the �rst round, U

i

omputes X

i

= g

x

i

and sends X

i

to its neighbors U

i�1

; U

i+1

. After this

ommuniation is over, U

i

reeives X

i�1

from U

i�1

and X

i+1

from U

i+1

. U

i

then omputes it's left key

K

L

i

= X

x

i

i�1

, right key K

R

i

= X

x

i

i+1

, Y

i

= K

R

i

=K

L

i

and sends Y

i

to the rest of the users in the seond round.

Finally in the key omputation phase, U

i

omputes K

R

i+1

;K

R

i+2

; : : : ;K

R

i+(n�1)

as follows making use of his

own right key K

R

i

: K

R

i+1

= Y

i+1

K

R

i

;K

R

i+2

= Y

i+2

K

R

i+1

; : : : ;K

R

i+(n�1)

= Y

i+(n�1)

K

R

i+(n�2)

: Then U

i

veri�es

if K

R

i+(n�1)

is same as that of his left key K

L

i

(= K

R

i+(n�1)

). If veri�ation fails, then U

i

aborts. Otherwise,

U

i

has the orret right keys of all the users. U

i

omputes the session key sk

d

i

U

i

= K

R

1

K

R

2

: : : K

R

n

whih is

equal to g

x

1

x

2

+x

2

x

3

+���+x

n

x

1

. U

i

also omputes and stores x = H(sk

d

i

U

i

) for a join operation and stores his left

key and right key K

L

i

, K

R

i

respetively for a leave operation as we will see in the subsequent subsetions.

We refer x as the seed whih is ommon to all users involved in the session. Figure 1 illustrates the protool

with n = 5 users.

Observe that eah user omputes 3 exponentiations (1 in round 1 and 2 in round 2) and at most 2n� 2

multipliations (n� 1 multipliations for reovery of all right keys and n� 1 multipliations for session key

omputation). The formal desription of the protool is given below.

proedure KeyAgree(U [1; : : : ; n℄; x[1; : : : ; n℄)

(Round 1):

1. for i = 1 to n do in parallel

2. U

i

(= �

d

i

U

i

) omputes X

i

= g

x

i

and sends X

i

to U

i�1

and U

i+1

;

3. end for

4. Note that X

0

= X

n

and X

n+1

= X

1

.

(Round 2):

5. for i = 1 to n do in parallel

6. U

i

omputes the left key K

L

i

= X

x

i

i�1

, the right key K

R

i

= X

x

i

i+1

and Y

i

= K

R

i

=K

L

i

;

7. U

i

sends Y

i

to the rest of the users;

8. end for

9. Note that K

R

i

= K

L

i+1

for 1 � i � n� 1, K

R

n

= K

L

1

and K

R

i+(n�1)

= K

L

i

:

(Key Computation):

10.for i = 1 to n do in parallel

11.U

i

omputes K

R

i+1

= Y

i+1

K

R

i

;

12. for j = 2 to n� 1 do

13. U

i

omputes K

R

i+j

= Y

i+j

K

R

i+(j�1)

;

14. end for

15. U

i

veri�es if K

R

i+(n�1)

= K

R

i+(n�1)

(i.e. if K

L

i

= K

R

i+(n�1)

);

16. if veri�ation fails, then U

i

sets a

d

i

U

i

= 0, sk

d

i

U

i

= NULL and aborts the protool;

17. else U

i

omputes the session key sk

d

i

U

i

= K

R

1

K

R

2

: : : K

R

n

, the seed x = H(sk

d

i

U

i

) and stores K

L

i

;K

R

i

;

18. end if

19.end for

end KeyAgree
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3.2 Authentiated Key Agreement Protool

We authentiate the unauthentiated protool of Setion 3.1 by inorporating a standard digital signature

sheme DSig = (K;S;V) where K is the key generation algorithm, S is the signature generation algorithm

and V is the signature veri�ation algorithm. As part of this signature sheme, K generates a signing

and a veri�ation key sk

i

(or sk

U

i

) and pk

i

(or pk

U

i

) respetively for eah user U

i

. Session identity is an

important issue of our authentiation mehanism whih uniquely identi�es the session and is same for all

instanes partiipating in the session.

Suppose instanes �

d

1

U

i

1

; : : : ;�

d

k

U

i

k

wish to agree upon a ommon key in a session. Then aording to

our de�nition, sid

d

j

U

i

j

= f(U

i

1

; d

1

); : : : ; (U

i

k

; d

k

)g. Note that the instane numbers an be easily generated

using ounter. We make the assumption that in eah session at most one instane of eah user partiipates

and an instane of a partiular user partiipates in exatly one session. As mentioned earlier, this is a

reasonable assumption to avoid ollisions in the session identities.

At the start of the session, �

d

j

U

i

j

need not to know the entire set sid

d

j

U

i

j

. This set is built up as the

protool proeeds. We use a variable partial session-identity psid

d

U

for instane �

d

U

involved in a session

to keep the partial information about it's session identity. Initially, psid

d

j

U

i

j

is set to be f(U

i

j

; d

j

)g by �

d

j

U

i

j

and �nally after ompletion of the session, psid

d

j

U

i

j

grow into full session identity sid

d

j

U

i

j

. We assume that

any instane �

d

j

U

i

j

knows it's partner identity pid

d

j

U

i

j

i.e. the set of users with whih it is partnered in the

partiular session. We desribe below the algorithm AuthKeyAgree that is obtained by modifying algorithm

KeyAgree by introduing signatures in the ommuniation.

proedure AuthKeyAgree(U [1; : : : ; n℄; x[1; : : : ; n℄)

(Round 1):

1. for i = 1 to n do in parallel

2. U

i

(= �

d

i

U

i

) sets its partial session-identity psid

d

i

U

i

= f(U

i

; d

i

)g;

3. U

i

hooses randomly x

i

2 Z

�

q

and omputes X

i

= g

x

i

and �

i

= S(sk

U

i

;M

i

) where M

i

= U

i

j1jX

i

;

4. U

i

sends M

i

j�

i

to U

i�1

and U

i+1

;

5. end for

6. Note that M

0

j�

0

=M

n

j�

n

and M

n+1

j�

n+1

=M

1

j�

1

.

