
Constant Round Dynami
 Group Key Agreement

Ratna Dutta and Rana Barua

Cryptology Resear
h Group

Stat-Math Unit

203, B.T. Road, Kolkata

India 700108

e-mail:fratna r,ranag�isi
al.a
.in

Abstra
t

We present a fully symmetri

onstant round authenti
ated group key agreement proto
ol in dynami

s
enario. Our proposed s
heme a
hieves forward se
re
y and is provably se
ure under DDH assumption

in the se
urity model of Bresson et al. providing, we feel, better se
urity guarantee than previously

published results. The proto
ol is eÆ
ient in terms of both
ommuni
ation and
omputation power.

Keywords: group key agreement, DDH problem, provable se
urity

1

1 Introdu
tion

A group key agreement proto
ol allows a group of users
ommuni
ating over an untrusted, open network

to
ome up with a
ommon se
ret value
alled a session key. This session key
an be used to fa
ilitate

desirable se
urity servi
es, su
h as
on�dentiality and data integrity.

Authenti
ated group key agreement allows two or more parties to agree upon a
ommon se
ret key even

in the presen
e of a
tive adversaries. These proto
ols are designed to deal with the problem to ensure users

in the group that no other prin
ipals aside from members of the group
an learn any information about

the session key. The design of se
ure and eÆ
ient authenti
ated group key agreement proto
ols gets mu
h

attention in
urrent resear
h with in
reasing appli
ability in numerous group-oriented and
ollaborative

appli
ations [13, 17, 5, 18, 11, 19, 25, 31℄.

Constru
ting forward se
ure authenti
ated key agreement s
heme in a formal se
urity model has re-

ently re
eived mu
h importan
e. EÆ
ien
y is another
riti
al
on
ern in designing su
h proto
ols for

pra
ti
al appli
ations. In parti
ular, number of rounds may be
ru
ial in an environment where quite

a large number of users are involved and the group-membership is dynami
. In a dynami
 group key

agreement, the users
an join or leave the group at any time. Su
h s
hemes must ensure that the session

key is updated upon every membership
hange, so that the subsequent sessions are prote
ted from leaving

members and the previous sessions are prote
ted from joining members. The
ost of updates asso
iated

with group membership
hanges should be minimum. There are quite a number of dynami
 group key

agreement proto
ols [14, 15, 16, 28, 26, 27, 31℄. In this paper, we study the problem of dynami
 authenti-

ated group key agreement. We design our algorithm for join and leave to ensure minimum modi�
ation

to the
omputation already pre
omputed when a pool of users join or leave the group and the session key

is updated.

Our Contribution : The main
ontribution of this paper is to obtain a provably se
ure
onstant round

1

This is a preliminary version of the paper that will be presented in ISC 2005.

1

authenti
ated group key agreement proto
ol in dynami
 s
enario where a user
an join or leave the group

at his desire with updated key. We propose in Se
tion 3 a s
heme that is proven to be se
ure against passive

adversary assuming the intra
tability of de
ision DiÆe-Hellman (DDH) problem. Then we authenti
ate

this unauthenti
ated proto
ol by in
orporating digital signature and provide a
on
rete se
urity analysis

against a
tive adversaries in the model as formalized by Bresson et al. [15℄. We appropriately modify the

Katz-Yung [25℄ te
hnique to a
hieve authenti
ation in our proto
ol. Finally, we extend this stati
 authen-

ti
ated proto
ol to dynami
 authenti
ated proto
ol by introdu
ing algorithms for join and leave. We prove

(Se
tion 4) that the se
urity of both the stati
 and dynami
 authenti
ated proto
ols rely on that of the

unauthenti
ated proto
ol. The se
urity model of Bresson et al. [15℄ is adopted for the se
urity analysis of

the dynami

ase. Our proto
ol a
hieves forward se
re
y, is fully symmetri
 and being of
onstant round,

is more eÆ
ient as
ompared to the proto
ol of Bresson et al. [15℄ (whose round
omplexity is linear in

the number of group members). Our se
urity result holds in the standard model and thus provides better

se
urity guarantees than previously published results in the random ora
le model.

More re
ently, Kim et al. [28℄ proposed a very eÆ
ient
onstant round dynami
 authenti
ated group key

agreement proto
ol and provide a se
urity analysis of their stati
 authenti
ated proto
ol whi
h is shown

to be se
ure under
omputation DiÆe-Hellman (CDH) assumption using random hash ora
le. They did

not
onsider the se
urity analysis of their dynami
 authenti
ated proto
ol. Unlike [28℄, we have a
hieved

the se
urity of our dynami
 s
heme in the standard model under standard DDH assumption without

using any random ora
le. We separately analyze the se
urity of our stati
 unauthenti
ated proto
ol,

stati
 authenti
ated proto
ol and dynami
 authenti
ated proto
ol and redu
e the se
urity of the stati

authenti
ated proto
ol and dynami
 authenti
ated proto
ol to that of the unauthenti
ated proto
ol.

Our proposed s
heme
onsiders the users U

1

; U

2

; : : : ; U

n

parti
ipating in the proto
ol on a ring where

U

i�1

; U

i+1

are respe
tively the left and right neighbors of U

i

for 1 � i � n with U

0

= U

n

; U

n+1

= U

1

.

Only 2 rounds are required in our proto
ol whi
h makes our proto
ol eÆ
ient from
ommuni
ation point

of view. User U

i

; 1 � i � n, sends a message in �rst round only to its neighbors U

i�1

; U

i+1

and a message

in se
ond round to the rest of the n� 1 users. Ea
h user sends one message in ea
h round with bit length

at most 2jqj + 2jsj where jqj is the length of q, the order of the underlying group on whi
h DDH problem

is assumed to be hard and jsj is the length of signature. Ea
h group member
omputes at most 3 modular

exponentiations (1 in round 1 and 2 in round 2), 2n� 2 modular multipli
ations (n� 1 multipli
ations for

re
overy of all right keys and n � 1 multipli
ations for session key
omputation), 1 division, 2 signature

generation and n+ 1 signature veri�
ation.