(Round 2):

7. for i = 1 to n do in parallel

8. U

i

, on reeiving M

i�1

j�

i�1

from U

i�1

and M

i+1

j�

i+1

from U

i+1

, veri�es �

i�1

on M

i�1

and �

i+1

on M

i+1

using the veri�ation algorithm V and the respetive veri�ation keys pk

U

i�1

, pk

U

i+1

;

9. if veri�ation fails, then U

i

sets a

d

i

U

i

= 0, sk

d

i

U

i

= NULL and aborts;

10. else U

i

omputes the left key K

L

i

= X

x

i

i�1

, the right key K

R

i

= X

x

i

i+1

, Y

i

= K

R

i

=K

L

i

and signature �

i

= S(sk

U

i

;M

i

) where M

i

= U

i

j2jY

i

jd

i

;

11. U

i

sends M

i

j�

i

to the rest of the users;

12. end if

13.end for

14.Note that K

R

i

= K

L

i+1

for 1 � i � n� 1, K

R

n

= K

L

1

and K

R

i+(n�1)

= K

L

i

:

(Key Computation):

15.for i = 1 to n do in parallel

16. for j = 1 to n, j 6= i do

17. U

i

, on reeiving M

j

j�

j

from U

j

veri�es �

j

on M

j

using

8



the veri�ation algorithm V and the veri�ation key pk

U

j

;

18. if veri�ation fails, then U

i

sets a

d

i

U

i

= 0, sk

d

i

U

i

= NULL and aborts;

19. else U

i

extrats d

j

from M

j

and sets psid

d

i

U

i

= psid

d

i

U

i

[ f(U

j

; d

j

)g;

20. end for

21. U

i

omputes K

R

i+1

= Y

i+1

K

R

i

;

22. j = 2 to n� 1 do

23. U

i

omputes K

R

i+j

= Y

i+j

K

R

i+(j�1)

;

24. end for

25. U

i

veri�es if K

R

i+(n�1)

= K

R

i+(n�1)

(i.e. if K

L

i

= K

R

i+(n�1)

);

26. if veri�ation fails, then U

i

sets a

d

i

U

i

= 0, sk

d

i

U

i

= NULL and aborts;

27. else U

i

omputes the session key sk

d

i

U

i

= K

R

1

K

R

2

: : : K

R

n

, the seed x = H(sk

d

i

U

i

) and stores K

L

i

;K

R

i

;

28. end if

29. end if

30.end for

end AuthKeyAgree

3.3 Dynami Key Agreement Protool

3.3.1 Join

Suppose U [1; : : : ; n℄ be a set of users with respetive seret keys x[1; : : : ; n℄ and an exeution of AuthKeyA-

gree among the instanes �

t

1

U

1

; : : : ;�

t

n

U

n

has already been done. So all these instanes �

t

i

U

i

; 1 � i � n, have

a ommon session key and also a ommon seed x 2 Z

�

q

resulting from this exeution of AuthKeyAgree. Let

the set of users U [n+1; : : : ; n+m℄ with seret keys x[n+1; : : : ; n+m℄ want to join the group U [1; : : : ; n℄.

The new instanes involved in the proedure Join are �

d

1

U

1

; : : : ;�

d

n+m

U

n+m

.

We onsider a ring of l = m + 3 users V

1

= U

1

, V

2

= U

2

, V

3

= U

n

, V

i

= U

n+i�3

for 4 � i � l

with V

2

now using the seed x as it's private key. We set y

1

= x

1

; y

2

= x; y

3

= x

n

, y

i

= x

n+i�3

and

^

d

1

= d

1

;

^

d

2

= d

2

;

^

d

3

= d

n

,

^

d

i

= d

n+i�3

. The left and right neighbors of V

i

are respetively V

i�1

and

V

i+1

for 1 � i � l with V

0

= V

l

and V

l+1

= V

1

. We take V

l+i

to be V

i

and V

2

is the representative

of the set of users U [2; : : : ; n� 1℄. We invoke KeyAgree (for unauthentiated version of join algorithm)

or AuthKeyAgree (for authentiated version of join algorithm) for l users V [1; : : : ; l℄ with respetive keys

y[1; : : : ; l℄. For simpliity, we desribe the unauthentiated version of the preedure Join and mention the

additional modi�ations required for it's authentiated version.

Let for 1 � i � l,

^

X

i

= g

y

i

;

^

X

0

=

^

X

l

;

^

X

l+1

=

^

X

1

;

^

K

L

i

=

^

X

y

i

i�1

;

^

K

R

i

=

^

X

y

i

i+1

;

^

Y

i

=

^

K

R

i

=

^

K

L

i

: In round 1,

V

i

sends

^

X

i

to both V

i�1

and V

i+1

. Additionally, V

1

sends

^

X

1

and V

3

sends

^

X

3

to all users U [3; : : : ; n� 1℄

in this round. In the seond round, V

i

omputes it's left key

^

K

L

i

, right key

^

K

R

i

and sends

^

Y

i

to the rest

of the users in V [1; : : : ; l℄. Additionally, V

i

sends

^

Y

i

to all users in U [3; : : : ; n � 1℄. If the protool does

not abort, V

i

omputes the session key sk

^

d

i

V

i

in the key omputation phase whih is the produt of l right

keys orresponding to l users V [1; : : : ; l℄. V

i

also omputes the seed H(sk

^

d

i

V

i

) and stores

^

K

L

i

;

^

K

R

i

that an

be used for subsequent dynami operations. Although ative partiipations of the users U [3; : : : ; n � 1℄

are not required during the protool exeution, these users should be able to ompute the ommon session

key, the seed, the left key and the right key. Fortunately, these users have x,

^

X

1

= g

y

1

and

^

X

3

= g

y

3

. So

eah an ompute and store U

2

's left key

^

K

L

2

= g

y

1

x

, right key

^

K

R

2

= g

y

3

x

and proeeding in the same way

as V

2

does, reover right keys of l users V [1; : : : ; l℄, omputes the session key and the ommon seed. The

joining algorithm Join is fomally desribed below.
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proedure Join(U [1; : : : ; n+m℄; x[1; : : : ; n+m℄)

1. Set l = m+ 3; V

1

= U

1

; V

2

= U

2

; V

3

= U

n

;

^

d

1

= d

1

;

^

d

2

= d

2

;

^

d

3

= d

n

; y

1

= x

1

; y

2

= x; y

3

= x

n

;

and for 4 � i � l, V

i

= U

n+i�3

;

^

d

i

= d

n+i�3

; y

i

= x

n+i�3

;

2. We onsider a ring of l users V [1; : : : ; l℄ with respetive instane numbers

^

d[1; : : : ; l℄

and seret keys y[1; : : : ; l℄;

3. all KeyAgree(V [1; : : : ; l℄; y[1; : : : ; l℄);

4. Let for 1 � i � l,

^

X

i

= g

y

i

;

^

X

0

=

^

X

l

;

^

X

l+1

=

^

X

1

;

^

K

L

i

=

^

X

y

i

i�1

;

^

K

R

i

=

^

X

y

i

i+1

;

^

Y

i

=

^

K

R

i

=

^

K

L

i

;

5. V

1

and V

3

, in round 1, additionally send

^

X

1

and

^

X

3

respetively to all users in U [3; : : : ; n� 1℄;

6. V

i

, in round 2, additionally sends

^

Y

i

to all users in U [3; : : : ; n� 1℄;

7. for i = 3 to n� 1 do

8. U

i

omputes

^

K

R

3

=

^

Y

3

K

R

2

;

9. j = 2 to l � 1 do

10. U

i

omputes

^

K

R

2+j

=

^

Y

2+j

^

K

R

2+(j�1)

;

11. end do

12. U

i

omputes sk

d

i

U

i

=

^

K

R

1

^

K

R

2

: : :

^

K

R

l

;

13.end for

end Join

If we invoke proedure AuthKeyAgree instead of KeyAgree in line 3 of the above algorithm, then messages

transmitted during the protool exeution are properly strutured with signatures appended to them

generated and veri�ed aording to the algorithm AuthKeyAgree. At the end of the session, if the protool

terminates normally without abort, then eah user V

i

, 1 � i � l additionally has a ommon session identity

sid

^

d

i

V

i

= f(V

1

;

^

d

1

); : : : ; (V

l

;

^

d

l

)g apart from the ommon session key, the seed, the left and the right keys.

Users U [3; : : : ; n � 1℄ are also able to ompute this session identity from the messages reeived by them

during the protool exeution.

3.3.2 Leave

Suppose U [1; : : : ; n℄ is a set of users with respetive seret keys x[1; : : : ; n℄ and an exeution of AuthKeyAgree

among the instanes �

t

1

U

1

; : : : ;�

t

n

U

n

has already been done. LetK

L

i

;K

R

i

, 1 � i � n are the left and right keys

respetively of U

i

omputed and stored in this session. Let the set of users fU

l

1

; : : : ; U

l

m

g wants to leave

the group U [1; : : : ; n℄. Then the new user set is U [1; : : : ; l

1

�L℄[U [l

1

+R; : : : ; l

2

�L℄[ : : :[U [l

m

+R; : : : ; n℄

where U

l

i

�L

and U

l

i

+R

are respetively the left and right neighbours of the leaving user U

l

i

, 1 � i � m.

Then for any leaving user U

l

, l � L = l � i if the onseutive users U

l

; U

l�1

; : : : ; U

l�(i�1)

are all leaving

and U

l�i

is not leaving the group. Similarly, l+R = l+ i if onseutive users U

l

; U

l+1

; : : : ; U

l+(i�1)

are all

leaving and U

l+i

is not leaving the group. We reindex these n�m remaining users and denote the new user

set by V [1; : : : ; n�m℄. We also reindex the left and right keys and denote by two arrays

^

K

L

[1; : : : ; n�m℄

and

^

K

R

[1; : : : ; n � m℄ respetively the left and right keys of users V [1; : : : ; n � m℄. The new instanes

involved in the proedure Leave are �

d

1

V

1

; : : : ;�

d

n�m

V

n�m

.

We onsider a ring of n�m users V [1; : : : ; n�m℄. For a leaving user U

l

i

, it's left neighbor U

l

i

�L

and

right neighbor U

l

i

+R

respetively hoose new seret keys x

j

1

; x

j

2

2 Z

�

q

where j

1

= l

i

� L and j

2

= l

i

+ R,

omputes X

j

1

= g

x

j

1

;X

j

2

= g

x

j

2

. Note that in the ring, the left and right neighbors of U

j

1

are respetively

U

j

1

�1

and U

j

2

and that of U

j

2

are respetively U

j

1

and U

j

2

+1

. U

j

1

sends X

j

1

(properly strutured with

orresponding signature as in AuthKeyAgree) to it's neighbors U

j

1

�1

, U

j

2

and U

j

2

sends X

j

2

(properly

strutured) to it's neighbors U

j

1

, U

j

2

+1

. This is the �rst round. In the seond round, eah user V

i

, after

proper veri�ation of the reeived messages, omputes Y

i

=

^

K

R

i

=

^

K

L

i

and sends Y

i

(properly strutured
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assoiating signature) to the rest of the users in V [1; : : : ; n�m℄. The key omputation phase is exatly the

same as in the proedure AuthKeyAgree among n�m users V

1

; : : : :V

n�m

. The algorithm Leave is formally

desribed below.

proedure Leave(U [1; : : : ; n℄; x[1; : : : ; n℄; fU

l

1

; : : : ; U

l

m

g)

(Round 1):

Let K

L

i

;K

R

i

be respetively the left and right keys of user U

i

, 1 � i � n, omputed and stored

in a previous session among instanes �

t

1

U

1

; : : : ;�

t

n

U

n

.

1. for i = 1 to m do in parallel

2. Let j

1

= l

i

� L; j

2

= l

i

+R;

3. U

j

1

; U

j

2

respetively hoose randomly new seret keys x

j

1

; x

j

2

2 Z

�

q

and omputes X

j

1

= g

x

j

1

,

X

j

2

= g

x

j

2

and �

j

1

= S(sk

U

j

1

;M

j

1

), �

j

2

= S(sk

U

j

2

;M

j

2

) where M

j

1

= U

j

1

j1jX

j

1

, M

j

2

= U

j

2

j1jX

j

2

;

4. U

j

1

sends M

j

1

j�

j

1

to U

j

1

�1

and U

j

2

;

5. U

j

2

sends M

j

2

j�

j

2

to U

j

1

and U

j

2

+1

(U

n+1

= U

1

);

6. end for

(Round 2):

7. for i = 1 to m do in parallel

8. Let j

1

= l

i

� L; j

2

= l

i

+R;

9. We set W = fj

1

� 1; j

1

; j

2

; j

2

+ 1g;

10. U

j

1

�1

; U

j

2

, on reeiving M

j

1

j�

j

1

from U

j

1

, veri�es �

j

1

on M

j

1

using the veri�ation key pk

U

j

1

;

11. U

j

1

; U

j

2

+1

, on reeiving M

j

2

j�

j

2

from U

j

2

, veri�es �

j

2

on M

j

2

using the veri�ation key pk

U

j

2

;

12. if any of these veri�ations fail, then U

w

, w 2W , sets a

d

w

U

w

= 0, sk

d

w

U

w

= NULL and aborts;

13. else

14. U

j

1

modi�es its left key K

L

j

1

= X

x

j

1

j

1

�1

and right key K

R

j

1

= X

x

j

1

j

2

;

15. U

j

2

modi�es its left key K

L

j

1

= X

x

j

2

j

1

and right key K

R

j

2

= X

x

j

2

j

2

+1

;

16. U

j

1

�1

modi�es its right key K

R

j

1

�1

= X

x

j

1

�1

j

1

;

17. U

j

2

+1

modi�es its left key K

L

j

2

+1

= X

x

j

2

+1

j

2

;

18. end if

19.end for

We reindex the n�m users U [1 : : : n℄ n fU

l

1

; : : : ; U

l

m

g. Let U [1 : : : n�m℄ be the new user set and

^

K

L

[1 : : : n�m℄,

^

K

R

[1 : : : n�m℄ respetively be the set of orresponding left and right keys.