Our proto
ol is more eÆ
ient as
ompared to the proto
ol of Burmester and Desmedt [18℄ (BD) in terms

of both
ommuni
ation and
omputation power. Moreover, we emphasize that our proto
ol is dynami
.

The authenti
ation in BD proto
ol was introdu
ed by Katz and Yung [25℄ (KY) that requires 3 rounds.

Table 1 analyzes the eÆ
ien
y of our stati
 authenti
ated proto
ol and authenti
ated proto
ol KY [25℄

where both the s
hemes are forward se
ure, a
hieve provable se
urity under DDH assumption in standard

model. We use the following notations:

n total number of users in a group

R total number of rounds

PTP maximum number of point-to-point
ommuni
ation per user

Exp maximum number of modular exponentiations
omputed per user

Mul maximum number of modular multipli
ations
omputed per user

Div maximum number of divisions
omputed per user

Sig maximum number of signatures generated per user

Ver maximum number of signature veri�
ation per user

2

Proto
ol Communi
ation Computation Hardness Remarks

R PTP Exp Mul Div Sig Ver Assumption

KY [25℄ 3 3(n� 1) 3

n

2

2

+

3n

2

� 3 1 2 2(n� 1) DDH stati

Our proto
ol 2 n+ 1 3 2n� 2 1 2 n+ 1 DDH dynami

Table 1: Proto
ol
omparison

In ea
h round of authenti
ated BD proto
ol, a user sends message to the rest of the users (although

the
ommuni
ation in the se
ond round
an be redu
ed). In
ontrast, ea
h user in our proto
ol sends a

message only to its two neighbors in the �rst round and a message to the rest of the users in the se
ond

round. Our proto
ol di�ers from the BD proto
ol in the way the session key is
omputed after the rounds

are over. Ea
h user
omputes

n

2

2

+

3n

2

� 3 modular multipli
ations in BD proto
ol. On a more positive

note, ea
h user in our proto
ol requires to
ompute at most 2n modular multipli
ations. This makes our

proto
ol mu
h more eÆ
ient as
ompared to BD proto
ol. Besides, our proto
ol has the ability to dete
t

the presen
e of a
orrupted group member, although we
annot dete
t who among the group members are

behaving improperly. If an invalid message is sent by a
orrupted member, then this
an be dete
ted by

all legitimate members of the group and the proto
ol exe
ution may be stopped instantly. This feature

makes our proto
ol interesting when the adversarial model no longer assumes that the group members are

honest.

2 Preliminaries

In this se
tion, we de�ne the De
ision DiÆe-Hellman (DDH) problem and des
ribe the se
urity model in

whi
h we prove the se
urity of our group key agreement proto
ol. We use the notation a � S to denote

that a is generated randomly from S.

2.1 De
ision DiÆe-Hellman (DDH) problem

Let G = hgi be a multipli
ative group of some large prime order q. Then De
ision DiÆe-Hellman (DDH)

problem on G is de�ned as follows:

Instan
e : (g

a

; g

b

; g

) for some a; b;
 2 Z

�

q

.

Output : yes if
 = ab mod q and output no otherwise.

We
onsider two distributions as:

�

Real

= fa; b � Z

�

q

; A = g

a

; B = g

b

; C = g

ab

: (A;B;C)g

�

Rand

= fa; b;
 � Z

�

q

; A = g

a

; B = g

b

; C = g

: (A;B;C)g:

The advantage of any probabilisti
, polynomial-time, 0/1-valued distinguisher D in solving DDH problem

on G is de�ned to be : Adv

DDH

D;G

= jProb[(A;B;C) � �

Real

: D(A;B;C) = 1℄�Prob[(A;B;C) � �

Rand

:

D(A;B;C) = 1℄j. The probability is taken over the
hoi
e of log

g

A; log

g

B; log

g

C and D's
oin tosses. D

is said to be a (t; �)-DDH distinguisher for G if D runs in time at most t su
h that Adv

DDH

D;G

(t) � �.

DDH assumption : There exists no (t; �)-DDH distinguisher forG. In other words, for every probabilisti
,

polynomial-time, 0/1-valued distinguisher D, Adv

DDH

D;G

� � for suÆ
iently small � > 0.

3

2.2 Se
urity Model

We des
ribe below the adversarial model following Bresson et al.'s [15℄ formal se
urity model that we

adopt for the se
urity analysis of our proto
ols. This model is more general in the sense that it
overs

authenti
ated key agreement in group setting and suited for dynami
 groups.

Let P = fU

1

; : : : ; U

n

g be a set of n (�xed) users or parti
ipants. At any point of time, any subset of

P may de
ide to establish a session key. Thus a user
an exe
ute the proto
ol for group key agreement

several times withdi�erent partners,
an join or leave the group at his desire by exe
uting the proto
ols for

Join or Leave. We identify the exe
ution of proto
ols for key agreement, member(s) join and member(s)

leave as di�erent sessions. The adversarial model
onsists of allowing ea
h user an unlimited number of

instan
es with whi
h it exe
utes the proto
ol for key agreement or in
lusion or ex
lusion of a user or a

set of users. We assume adversary never parti
ipates as a user in the proto
ol. This adversarial model

allows
on
urrent exe
ution of the proto
ol. The intera
tion between the adversary A and the proto
ol

parti
ipants o

ur only via ora
le queries, whi
h model the adversary's
apabilities in a real atta
k. Let

S; S

1

; S

2

be three sets de�ned as:

S = f(V

1

; i

1

); : : : ; (V

l

; i

l

)g; S

1

= f(V

l+1

; i

l+1

); : : : ; (V

l+k

; i

l+k

)g; S

2

= f(V

j

1

; i

j

1

); : : : ; (V

j

k

; i

j

k

)g

where fV

1

; : : : ; V

l

g is any non-empty subset of P. We will require the following notations.