20.for i = 1 to n�m do in parallel

21. V

i

omputes Y

i

=

^

K

R

i

=

^

K

L

i

and signature �̂

i

= S(sk

V

i

;

^

M

i

) where

^

M

i

= V

i

j2jY

i

jd

i

;

22. V

i

sends

^

M

i

j�̂

i

to the rest of the users in V [1; : : : ; n�m℄;

23.end for

24.Note that

^

K

R

i

=

^

K

L

i+1

for 1 � i � n�m� 1,

^

K

R

n

=

^

K

L

1

and

^

K

R

i+(n�m�1)

=

^

K

L

i

:

(Key Computation):

25.for i = 1 to n�m do in parallel

26. for j = 1 to n�m, j 6= i do

27. V

i

, on reeiving M

j

j�

j

from V

j

veri�es �

j

on M

j

using

the veri�ation algorithm V and the veri�ation key pk

V

j

;

28. if veri�ation fails, then V

i

sets a

d

i

V

i

= 0, sk

d

i

V

i

= NULL and aborts;

29. else V

i

extrats d

j

from M

j

and sets psid

d

i

V

i

= psid

d

i

V

i

[ f(V

j

; d

j

)g;

30. end for

31. V

i

omputes K

R

i+1

= Y

i+1

^

K

R

i

;

11



32. j = 2 to n�m� 1 do

33. V

i

omputes K

R

i+j

= Y

i+j

K

R

i+(j�1)

;

34. end for

35. V

i

veri�es if

^

K

R

i+(n�m�1)

= K

R

i+(n�m�1)

(i.e. if

^

K

L

i

= K

R

i+(n�m�1)

);

36. if veri�ation fails, then V

i

sets a

d

i

V

i

= 0, sk

d

i

V

i

= NULL and aborts;

37. else V

i

omputes the session key sk

d

i

V

i

= K

R

1

K

R

2

: : : K

R

n�m

, the seed x = H(sk

d

i

V

i

) and stores

^

K

L

i

;

^

K

R

i

;

38. end if

39. end if

40.end for

end Leave

4 Seurity Analysis

4.1 Seurity of the Unauthentiated Protool

We will show that our unauthentiated protool UP is seure against passive adversary under DDH as-

sumption. We state the seurity result of UP in Theorem 4.1. The proof, although not exatly same, is

quite similar to Katz-Yung [25℄ proof of seurity against passive adversary of the unauthentiated BD [18℄

protool under DDH assumption.

Theorem 4.1 The unauthentiated protool UP desribed in Setion 3.1 is seure against passive adversary

under DDH assumption, ahieves forward serey and satis�es the following:

Adv

KA

UP

(t; q

E

) � 4 Adv

DDH

G

(t

0

) +

8q

E

jGj

where t

0

= t+O(jPj q

E

t

exp

), t

exp

is the time required to perform exponentiation in G and q

E

is the number

of Exeute query that an adversary may ask.

Proof : Let A be an adversary for the unauthentiated protool UP. Using this, we an onstrut an

algorithm D whih solves the DDH problem with non-negligible advantage. We �rst onsider that the

adversary A makes a single Exeute query. The number of parties n (� 3) among whih the adversary

A asks Exeute query is hosen by A itself. Moreover, sine we do not use any long term seret key in

our protool UP, Corrupt query may simply be ignored for A and the protool trivially ahieves forward

serey. The adversary A has aess to three orales: Exeute, Reveal and Test. To deal with the Exeute

and Reveal query, we de�ne distributions Real and Fake

0

for transript, session key pair (T; sk) as follows

where Real is the real exeution senario of the protool UP and prove the Claim 1 stated below.

Real :=

8

>

>

>

>

>

<

>

>

>

>

>

:

x

1

; : : : x

n

 � Z

�

q

;

X

1

= g

x

1

;X

2

= g

x

2

; : : : ;X

n

= g

x

n

;

K

R

1

= K

L

2

= g

x

1

x

2

;K

R

2

= K

L

3

= g

x

2

x

3

; : : : ;K

R

n

= K

L

1

= g

x

n

x

1

; : (T; sk)

Y

1

= K

R

1

=K

L

1

; Y

2

= K

R

2

=K

L

2

; : : : ; Y

n

= K

R

n

=K

L

n

;

T = (X

1

; : : : ;X

n

;Y

1

; : : : ; Y

n

); sk = K

R

1

K

R

2

: : : K

R

n

9

>

>

>

>

>

=

>

>

>

>

>

;

Fake

0

:=

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

x

1

; : : : x

n

 � Z

�

q

;

X

1

= g

x

1

;X

2

= g

x

2

; : : : ;X

n

= g

x

n

;

K

R

1

= K

L

2

= g

x

1

x

2

;K

R

2

= K

L

3

= g

x

2

x

3

; : : : ;K

R

n�1

= K

L

n

= g

x

n�1

x

n

; : (T; sk)

K

R

n

= K

L

1

 � G;

Y

1

= K

R

1

=K

L

1

; Y

2

= K

R

2

=K

L

2

; : : : ; Y

n

= K

R

n

=K

L

n

;

T = (X

1

; : : : ;X

n

;Y

1

; : : : ; Y

n

); sk = K

R

1

K

R

2

: : : K

R

n

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;
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Claim 1 : For any algorithm A running in time t, we have jProb[(T; sk)  � Real : A(T; sk) = 1℄ �

Prob[(T; sk) � Fake

0

: A(T; sk) = 1℄j � Adv

DDH

G

(t

00

) +

1

jGj

:

Proof : We onstrut a distinguisher D for DDH problem using A, whih on an input (A;B;C) 2 G

3

, �rst

generates a pair (T; sk) aording to the distribution Dist

0

desribed below (whih depends on A;B;C),

then runs A on (T; sk) and outputs whatever A outputs.

Dist

0

:=

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

x

1

; : : : x

n

 � Z

�

q

;

X

1

= A

x

1

;X

2

= g

x

2

; : : : ;X

n�1

= g

x

n�1

;X

n

= B

x

n

;

K

R

1

= K

L

2

= A

x

1

x

2

;K

R

2

= K

L

3

= g

x

2

x

3

; : : : ;K

R

n�2

= K

L

n�1

= g

x

n�2

x

n�1

; : (T; sk)

K

R

n�1

= K

L

n

= B

x

n�1

x

n

;K

R

n

= K

L

1

= C

x

n

x

1

;

Y

1

= K

R

1

=K

L

1

; Y

2

= K

R

2

=K

L

2

; : : : ; Y

n

= K

R

n

=K

L

n

;

T = (X

1

; : : : ;X

n

;Y

1

; : : : ; Y

n

); sk = K

R

1

K

R

2

: : : K

R

n

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

The distribution Real and the distribution fa; b � Z

�

q

; A = g

a

; B = g

b

; C = g

ab

; (T; sk) � Dist

0

: (T; sk)g

are statistially equivalent as long as the exponents x

j

used in Dist

0

are random. On the other hand, the dis-

tribution Fake

0

and the distribution fa; b � Z

�

q

;  � Z

�

q

nfabg; A = g

a

; B = g

b

; C = g



; (T; sk) � Dist

0

:

(T; sk)g are statistially equivalent but for a fator of

1

jGj

. In distribution Fake

0

, the value of K

R

n

(= K

L

1

)

is hosen uniformly at random from G whereas in Dist

0

, this value is hosen uniformly from G n fg

ab

g.

These two dristributions are statistially equivalent by the self reduibility property of DDH problem.