�

i

U

: i-th instan
e of user U .

sk

i

U

: session key after exe
ution of the proto
ol by �

i

U

.

sid

i

U

: session identity for instan
e �

i

U

. We set sid

i

U

= S = f(U

1

; i

1

); : : : ; (U

k

; i

k

)g

su
h that (U; i) 2 S and �

i

1

U

1

; : : : ;�

i

k

U

k

wish to agree upon a
ommon key.

pid

i

U

: partner identity for instan
e �

i

U

, de�ned by pid

i

U

= fU

1

; : : : ; U

k

g,

su
h that (U

j

; i

j

) 2 sid

i

U

for all 1 � j � k.

a

i

U

: 0=1-valued variable whi
h is set to be 1 by �

i

U

upon normal termination of

the session and 0 otherwise.

We will make the assumption that in ea
h session at most one instan
e of ea
h user parti
ipates. Further, an

instan
e of a parti
ular user parti
ipates in exa
tly one session. This is not a very restri
tive assumption,

sin
e a user
an spawn an instan
e for ea
h session it parti
ipates in. On the other hand, there is an

important
onsequen
e of this assumption. Suppose there are several sessions whi
h are being
on
urrently

exe
uted. Let the session ID's be sid

1

; : : : ; sid

k

. Then for any instan
e �

i

U

, there is exa
tly one j su
h

that (U; i) 2 sid

j

and for any j

1

6= j

2

, we have sid

j

1

\ sid

j

2

= ;. Thus at any parti
ular point of time, if

we
onsider the
olle
tion of all instan
es of all users, then the relation of being in the same session is an

equivalen
e relation whose equivalen
e
lasses are the session IDs.

We assume that the adversary has
omplete
ontrol over all
ommuni
ations in the network. All

information that the adversary gets to see is written in a trans
ript. So a trans
ript
onsists of all the

publi
 information
owing a
ross the network. The following ora
les model an adversary's intera
tion with

the users in the network:

{ Send(U; i;m) : This query models an a
tive atta
k, in whi
h the adversary may inter
ept a message

and then either modify it,
reate a new one or simply forward it to the intended parti
ipant. The

output of the query is the reply (if any) generated by the instan
e �

i

U

upon re
eipt of message m.

The adversary is allowed to prompt the unused instan
e �

i

U

to initiate the proto
ol with partners

U

2

; : : : ; U

l

; l � n, by invoking Send(U; i; hU

2

; : : : ; U

l

i).

4

{ Exe
ute(S) : This query models passive atta
ks in whi
h the atta
ker eavesdrops on honest exe
ution of

group key agreement proto
ol among unused instan
es �

i

1

V

1

; : : : ;�

i

l

V

l

and outputs the trans
ript of the

exe
ution. A trans
ript
onsists of the messages that were ex
hanged during the honest exe
ution of

the proto
ol.

{ Join(S; S

1

) : This query models the insertion of user instan
es �

i

l+1

V

l+1

; : : : ;�

i

l+k

V

l+k

in the group fV

1

; : : : ; V

l

g �

P for whi
h Exe
ute have already been queried. The output of this query is the trans
ript generated

by the invo
ation of algorithm Join. If Exe
ute(S) has not taken pla
e, then the adversary is given

no output.

{ Leave(S; S

2

) : This query models the removal of user instan
es �

i

j

1

V

j

1

; : : : ;�

i

j

k

V

j

k

from the group fV

1

; : : : V

l

g �

P. If Exe
ute(S) has not taken pla
e, then the adversary is given no output. Otherwise, algorithm

Leave is invoked. The adversary is given the trans
ript generated by the honest exe
ution of pro
edure

Leave.

{ Reveal(U; i) : This outputs session key sk

i

U

. This query models the misuse of the session keys, i.e known

session key atta
k.

{ Corrupt(U) : This outputs the long-term se
ret key (if any) of player U . The adversarial model that we

adopt is a weak-
orruption model in the sense that only the long-term se
ret keys are
ompromised,

but the ephemeral keys or the internal data of the proto
ol parti
ipants are not
orrupted. This

query models (perfe
t) forward se
re
y.

{ Test(U; i) : This query is allowed only on
e, at any time during the adversary's exe
ution. A bit

b 2 f0; 1g is
hosen uniformly at random. The adversary is given sk

i

U

if b = 1, and a random session

key if b = 0. This ora
le
omputes the adversary's ability to distinguish a real session key from a

random one.

An adversary whi
h has a

ess to the Exe
ute, Join, Leave, Reveal, Corrupt and Test ora
les, is
onsidered

to be passive while an a
tive adversary is given a

ess to the Send ora
le in addition. (For stati

ase,

there is no Join or Leave queries as a group of �xed size is
onsidered.)

The adversary
an ask Send, Exe
ute, Join, Leave, Reveal and Corrupt queries several times, but Test

query is asked only on
e and on a fresh instan
e. We say that an instan
e �

i

U

is fresh unless either the

adversary, at some point, queried Reveal(U; i) or Reveal(U

0

; j) with U

0

2 pid

i

U

or the adversary queried

Corrupt(V) (with V 2 pid

i

U

) before a query of the form Send(U; i; �) or Send(U

0

; j; �) where U

0

2 pid

i

U

.

Finally adversary outputs a guess bit b

0

. Su
h an adversary is said to win the game if b = b

0

where b is

the hidden bit used by the Test ora
le.

Let Su

 denote the event that the adversary A wins the game for a proto
ol XP. We de�ne

Adv

A;XP

:= j2 Prob[Su

℄� 1j

to be the advantage of the adversary A in atta
king the proto
ol XP.

The proto
ol XP is said to be a se
ure unauthenti
ated group key agreement (KA) proto
ol if there is no

polynomial time passive adversary with non-negligible advantage. In other words, for every probabilisti
,

polynomial-time, 0/1 valued algorithm A, Adv

A;XP

<

1

M

L

for every �xed L > 0 and suÆ
iently large

integer M . We say that proto
ol XP is a se
ure authenti
ated group key agreement (AKA) proto
ol if there

is no polynomial time a
tive adversary with non-negligible advantage. Next we de�ne

5

Adv

KA

XP

(t; q

E

) := the maximum advantage of any passive adversary atta
king proto
ol XP,

running in time t and making q

E

alls to the Exe
ute ora
le.

Adv

AKA

XP

(t; q

E

; q

S

) := the maximum advantage of any a
tive adversary atta
king proto
ol XP,

running in time t and making q

E

alls to the Exe
ute ora
le and q

S

alls

to the Send ora
le.