Hene jProb[(T; sk)  � Real : A(T; sk) = 1℄ � Prob[(T; sk)  � Fake

0

: A(T; sk) = 1℄j � jProb[a; b  � Z

�

q

:

D(g

a

; g

b

; g

ab

) = 1℄ � Prob[a; b  � Z

�

q

;   � Z

�

q

n fabg : D(g

a

; g

b

; g



) = 1℄j +

1

jGj

� Adv

DDH

G

(t

00

) +

1

jGj

as the

time of D is dominated by the time t

00

of A. (of Claim 1)

Next we de�ne the �nal distribution Fake as follows and prove the Claim 2 stated below:

Fake :=

8

>

>

>

>

>

<

>

>

>

>

>

:

x

1

; : : : x

n

 � Z

�

q

;

X

1

= g

x

1

;X

2

= g

x

2

; : : : ;X

n

= g

x

n

;

K

R

1

= K

L

2

;K

R

2

= K

L

3

;K

R

3

= K

L

4

; : : : ;K

R

n

= K

L

1

 � G; : (T; sk)

Y

1

= K

R

1

=K

L

1

; Y

2

= K

R

2

=K

L

2

; : : : ; Y

n

= K

R

n

=K

L

n

;

T = (X

1

; : : : ;X

n

;Y

1

; : : : ; Y

n

); sk = K

R

1

K

R

2

: : : K

R

n

9

>

>

>

>

>

=

>

>

>

>

>

;

Claim 2: For any algorithm A running in time t, we have jProb[(T; sk)  � Fake

0

: A(T; sk) = 1℄ �

Prob[(T; sk) � Fake : A(T; sk) = 1℄j � Adv

DDH

G

(t

00

) +

1

jGj

:

Proof : Given an adversary, we onstrut an algorithm D that takes (A;B;C) 2 G

3

as input, generates

a pair (T; sk) aording to the distribution Dist desribed below (whih depends on A;B;C), runs A on

(T; sk) and outputs whatever A outputs.
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Dist :=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

x

1

; : : : x

n

 � Z

�

q

;

if n is even then

for i = 1 (2) n do

X

i

= A

x

i

;X

i+1

= B

x

i+1

;

end for

end if

if n is odd then

for i = 1 (2) n� 2 do : (T; sk)

X

i

= A

x

i

;X

i+1

= B

x

i+1

;

end for

X

n

= A

x

n

end if

for i = 1 (2) n� 2 do

K

R

i

= K

L

i+1

= C

x

i

x

i+1

;K

R

i+1

= K

L

i+2

= C

x

i+1

x

i+2

;

end do

K

R

n�1

= K

L

n

= C

x

n�1

x

n

;K

R

n

= K

L

1

 � G;

Y

1

= K

R

1

=K

L

1

; Y

2

= K

R

2

=K

L

2

; : : : ; Y

n

= K

R

n

=K

L

n

;

T = (X

1

; : : : ;X

n

;Y

1

; : : : ; Y

n

); sk = K

R

1

K

R

2

: : : K

R

n

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

The distribution Fake

0

and the distribution fa; b � Z

�

q

; A = g

a

; B = g

b

; C = g

ab

; (T; sk) � Dist : (T; sk)g

are statistially equivalent as long as the exponents x

j

used in Dist are random. On the other hand, the dis-

tribution Fake and the distribution fa; b � Z

�

q

;  � Z

�

q

n fabg; A = g

a

; B = g

b

; C = g



; (T; sk) � Dist :

(T; sk)g are statistially equivalent but a fator of

1

jGj

. In distribution Fake, the values of K

R

i

(= K

L

i+1

)

for 1 � i � n are hosen uniformly at random from G and in Dist, these value are hosen uniformly

from G n fg

ab

g. Then by the self reduibility property of DDH problem, we have jProb[(T; sk)  � Fake

0

:

A(T; sk) = 1℄�Prob[(T; sk) � Fake : A(T; sk) = 1℄j � jProb[a; b � Z

�

q

: D(g

a

; g

b

; g

ab

) = 1℄�Prob[a; b �

Z

�

q

;  � Z

�

q

n fabg : D(g

a

; g

b

; g



) = 1℄j +

1

jGj

� Adv

DDH

G

(t

00

) +

1

jGj

as the time of D is dominated by that of

A (whih is t

00

). (of Claim 2)

Now we provide the proof of the following laim whih deals with the Test query of A.

Claim 3: For any omputationally-unbounded adversary A, we have Prob[(T; sk

0

)  � Fake; sk

1

 �

G; b � f0; 1g : A(T; sk

b

) = b℄ =

1

2

:

Proof : In Fake, let v

R

i

:= log

g

K

R

i

; 1 � i � n. Then we have the following system of equations:

log

g

Y

1

= �v

R

n

+ v

R

1

; log

g

Y

2

= �v

R

1

+ v

R

2

; : : : ; log

g

Y

n

= �v

R

n�1

+ v

R

n

. Besides sk = g

v

R

1

+v

R

2

+���+v

R

n

gives

the equation log

g

sk = v

R

1

+v

R

2

+ � � �+v

R

n

whih is linearly independent from the above system of equations.

This implies that the session key sk is independent of the transript T in Fake. Hene for any omputa-

tionally unbounded adversary A, Prob[(T; sk

0

) � Fake; sk

1

 � G; b � f0; 1g : A(T; sk

b

) = b℄ =

1

2

: (of

Claim 3)

Now Adv

KA

UP;A

(t; 1) := j2Prob[Su℄ � 1j = 2jProb[(T; sk

0

)  � Real; sk

1

 � G; b  � f0; 1g : A(T; sk

b

) =

b℄ �

1

2

j = 2jProb[(T; sk

0

)  � Real; sk

1

 � G; b � f0; 1g : A(T; sk

b

) = b℄ � Prob[(T; sk

0

)  � Fake; sk

1

 �

G; b  � f0; 1g : A(T; sk

b

) = b℄j by Claim 3 and using Claim 1 and Claim 2, we obtain Adv

KA

UP

(t; 1) �

4Adv

DDH

G

(t

00

) +

4

jGj

: Then by applying the self-reduibility property of DDH problem, we get the result

stated in the Theorem.
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Consider the ase for q

E

(> 1) Exeute query. The adversary �rst generates q

E

tuples (A

i

; B

i

; C

i

), 1 � i � q

E

with the following properties from the tuple (A;B;C) 2 G

3

given to the adversary.

1. If (A;B;C)  � �

Real

, then (A

i

; B

i

; C

i

)  � �

Real

for all i, 1 � i � q

E

with (A

i

; B

i

) randomly

distributed in G

2

(independently of anything else).

2. If (A;B;C)  � �

Rand

, then (A

i

; B

i

; C

i

)  � �

Rand

for all i, 1 � i � q

E

(independently of anything

else) with all but a probability

q

E

jGj

it will be the ase that log

g

C

i

6= log

g

A

i

log

g

B

i

for all i.