Adv

AKA

XP

(t; q

E

; q

J

; q

L

; q

S

) := the maximum advantage of any a
tive adversary atta
king proto
ol XP,

running in time t and making q

E

alls to the Exe
ute ora
le, q

J

alls to

Join ora
le, q

L

alls to the Leave ora
le and q

S

alls to the Send ora
le.

3 Proto
ol

Suppose a set of n users P = fU

1

; : : : ; U

n

g wish to establish a
ommon session key among themselves.

Quite often, we identify a user U

i

with it's instan
e �

d

i

U

i

(for some integer d

i

that is session spe
i�
) during

a proto
ol exe
ution. We
onsider the users U

1

; : : : ; U

n

parti
ipating in the proto
ol are on a ring and

U

i�1

; U

i+1

are respe
tively the left and right neighbors of U

i

for 1 � i � n, U

0

= U

n

; U

n+1

= U

1

and U

n+i

is taken to be U

i

. As mentioned earlier, we
onsider a multipli
ative group G of some large prime order q

with g as a generator. We also
onsider a hash fun
tion H : f0; 1g

�

! Z

�

q

.

3.1 Unauthenti
ated Key Agreement Proto
ol

U

1

U

2

U

3

U

4

U

5

� � � � �

x

1

x

2

x

3

x

4

x

5

g

x

1

g

x

2

g

x

3

g

x

4

g

x

5

: Round-1

Communi
ations �! U

i

sends g

x

i

to U

i�1

; U

i+1

, 1 � i � 5, U

0

= U

5

; U

6

= U

1

.

U

i

omputes K

L

i

= g

x

i�1

x

i

, K

R

i

= g

x

i

x

i+1

, 1 � i � 5, x

0

= x

5

; x

6

= x

1

K

R

1

K

L

1

K

R

2

K

L

2

K

R

3

K

L

3

K

R

4

K

L

4

K

R

5

K

L

5

: Round-2

Communi
ations �! U

i

, 1 � i � 5 sends

K

R

i

K

L

i

to U

j

, 1 � j � 5; j 6= i

U

i

, 1 � i � 5 re
overs K

R

j

, 1 � j � 5; j 6= i

The session key sk = K

R

1

K

R

2

K

R

3

K

R

4

K

R

5

= g

x

1

x

2

+x

2

x

3

+x

3

x

4

+x

4

x

5

+x

5

x

1

Figure 1: The unauthenti
ated group key agreement among n = 5 users.

First we informally des
ribe our unauthenti
ated proto
ol KeyAgree that involves two rounds and a

6

key
omputation phase. At the start of the session, ea
h user U

i

= �

d

i

U

i

hooses randomly a private key

x

i

2 Z

�

q

. In the �rst round, U

i

omputes X

i

= g

x

i

and sends X

i

to its neighbors U

i�1

; U

i+1

. After this

ommuni
ation is over, U

i

re
eives X

i�1

from U

i�1

and X

i+1

from U

i+1

. U

i

then
omputes it's left key

K

L

i

= X

x

i

i�1

, right key K

R

i

= X

x

i

i+1

, Y

i

= K

R

i

=K

L

i

and sends Y

i

to the rest of the users in the se
ond round.

Finally in the key
omputation phase, U

i

omputes K

R

i+1

;K

R

i+2

; : : : ;K

R

i+(n�1)

as follows making use of his

own right key K

R

i

: K

R

i+1

= Y

i+1

K

R

i

;K

R

i+2

= Y

i+2

K

R

i+1

; : : : ;K

R

i+(n�1)

= Y

i+(n�1)

K

R

i+(n�2)

: Then U

i

veri�es

if K

R

i+(n�1)

is same as that of his left key K

L

i

(= K

R

i+(n�1)

). If veri�
ation fails, then U

i

aborts. Otherwise,

U

i

has the
orre
t right keys of all the users. U

i

omputes the session key sk

d

i

U

i

= K

R

1

K

R

2

: : : K

R

n

whi
h is

equal to g

x

1

x

2

+x

2

x

3

+���+x

n

x

1

. U

i

also
omputes and stores x = H(sk

d

i

U

i

) for a join operation and stores his left

key and right key K

L

i

, K

R

i

respe
tively for a leave operation as we will see in the subsequent subse
tions.

We refer x as the seed whi
h is
ommon to all users involved in the session. Figure 1 illustrates the proto
ol

with n = 5 users.

Observe that ea
h user
omputes 3 exponentiations (1 in round 1 and 2 in round 2) and at most 2n� 2

multipli
ations (n� 1 multipli
ations for re
overy of all right keys and n� 1 multipli
ations for session key

omputation). The formal des
ription of the proto
ol is given below.

pro
edure KeyAgree(U [1; : : : ; n℄; x[1; : : : ; n℄)

(Round 1):

1. for i = 1 to n do in parallel

2. U

i

(= �

d

i

U

i

)
omputes X

i

= g

x

i

and sends X

i

to U

i�1

and U

i+1

;

3. end for

4. Note that X

0

= X

n

and X

n+1

= X

1

.

(Round 2):

5. for i = 1 to n do in parallel

6. U

i

omputes the left key K

L

i

= X

x

i

i�1

, the right key K

R

i

= X

x

i

i+1

and Y

i

= K

R

i

=K

L

i

;

7. U

i

sends Y

i

to the rest of the users;

8. end for

9. Note that K

R

i

= K

L

i+1

for 1 � i � n� 1, K

R

n

= K

L

1

and K

R

i+(n�1)

= K

L

i

:

(Key Computation):

10.for i = 1 to n do in parallel

11.U

i

omputes K

R

i+1

= Y

i+1

K

R

i

;

12. for j = 2 to n� 1 do

13. U

i

omputes K

R

i+j

= Y

i+j

K

R

i+(j�1)

;

14. end for

15. U

i

veri�es if K

R

i+(n�1)

= K

R

i+(n�1)

(i.e. if K

L

i

= K

R

i+(n�1)

);

16. if veri�
ation fails, then U

i

sets a

d

i

U

i

= 0, sk

d

i

U

i

= NULL and aborts the proto
ol;

17. else U

i

omputes the session key sk

d

i

U

i

= K

R

1

K

R

2

: : : K

R

n

, the seed x = H(sk

d

i

U

i

) and stores K

L

i

;K

R

i

;

18. end if

19.end for

end KeyAgree

7

3.2 Authenti
ated Key Agreement Proto
ol

We authenti
ate the unauthenti
ated proto
ol of Se
tion 3.1 by in
orporating a standard digital signature

s
heme DSig = (K;S;V) where K is the key generation algorithm, S is the signature generation algorithm

and V is the signature veri�
ation algorithm. As part of this signature s
heme, K generates a signing

and a veri�
ation key sk

i

(or sk

U

i

) and pk

i

(or pk

U

i

) respe
tively for ea
h user U

i

. Session identity is an

important issue of our authenti
ation me
hanism whi
h uniquely identi�es the session and is same for all

instan
es parti
ipating in the session.

Suppose instan
es �

d

1

U

i

1

; : : : ;�

d

k

U

i

k

wish to agree upon a
ommon key in a session. Then a

ording to

our de�nition, sid

d

j

U

i

j

= f(U

i

1

; d

1

); : : : ; (U

i

k

; d

k

)g. Note that the instan
e numbers
an be easily generated

using
ounter. We make the assumption that in ea
h session at most one instan
e of ea
h user parti
ipates

and an instan
e of a parti
ular user parti
ipates in exa
tly one session. As mentioned earlier, this is a

reasonable assumption to avoid
ollisions in the session identities.

At the start of the session, �

d

j

U

i

j

need not to know the entire set sid

d

j

U

i

j

. This set is built up as the

proto
ol pro
eeds. We use a variable partial session-identity psid

d

U

for instan
e �

d

U

involved in a session

to keep the partial information about it's session identity. Initially, psid

d

j

U

i

j

is set to be f(U

i

j

; d

j

)g by �

d

j

U

i

j

and �nally after
ompletion of the session, psid

d

j

U

i

j

grow into full session identity sid

d

j

U

i

j

. We assume that

any instan
e �

d

j

U

i

j

knows it's partner identity pid

d

j

U

i

j

i.e. the set of users with whi
h it is partnered in the

parti
ular session. We des
ribe below the algorithm AuthKeyAgree that is obtained by modifying algorithm

KeyAgree by introdu
ing signatures in the
ommuni
ation.

pro
edure AuthKeyAgree(U [1; : : : ; n℄; x[1; : : : ; n℄)

(Round 1):

1. for i = 1 to n do in parallel

2. U

i

(= �

d

i

U

i

) sets its partial session-identity psid

d

i

U

i

= f(U

i

; d

i

)g;

3. U

i

hooses randomly x

i

2 Z

�

q

and
omputes X

i

= g

x

i

and �

i

= S(sk

U

i

;M

i

) where M

i

= U

i

j1jX

i

;

4. U

i

sends M

i

j�

i

to U

i�1

and U

i+1

;

5. end for

6. Note that M

0

j�

0

=M

n

j�

n

and M

n+1

j�

n+1

=M

1

j�

1

.

(Round 2):

7. for i = 1 to n do in parallel

8. U

i

, on re
eiving M

i�1

j�

i�1

from U

i�1

and M

i+1

j�

i+1

from U

i+1

, veri�es �

i�1

on M

i�1

and �

i+1

on M

i+1

using the veri�
ation algorithm V and the respe
tive veri�
ation keys pk

U

i�1

, pk

U

i+1

;

9. if veri�
ation fails, then U

i

sets a

d

i

U

i

= 0, sk

d

i

U

i

= NULL and aborts;

10. else U

i

omputes the left key K

L

i

= X

x

i

i�1

, the right key K

R

i

= X

x

i

i+1

, Y

i

= K

R

i

=K

L

i

and signature �

i

= S(sk

U

i

;M

i

) where M

i

= U

i

j2jY

i

jd

i

;

11. U

i

sends M

i

j�

i

to the rest of the users;

12. end if

13.end for

14.Note that K

R

i

= K

L

i+1

for 1 � i � n� 1, K

R

n

= K

L

1

and K

R

i+(n�1)

= K

L

i

:

(Key Computation):

15.for i = 1 to n do in parallel

16. for j = 1 to n, j 6= i do

17. U

i

, on re
eiving M

j

j�

j

from U

j

veri�es �

j

on M

j

using

8

the veri�
ation algorithm V and the veri�
ation key pk

U

j

;

18. if veri�
ation fails, then U

i

sets a

d

i

U

i

= 0, sk

d

i

U

i

= NULL and aborts;

19. else U

i

extra
ts d

j

from M

j

and sets psid

d

i

U

i

= psid

d

i

U

i

[f(U

j

; d

j

)g;

20. end for

21. U

i

omputes K

R

i+1

= Y

i+1

K

R

i

;

22. j = 2 to n� 1 do

23. U

i

omputes K

R

i+j

= Y

i+j

K

R

i+(j�1)

;

24. end for

25. U

i

veri�es if K

R

i+(n�1)

= K

R

i+(n�1)

(i.e. if K

L

i

= K

R

i+(n�1)

);

26. if veri�
ation fails, then U

i

sets a

d

i

U

i

= 0, sk

d

i

U

i

= NULL and aborts;

27. else U

i

omputes the session key sk

d

i

U

i

= K

R

1

K

R

2

: : : K

R

n

, the seed x = H(sk

d

i

U

i

) and stores K

L

i

;K

R

i

;

28. end if

29. end if

30.end for

end AuthKeyAgree

3.3 Dynami
 Key Agreement Proto
ol

3.3.1 Join

Suppose U [1; : : : ; n℄ be a set of users with respe
tive se
ret keys x[1; : : : ; n℄ and an exe
ution of AuthKeyA-

gree among the instan
es �

t

1

U

1

; : : : ;�

t

n

U

n

has already been done. So all these instan
es �

t

i

U

i

; 1 � i � n, have

a
ommon session key and also a
ommon seed x 2 Z

�

q

resulting from this exe
ution of AuthKeyAgree. Let

the set of users U [n+1; : : : ; n+m℄ with se
ret keys x[n+1; : : : ; n+m℄ want to join the group U [1; : : : ; n℄.