Then proeeding in the similar way as above of de�ning distributions Real, Fake', Dist', Fake, Dist, we may

de�ne distributions Real

q

E

, Fake

0

q

E

, Dist

0

q

E

, Fake

q

E

and Dist

q

E

whih simply onsist of q

E

independent opies

of eah of the orresponding distributions. In ase of Dist

0

q

E

and Dist

q

E

, we use the orresponding tuple

(A

i

; B

i

; C

i

) for the i-th opy. We use notation (

~

T ;

~

sk) to denote the transript/session key pair generated

by these distributions. Then similar to the laims 1, 2 and 3, we an prove the following laims:

Claim 4 : For any algorithm A running in time t, we have jProb[(

~

T ;

~

sk)  � Real

q

E

: A(

~

T ;

~

sk) =

1℄ � Prob[(

~

T ;

~

sk)  � Fake

0

q

E

: A(

~

T ;

~

sk) = 1℄j � Adv

DDH

G

(t

0

) +

2q

E

jGj

: where t

0

is as in the statement of

the Theorem.

Claim 5 : For any algorithm A running in time t, we have jProb[(

~

T ;

~

sk)  � Fake

0

q

E

: A(

~

T ;

~

sk) =

1℄ � Prob[(

~

T ;

~

sk)  � Fake

q

E

: A(

~

T ;

~

sk) = 1℄j � Adv

DDH

G

(t

0

) +

2q

E

jGj

where t

0

is as in the statement of

the Theorem.

Claim 6: For any omputationally-unbounded adversary A, we have Prob[(

~

T ;

~

sk

0

)  � Fake;

~

sk

1

 �

G

q

E

; b � f0; 1g : A(

~

T ;

~

sk

b

) = b℄ =

1

2

:

These three laims yield the result stated in the theorem.

Note : If n is even, then we need not to de�ne the intermediate (T; sk) distribution Fake

0

. In this ase,

we an obtain a smaller upper bound of Adv

KA

UP

(1; q

E

) onsidering only the distributions Real and Fake and

de�ning Dist as in the proof of Claim 2. Consequently, we get a more tighter upper bound for Adv

KA

UP

(t; q

E

).

4.2 Seurity of the Authentiated (Stati) Protool

We prove that the seurity of our stati authentiated protool AP (subsetion 3.2) relies on that of UP

under the assumption that the underlying signature sheme DSig is seure. In fat, given any ative

adversary attaking AP, we an onstrut a passive adversary attaking UP of subsetion 3.1. We state

the seurity result of AP below in Theorem 4.2. Our proof tehnique is based on the proof tehnique used

by Katz and Yung [25℄. However, there are ertain tehnial di�erenes of our proof from that of [25℄.

1. The Katz-Yung tehnique is a generi tehnique for onverting any unauthentiated protool into an

authentiated protool. On the other hand, we onentrate on one partiular protool. Hene we

an avoid some of the omplexities of the Katz-Yung proof.

2. Katz-Yung protool uses random nones whereas our protool does not.

3. In our unauthentiated protool, there are no long term seret keys. Thus we an avoid the Corrupt

orale queries and an trivially ahieve forward serey.
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Theorem 4.2 The authentiated protool AP desribed in setion 3.2 is seure against ative adversary

under DDH assumption, ahieves forward serey and satis�es the following:

Adv

AKA

AP

(t; q

E

; q

S

) � Adv

KA

UP

(t

0

; q

E

+

q

S

2

) + jPj Adv

DSig

(t

0

)

where q

E

and q

S

are respetively the maximum number of Exeute and Send query an adversary may ask.

Proof : Let A

0

be an adversary whih attaks the authentiated protool AP. Using this we onstrut an

adversary A whih attaks the unauthentiated protool UP. We �rst have the following laim.

Claim : Let Forge be the event that a signature of DSig is forged by A

0

. Then Prob[Forge℄ � jPj Adv

DSig

(t

0

):

Proof of Claim: Suppose the event Forge ours. Then A

0

makes a query of the type Send(V; i; Y ) where Y

is either of the form Y = U

k

j1jX

k

j�

k

with V(pk

U

k

; U

k

j1jX

k

; �

k

) = 1 or of the form Y = U

k

j2jX

k

jd

k

j�

k

with

V(pk

U

k

; U

k

j2jX

k

jd

k

j; �

k

) = 1 for some instane �

d

k

U

k

with X

k

2 G and �

k

was not output by any instane

of U

k

on the respetive messages. Using A

0

, we onstrut an algorithm F that forges a signature for DSig

as follows: Given a publi key pk, algorithm F hooses a random U 2 P and sets pk

U

= pk. The other

publi keys and private keys for the system are generated honestly by F . The forger F simulates all orale

queries of A

0

by exeuting protool AP itself, obtaining the neessary signatures with respet to pk

U

, as

needed, from its signing orale. Thus F provides a perfet simulation for A

0

. If A

0

ever outputs a new

valid message/signature pair with respet to pk

U

= pk, then F outputs this pair as its forgery. The suess

probability of F is equal to

Prob[Forge℄

jPj

and hene Prob[Forge℄ � jPj Adv

DSig

(t

0

): (of Claim)

Now we desribe the onstrution of the passive adversary A attaking UP that uses adversary A

0

attaking AP. Adversary A uses a list tlist. It stores pairs of session IDs and transripts in tlist.

Adversary A generates the veri�ation/signing keys pk

U

; sk

U

for eah user U 2 P and gives the veri�-

ation keys to A

0

. If ever the event Forge ours, adversary A aborts and outputs a random bit. Otherwise,

A outputs whatever bit is eventually output by A

0

. Note that sine the signing and veri�ation keys are

generated by A, it an detet ourrene of the event Forge.

A simulates the orale queries of A

0

using its own queries to the Exeute orale. The idea is that the

adversary A queried its Exeute orale to obtain a transript T of UP for eah Exeute query of A

0

and also

for eah initial send query Send

0

(U; i; �) of A

0

. A then pathes appropriate signatures with the messages

in T to obtain a transript T

0

of AP and uses T

0

to answer queries of A

0

. Sine by assumption, A

0

an not

forge, A

0

is `limitted' to send messages already ontained in T

0

. This tehnique provides a good simulation.

We disuss details below.

Exeute queries: Suppose A

0

makes a query Exeute((U

i

1

; d

1

); : : : ; (U

i

k

; d

k

)). This means that instanes

�

d

1

U

i

1

; : : : ;�

d

k

U

i

k

are involved in this session. A de�nes S = f(U

i

1

; d

1

); : : : ; (U

i

k

; d

k

)g and sends the exeute

query to its Exeute orale. It reeives as output a transript T of an exeution of UP. It appends (S; T )

to tlist. Adversary A then expands the transript T for the unauthentiated protool into a transript T

0

for the authentiated protool aording to the modi�ation desribed in Setion 3.2. It returns T

0

to A

0

.