The new instan
es involved in the pro
edure Join are �

d

1

U

1

; : : : ;�

d

n+m

U

n+m

.

We
onsider a ring of l = m + 3 users V

1

= U

1

, V

2

= U

2

, V

3

= U

n

, V

i

= U

n+i�3

for 4 � i � l

with V

2

now using the seed x as it's private key. We set y

1

= x

1

; y

2

= x; y

3

= x

n

, y

i

= x

n+i�3

and

^

d

1

= d

1

;

^

d

2

= d

2

;

^

d

3

= d

n

,

^

d

i

= d

n+i�3

. The left and right neighbors of V

i

are respe
tively V

i�1

and

V

i+1

for 1 � i � l with V

0

= V

l

and V

l+1

= V

1

. We take V

l+i

to be V

i

and V

2

is the representative

of the set of users U [2; : : : ; n� 1℄. We invoke KeyAgree (for unauthenti
ated version of join algorithm)

or AuthKeyAgree (for authenti
ated version of join algorithm) for l users V [1; : : : ; l℄ with respe
tive keys

y[1; : : : ; l℄. For simpli
ity, we des
ribe the unauthenti
ated version of the pre
edure Join and mention the

additional modi�
ations required for it's authenti
ated version.

Let for 1 � i � l,

^

X

i

= g

y

i

;

^

X

0

=

^

X

l

;

^

X

l+1

=

^

X

1

;

^

K

L

i

=

^

X

y

i

i�1

;

^

K

R

i

=

^

X

y

i

i+1

;

^

Y

i

=

^

K

R

i

=

^

K

L

i

: In round 1,

V

i

sends

^

X

i

to both V

i�1

and V

i+1

. Additionally, V

1

sends

^

X

1

and V

3

sends

^

X

3

to all users U [3; : : : ; n� 1℄

in this round. In the se
ond round, V

i

omputes it's left key

^

K

L

i

, right key

^

K

R

i

and sends

^

Y

i

to the rest

of the users in V [1; : : : ; l℄. Additionally, V

i

sends

^

Y

i

to all users in U [3; : : : ; n � 1℄. If the proto
ol does

not abort, V

i

omputes the session key sk

^

d

i

V

i

in the key
omputation phase whi
h is the produ
t of l right

keys
orresponding to l users V [1; : : : ; l℄. V

i

also
omputes the seed H(sk

^

d

i

V

i

) and stores

^

K

L

i

;

^

K

R

i

that
an

be used for subsequent dynami
 operations. Although a
tive parti
ipations of the users U [3; : : : ; n � 1℄

are not required during the proto
ol exe
ution, these users should be able to
ompute the
ommon session

key, the seed, the left key and the right key. Fortunately, these users have x,

^

X

1

= g

y

1

and

^

X

3

= g

y

3

. So

ea
h
an
ompute and store U

2

's left key

^

K

L

2

= g

y

1

x

, right key

^

K

R

2

= g

y

3

x

and pro
eeding in the same way

as V

2

does, re
over right keys of l users V [1; : : : ; l℄,
omputes the session key and the
ommon seed. The

joining algorithm Join is fomally des
ribed below.

9

pro
edure Join(U [1; : : : ; n+m℄; x[1; : : : ; n+m℄)

1. Set l = m+ 3; V

1

= U

1

; V

2

= U

2

; V

3

= U

n

;

^

d

1

= d

1

;

^

d

2

= d

2

;

^

d

3

= d

n

; y

1

= x

1

; y

2

= x; y

3

= x

n

;

and for 4 � i � l, V

i

= U

n+i�3

;

^

d

i

= d

n+i�3

; y

i

= x

n+i�3

;

2. We
onsider a ring of l users V [1; : : : ; l℄ with respe
tive instan
e numbers

^

d[1; : : : ; l℄

and se
ret keys y[1; : : : ; l℄;

3.
all KeyAgree(V [1; : : : ; l℄; y[1; : : : ; l℄);

4. Let for 1 � i � l,

^

X

i

= g

y

i

;

^

X

0

=

^

X

l

;

^

X

l+1

=

^

X

1

;

^

K

L

i

=

^

X

y

i

i�1

;

^

K

R

i

=

^

X

y

i

i+1

;

^

Y

i

=

^

K

R

i

=

^

K

L

i

;

5. V

1

and V

3

, in round 1, additionally send

^

X

1

and

^

X

3

respe
tively to all users in U [3; : : : ; n� 1℄;

6. V

i

, in round 2, additionally sends

^

Y

i

to all users in U [3; : : : ; n� 1℄;

7. for i = 3 to n� 1 do

8. U

i

omputes

^

K

R

3

=

^

Y

3

K

R

2

;

9. j = 2 to l � 1 do

10. U

i

omputes

^

K

R

2+j

=

^

Y

2+j

^

K

R

2+(j�1)

;

11. end do

12. U

i

omputes sk

d

i

U

i

=

^

K

R

1

^

K

R

2

: : :

^

K

R

l

;

13.end for

end Join

If we invoke pro
edure AuthKeyAgree instead of KeyAgree in line 3 of the above algorithm, then messages

transmitted during the proto
ol exe
ution are properly stru
tured with signatures appended to them

generated and veri�ed a

ording to the algorithm AuthKeyAgree. At the end of the session, if the proto
ol

terminates normally without abort, then ea
h user V

i

, 1 � i � l additionally has a
ommon session identity

sid

^

d

i

V

i

= f(V

1

;

^

d

1

); : : : ; (V

l

;

^

d

l

)g apart from the
ommon session key, the seed, the left and the right keys.

Users U [3; : : : ; n � 1℄ are also able to
ompute this session identity from the messages re
eived by them

during the proto
ol exe
ution.

3.3.2 Leave

Suppose U [1; : : : ; n℄ is a set of users with respe
tive se
ret keys x[1; : : : ; n℄ and an exe
ution of AuthKeyAgree

among the instan
es �

t

1

U

1

; : : : ;�

t

n

U

n

has already been done. LetK

L

i

;K

R

i

, 1 � i � n are the left and right keys

respe
tively of U

i

omputed and stored in this session. Let the set of users fU

l

1

; : : : ; U

l

m

g wants to leave

the group U [1; : : : ; n℄. Then the new user set is U [1; : : : ; l

1

�L℄[U [l

1

+R; : : : ; l

2

�L℄[: : :[U [l

m

+R; : : : ; n℄

where U

l

i

�L

and U

l

i

+R

are respe
tively the left and right neighbours of the leaving user U

l

i

, 1 � i � m.

Then for any leaving user U

l

, l � L = l � i if the
onse
utive users U

l

; U

l�1

; : : : ; U

l�(i�1)

are all leaving

and U

l�i

is not leaving the group. Similarly, l+R = l+ i if
onse
utive users U

l

; U

l+1

; : : : ; U

l+(i�1)

are all

leaving and U

l+i

is not leaving the group. We reindex these n�m remaining users and denote the new user

set by V [1; : : : ; n�m℄. We also reindex the left and right keys and denote by two arrays

^

K

L

[1; : : : ; n�m℄

and

^

K

R

[1; : : : ; n � m℄ respe
tively the left and right keys of users V [1; : : : ; n � m℄. The new instan
es

involved in the pro
edure Leave are �

d

1

V

1

; : : : ;�

d

n�m

V

n�m

.

We
onsider a ring of n�m users V [1; : : : ; n�m℄. For a leaving user U

l

i

, it's left neighbor U

l

i

�L

and

right neighbor U

l

i

+R

respe
tively
hoose new se
ret keys x

j

1

; x

j

2

2 Z

�

q

where j

1

= l

i

� L and j

2

= l

i

+ R,

omputes X

j

1

= g

x

j

1

;X

j

2

= g

x

j

2

. Note that in the ring, the left and right neighbors of U

j

1

are respe
tively

U

j

1

�1

and U

j

2

and that of U

j

2

are respe
tively U

j

1

and U

j

2

+1

. U

j

1

sends X

j

1

(properly stru
tured with

orresponding signature as in AuthKeyAgree) to it's neighbors U

j

1

�1

, U

j

2

and U

j

2

sends X

j

2

(properly

stru
tured) to it's neighbors U

j

1

, U

j

2

+1

. This is the �rst round. In the se
ond round, ea
h user V

i

, after

proper veri�
ation of the re
eived messages,
omputes Y

i

=

^

K

R

i

=

^

K

L

i

and sends Y

i

(properly stru
tured

10

asso
iating signature) to the rest of the users in V [1; : : : ; n�m℄. The key
omputation phase is exa
tly the

same as in the pro
edure AuthKeyAgree among n�m users V

1

; : : : :V

n�m

. The algorithm Leave is formally

des
ribed below.

pro
edure Leave(U [1; : : : ; n℄; x[1; : : : ; n℄; fU

l

1

; : : : ; U

l

m

g)

(Round 1):

Let K

L

i

;K

R

i

be respe
tively the left and right keys of user U

i

, 1 � i � n,
omputed and stored

in a previous session among instan
es �

t

1

U

1

; : : : ;�

t

n

U

n

.

1. for i = 1 to m do in parallel

2. Let j

1

= l

i

� L; j

2

= l

i

+R;

3. U

j

1

; U

j

2

respe
tively
hoose randomly new se
ret keys x

j

1

; x

j

2

2 Z

�

q

and
omputes X

j

1

= g

x

j

1

,

X

j

2

= g

x

j

2

and �

j

1

= S(sk

U

j

1

;M

j

1

), �

j

2

= S(sk

U

j

2

;M

j

2

) where M

j

1

= U

j

1

j1jX

j

1

, M

j

2

= U

j

2

j1jX

j

2

;

4. U

j

1

sends M

j

1

j�

j

1

to U

j

1

�1

and U

j

2

;

5. U

j

2

sends M

j

2

j�

j

2

to U

j

1

and U

j

2

+1

(U

n+1

= U

1

);

6. end for

(Round 2):

7. for i = 1 to m do in parallel

8. Let j

1

= l

i

� L; j

2

= l

i

+R;

9. We set W = fj

1

� 1; j

1

; j

2

; j

2

+ 1g;

10. U

j

1

�1

; U

j

2

, on re
eiving M

j

1

j�

j

1

from U

j

1

, veri�es �

j

1

on M

j

1

using the veri�
ation key pk

U

j

1

;

11. U

j

1

; U

j

2

+1

, on re
eiving M

j

2

j�

j

2

from U

j

2

, veri�es �

j

2

on M

j

2

using the veri�
ation key pk

U

j

2

;

12. if any of these veri�
ations fail, then U

w

, w 2W , sets a

d

w

U

w

= 0, sk

d

w

U

w

= NULL and aborts;

13. else

14. U

j

1

modi�es its left key K

L

j

1

= X

x

j

1

j

1

�1

and right key K

R

j

1

= X

x

j

1

j

2

;

15. U

j

2

modi�es its left key K

L

j

1

= X

x

j

2

j

1

and right key K

R

j

2

= X

x

j

2

j

2

+1

;

16. U

j

1

�1

modi�es its right key K

R

j

1

�1

= X

x

j

1

�1

j

1

;

17. U

j

2

+1

modi�es its left key K

L

j

2

+1

= X

x

j

2

+1

j

2

;

18. end if

19.end for

We reindex the n�m users U [1 : : : n℄ n fU

l

1

; : : : ; U

l

m

g. Let U [1 : : : n�m℄ be the new user set and

^

K

L

[1 : : : n�m℄,

^

K

R

[1 : : : n�m℄ respe
tively be the set of
orresponding left and right keys.