Send queries: The �rst send query that A

0

makes to an instane is to start a new session. We will denote

suh queries by Send

0

queries. To start a session between unused instanes �

d

1

U

i

1

; : : : ;�

d

k

U

i

k

, the adversary

has to make the send queries: Send

0

(U

i

j

; d

j

; hU

i

1

; : : : ; U

i

k

inU

i

j

) for 1 � j � k: Note that these queries may

be made in any order. When all these queries have been made, A sets S = f(U

i

1

; d

1

); : : : ; (U

i

k

; d

k

)g and

makes an Exeute query to its own exeute orale. It reeives a transript T in return and stores (S; T ) in

the list tlist.
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Assuming that signatures annot be forged, any subsequent Send query (i.e., after a Send

0

query) to an

instane �

i

U

is a properly strutured message with a valid signature. For any suh Send query, A veri�es the

query aording to the algorithm of Setion 3.2. If the veri�ation fails, A sets a

i

U

= 0 and sk

i

U

= NULL

and aborts �

i

U

. Otherwise, A performs the ation to be done by �

i

U

in the authentiated protool. This

is done in the following manner: A �rst �nds the unique entry (S; T ) in tlist suh that (U; i) 2 S. Suh a

unique entry exists for eah instane by assumption. Now from T , A �nds the appropriate message whih

orresponds to the message sent by A

0

to �

i

U

. From the transript T , adversary A �nds the next publi

information to be output by �

i

U

and returns it to A

0

.

Reveal/Test queries : Suppose A

0

makes the query Reveal(U; i) or Test(U; i) to an instane �

i

U

for whih

a

i

U

= 1. At this point the transript T

0

in whih �

i

U

partiipates has already been de�ned. Now A �nds

the unique pair (S; T ) in tlist suh that (U; i) 2 S. Assuming that the event Forge does not our, T is the

unique unauthentiated transript whih orresponds to the transript T

0

. Then A makes the appropriate

Reveal or Test query to one of the instanes involved in T and returns the result to A

0

.

As long as Forge does not our, the above simulation for A

0

is perfet. Whenever Forge ours,

adversary A aborts and outputs a random bit. So Prob

A

0

;AP

[SujForge℄ =

1

2

: Now

Adv

A;UP

:= 2 jProb

A;UP

[Su℄� 1=2j

= 2 jProb

A

0

;AP

[Su ^ Forge℄ + Prob

A

0

;AP

[Su ^ Forge℄� 1=2j

= 2 jProb

A

0

;AP

[Su ^ Forge℄ + Prob

A

0

;AP

[SujForge℄ Prob

A

0

;AP

[Forge℄� 1=2j

= 2 jProb

A

0

;AP

[Su ^ Forge℄ + (1=2)Prob

A

0

;AP

[Forge℄� 1=2j

= 2 jProb

A

0

;AP

[Su℄� Prob

A

0

;AP

[Su ^ Forge℄ + (1=2)Prob

A

0

;AP

[Forge℄� 1=2j

� j2 Prob

A

0

;AP

[Su℄� 1j � jProb

A

0

;AP

[Forge℄� 2 Prob

A

0

;AP

[Su ^ Forge℄j

� Adv

A

0

;AP

� Prob[Forge℄

The adversary A makes an Exeute query for eah Exeute query of A

0

. Also A makes an Exeute query

for eah session started by A

0

using Send queries. Sine a session involves at least two instanes, suh an

Exeute query is made after at least two Send queries of A

0

. The total number of suh Exeute queries is

at most q

S

=2, where q

S

is the number of Send queries made by A

0

. The total number of Exeute queries

made by A is at most q

E

+ q

S

=2, where q

E

is the number of Exeute queries made by A

0

.

Also sine Adv

A;UP

� Adv

KA

UP

(t

0

; q

E

+ q

S

=2) by assumption, we obtain:

Adv

AKA

AP

� Adv

KA

UP

(t

0

; q

E

+ q

S

=2) + Prob[Forge℄:

This yields the statement of the theorem.

4.3 Seurity of the Dynami Authentiated Protool

In this subsetion, we will show that the modi�ations desribed in Setion 3.3 onverts the protool UP of

Setion 3.1 into a dynami authentiated key agreement protool DAP. Assuming that the signature sheme

DSig is seure, we an onvert any adversary attaking the protool DAP into an adversary attaking the

protool UP. We ignore Corrupt queries sine our protool DAP does not use any long-term seret keys. Thus

the protool DAP trivially ahieves forward serey. We state below our seurity result in Theorem 4.3.

Theorem 4.3 The dynami authentiated key agreement protool DAP desribed in Setion 3.3 sati�es

the following:

Adv

AKA

DAP

(t; q

E

; q

J

; q

L

; q

S

) � Adv

KA

UP

(t

0

; q

E

+ (q

J

+ q

L

+ q

S

)=2) + jPj Adv

DSig

(t

0

)
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where t

0

� t+(jPjq

E

+ q

J

+ q

L

+ q

S

)t

DAP

, where t

DAP

is the time required for exeution of DAP by any one

of the users.

Proof : Let A

0

be an adversary whih attaks the dynami authentiated protool DAP. Using this we

onstrut an adversary A whih attaks the unauthentiated protool UP. As in the previous proof, we

have the following laim.

Claim : Let Forge be the event that a signature is forged by A

0

. Then Prob[Forge℄ � jPj Adv

DSig

(t

0

):

Now we desribe the onstrution of the passive adversary A attaking UP that uses adversary A

0

attaking

DAP. Adversary A an exeute the unauthentiated protool UP several times among any subset of P

and also an obtain the session key of the protool exeution by making Reveal queries to any instanes

involved in the session. We will show that A itself simulates the Join and Leave queries of A

0

using its own

Exeute and Reveal orale. Adversary A maintains a list Tlist to store pairs of session IDs and transripts.

It also uses two lists Jlist and Llist to be spei�ed later.

Adversary A generates the veri�ation/signing keys pk

U

; sk

U

for eah user U 2 P and gives the veri�-

ation keys to A

0

. If ever the event Forge ours, adversary A aborts and outputs a random bit. Otherwise,

A outputs whatever bit is eventually output by A

0

. Note that sine the signing and veri�ation keys are

generated by A, it an detet ourrene of the event Forge. A simulates the orale queries of A

0

using its

own queries to the Exeute and Reveal orales. We provide details below.

Exeute queries: These queries are simulated as in the proof of Theorem 4.2.

Send queries: Apart from the usual send queries, there are two speial type of send queries, Send

J

and

Send

L

.

If the set S

1

= f(U

i

k+1

; d

k+1

); : : : ; (U

i

k+l

; d

k+l

)g of unused instanes wants to join the group S =

f(U

i

1

; d

1

); : : : ; (U

i

k

; d

k

)g, then A

0

will make Send

J

(U

i

j

; d

j

; hU

i

1

; : : : ; U

i

k

i) query for all j, k+ 1 � j � k + l.

These queries initiate Join(S; S

1

) query . Note that the instanes in S might have already exeuted either

the unauthentiated (a) key agreement protool or (b) join protool or () leave protool. Aordingly, A

�rst �nds any one of the following form of a unique entry: (1) (S; T ) in Tlist or (2) (S

0

; S

00

; T ) in Jlist with

S = S

0

[ S

00

or (3) (S

0

; S

00

; T ) in Llist with S = S

0

n S

00

. If no suh entry, A makes an exeute query to its

own exeute orale on S, gets a transript T and stores (S; T ) in Tlist.

In ase (S; T ) 2 Tlist, A �rst makes a Reveal query to any instane in S to obtain the session key sk

orresponding to T , omputes the seed x = H(sk) and simulates the algorithm for Join by querying its

Exeute orale (making appropriate hanges). Then pathing up signature in eah message, A obtains a

transript T

0

and stores (S; S

1

; T

0

) in Jlist. A thus simulates the transript T

0

of Join using its own Exeute

and Reveal orales. In the remaining ases (2) and (3), T is generated by A itself and so A an simulate

transript T

0

of Join from T .

Similarly, when a set S

2

= f(U

l

1

; d

l

1

); : : : ; (U

l

m

; d

l

m

)g of unused instanes wants to leave the group S =

f(U

i

1

; d

1

); : : : ; (U

i

k

; d

k

)g, then A

0

will make Send

L

(U

i

j

; d

j

; hU

i

1

; : : : ; U

i

k

i) query for all j; j 2 fl

1

; : : : ; l

m

g.

These queries initiate Leave(S; S

2

) query. As mentioned above in ase of member join, A �rst �nds a

unique entry of the form (S; T ) in Tlist or a unique entry of the form (S

0

; S

00

; T ) in Jlist with S = S

0

[ S

00

or a unique entry of the form (S

0

; S

00

; T ) in Llist with S = S

0

n S

00

. If no suh entry, then A makes a query

to its own exeute orale on S, gets a transript T and stores (S; T ) in Tlist.

A then simulates the algorithm for Leave by itself and gets a modi�ed transript T

0

from T as follows:

A �rst detets the positions in T where the new messages are to be injeted or the old messages are to be

replaed by new messages. A do these modi�ations in T aording to the algorithm Leave desribed in

Setion 3.3.1 and gets a modi�ed transript T

0

by pathing up appropriate signature with eah message.

Thus A expands T into a transript T

0

for Leave algorithm. A stores (S; S

2

; T

0

) in Llist.
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Send

0

queries are answered as in Theorem 4.2. The usual send queries are simulated as in Theorem 4.2

with the following modi�ations.

Suppose A

0

makes a Send query to instane �

i

U

. After proper veri�ation, A �nds a unique entry (S; T )

in Tlist suh that (U; i) 2 S. The answer to this query is as in Theorem 4.2. If no suh entry is found, then

A �nds a unique entry (S; S

1

; T

0

) in Jlist suh that (U; i) 2 S

1

. This means that the session for Join has

already been initiated. A then obtains the next publi information for T

0

to be output by �

i

U

(provided

all neessary information has been reeived by �

i

U

by send queries from A

0

) and sends it to A

0

. If A �nds

a unique entry (S; S

2

; T

0

) in Llist suh that (U; i) 2 S

2

, then as above, the appropriate answer to the query

is found from T

0

.

Join queries : Suppose A

0

makes a query Join(S; S

1

) where S = f(U

i

1

; d

1

); : : : ; (U

i

k

; d

k

)g and S

1

=

f(U

i

k+1

; d

k+1

); : : : ; (U

i

k+l

; d

k+l

). The instanes �

d

k+1

U

i

k+1

; : : : ;�

d

k+l

U

i

k+l

want to join in the group �

d

1

U

i

1

; : : :�

d

k

U

i

k

.

A �nds an entry of the form (S; S

1

; T

0

) in Jlist. If no suh entry, then the adversary A

0

is given no output.

Otherwise, A returns T

0

to A

0

Leave queries : Suppose A

0

makes a query Leave(S; S

2

) where S = f(U

i

1

; d

1

); : : : ; (U

i

k

; ; d

k

)g and

S

2

= f(U

l

1

; d

l

1

); : : : ; (U

l

m

; d

l

m

)g where (U

l

j

; d

l

j

) 2 S for 1 � j � m. The instane �

d

l

1

U

l

1

; : : :�

d

l

m

U

l

m

want

to leave the group �

d

1

U

i

1

; : : : ;�

d

k

U

i

k

where U

l

j

2 fU

i

1

; : : : ; U

i

k

g for 1 � j � m. A �nds an entry of the form

(S; S

2

; T

0

) in Llist. If no suh entry, then the adversary A

0

is given no output. Otherwise, A returns T

0

to

A

0

.

Reveal/Test queries : Suppose A

0

makes the query Reveal(U; i) or Test(U; i) for an instane �

i

U

for

whih a

i

U

= 1. At this point the transript T

0

in whih �

i

U

partiipates has already been de�ned. If T

0

orresponds to the transript of the authentiated protool, then A �nds the unique pair (S; T ) in Tlist

suh that (U; i) 2 S. Assuming that the event Forge does not our, T is the unique unauthentiated

transript whih orresponds to the transript T

0

. Then A makes the appropriate Reveal or Test query to

one of the instanes involved in T and returns the result to A

0

. Otherwise, T

0

is the transript for Join or

Leave, as the ase may be. Sine T

0

has been simulated by A, A is able to ompute the modi�ed session

key and hene send an appropriate reply to A

0

.

As long as Forge does not our, the above simulation for A

0

is perfet. Whenever Forge ours,

adversary A aborts and outputs a random bit. So Prob

A

0

;AP

[SujForge℄ =

1

2

: Using this, one an show

Adv

A;UP

� Adv

A

0

;DAP

� Prob[Forge℄

The adversary A makes an Exeute query for eah Exeute query of A

0

. A

0

makes q

J

Join queries and

q

L

Leave queries. These queries are initialized respetively by Send

J

and Send

L

queries of A

0

. Now eah

of Send

J

and Send

L

query of A

0

makes at most one Exeute query of A. Thus there are at most q

J

+ q

L

exeute query made by A to respond all the Send

J

and Send

L

queries of A

0

.

Also A makes an Exeute query for eah session started by A

0

using Send queries. Sine a session

involves at least two instanes, suh an Exeute query is made after at least two Send queries of A

0

. Thus

there are (q

S

� q

J

� q

L

)=2 exeute queries of A to respond all other Send queries of A

0

, where q

S

is the

number of Send queries made by A

0

. Hene the total number of Exeute queries made by A is at most

q

E

+ q

J

+ q

L

+ (q

S

� q

J

� q

L

)=2 = q

E

+ (q

J

+ q

L

+ q

S

)=2, where q

E

is the number of Exeute queries made

by A

0

. Also sine Adv

A;UP

(t; q

E

; q

J

; q

L

; q

S

) � Adv

KA

UP

(t

0

; q

E

+ q

J

=2+ q

L

=2+ q

S

=2) by assumption, we obtain:

Adv

AKA

DAP

� Adv

KA

UP

(t

0

; q

E

+ (q

J

+ q

L

+ q

S

)=2) + Prob[Forge℄:

This yields the statement of the theorem.
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5 Conlusion

We present and analyze a simple and elegant onstant round group key agreement protool and enhane it

to dynami setting where a set of users an leave or join the group at any time during protool exeution

with updated keys. The emphasis of this work is to ahieve provable seurity of our sheme under DDH

assumption. We provide a onrete seurity analysis of our protool against ative adversary in the standard

seurity model of Bresson et al. [15℄ adapting Katz-Yung [25℄ tehnique. The protool is forward seure,

eÆient and fully symmetri.
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