20.for i = 1 to n�m do in parallel

21. V

i

omputes Y

i

=

^

K

R

i

=

^

K

L

i

and signature �̂

i

= S(sk

V

i

;

^

M

i

) where

^

M

i

= V

i

j2jY

i

jd

i

;

22. V

i

sends

^

M

i

j�̂

i

to the rest of the users in V [1; : : : ; n�m℄;

23.end for

24.Note that

^

K

R

i

=

^

K

L

i+1

for 1 � i � n�m� 1,

^

K

R

n

=

^

K

L

1

and

^

K

R

i+(n�m�1)

=

^

K

L

i

:

(Key Computation):

25.for i = 1 to n�m do in parallel

26. for j = 1 to n�m, j 6= i do

27. V

i

, on re
eiving M

j

j�

j

from V

j

veri�es �

j

on M

j

using

the veri�
ation algorithm V and the veri�
ation key pk

V

j

;

28. if veri�
ation fails, then V

i

sets a

d

i

V

i

= 0, sk

d

i

V

i

= NULL and aborts;

29. else V

i

extra
ts d

j

from M

j

and sets psid

d

i

V

i

= psid

d

i

V

i

[f(V

j

; d

j

)g;

30. end for

31. V

i

omputes K

R

i+1

= Y

i+1

^

K

R

i

;

11

32. j = 2 to n�m� 1 do

33. V

i

omputes K

R

i+j

= Y

i+j

K

R

i+(j�1)

;

34. end for

35. V

i

veri�es if

^

K

R

i+(n�m�1)

= K

R

i+(n�m�1)

(i.e. if

^

K

L

i

= K

R

i+(n�m�1)

);

36. if veri�
ation fails, then V

i

sets a

d

i

V

i

= 0, sk

d

i

V

i

= NULL and aborts;

37. else V

i

omputes the session key sk

d

i

V

i

= K

R

1

K

R

2

: : : K

R

n�m

, the seed x = H(sk

d

i

V

i

) and stores

^

K

L

i

;

^

K

R

i

;

38. end if

39. end if

40.end for

end Leave

4 Se
urity Analysis

4.1 Se
urity of the Unauthenti
ated Proto
ol

We will show that our unauthenti
ated proto
ol UP is se
ure against passive adversary under DDH as-

sumption. We state the se
urity result of UP in Theorem 4.1. The proof, although not exa
tly same, is

quite similar to Katz-Yung [25℄ proof of se
urity against passive adversary of the unauthenti
ated BD [18℄

proto
ol under DDH assumption.

Theorem 4.1 The unauthenti
ated proto
ol UP des
ribed in Se
tion 3.1 is se
ure against passive adversary

under DDH assumption, a
hieves forward se
re
y and satis�es the following:

Adv

KA

UP

(t; q

E

) � 4 Adv

DDH

G

(t

0

) +

8q

E

jGj

where t

0

= t+O(jPj q

E

t

exp

), t

exp

is the time required to perform exponentiation in G and q

E

is the number

of Exe
ute query that an adversary may ask.

Proof : Let A be an adversary for the unauthenti
ated proto
ol UP. Using this, we
an
onstru
t an

algorithm D whi
h solves the DDH problem with non-negligible advantage. We �rst
onsider that the

adversary A makes a single Exe
ute query. The number of parties n (� 3) among whi
h the adversary

A asks Exe
ute query is
hosen by A itself. Moreover, sin
e we do not use any long term se
ret key in

our proto
ol UP, Corrupt query may simply be ignored for A and the proto
ol trivially a
hieves forward

se
re
y. The adversary A has a

ess to three ora
les: Exe
ute, Reveal and Test. To deal with the Exe
ute

and Reveal query, we de�ne distributions Real and Fake

0

for trans
ript, session key pair (T; sk) as follows

where Real is the real exe
ution s
enario of the proto
ol UP and prove the Claim 1 stated below.

Real :=

8

>

>

>

>

>

<

>

>

>

>

>

:

x

1

; : : : x

n

 � Z

�

q

;

X

1

= g

x

1

;X

2

= g

x

2

; : : : ;X

n

= g

x

n

;

K

R

1

= K

L

2

= g

x

1

x

2

;K

R

2

= K

L

3

= g

x

2

x

3

; : : : ;K

R

n

= K

L

1

= g

x

n

x

1

; : (T; sk)

Y

1

= K

R

1

=K

L

1

; Y

2

= K

R

2

=K

L

2

; : : : ; Y

n

= K

R

n

=K

L

n

;

T = (X

1

; : : : ;X

n

;Y

1

; : : : ; Y

n

); sk = K

R

1

K

R

2

: : : K

R

n

9

>

>

>

>

>

=

>

>

>

>

>

;

Fake

0

:=

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

x

1

; : : : x

n

 � Z

�

q

;

X

1

= g

x

1

;X

2

= g

x

2

; : : : ;X

n

= g

x

n

;

K

R

1

= K

L

2

= g

x

1

x

2

;K

R

2

= K

L

3

= g

x

2

x

3

; : : : ;K

R

n�1

= K

L

n

= g

x

n�1

x

n

; : (T; sk)

K

R

n

= K

L

1

 � G;

Y

1

= K

R

1

=K

L

1

; Y

2

= K

R

2

=K

L

2

; : : : ; Y

n

= K

R

n

=K

L

n

;

T = (X

1

; : : : ;X

n

;Y

1

; : : : ; Y

n

); sk = K

R

1

K

R

2

: : : K

R

n

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

12

Claim 1 : For any algorithm A running in time t, we have jProb[(T; sk) � Real : A(T; sk) = 1℄ �

Prob[(T; sk) � Fake

0

: A(T; sk) = 1℄j � Adv

DDH

G

(t

00

) +

1

jGj

:

Proof : We
onstru
t a distinguisher D for DDH problem using A, whi
h on an input (A;B;C) 2 G

3

, �rst

generates a pair (T; sk) a

ording to the distribution Dist

0

des
ribed below (whi
h depends on A;B;C),

then runs A on (T; sk) and outputs whatever A outputs.

Dist

0

:=

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

x

1

; : : : x

n

 � Z

�

q

;

X

1

= A

x

1

;X

2

= g

x

2

; : : : ;X

n�1

= g

x

n�1

;X

n

= B

x

n

;

K

R

1

= K

L

2

= A

x

1

x

2

;K

R

2

= K

L

3

= g

x

2

x

3

; : : : ;K

R

n�2

= K

L

n�1

= g

x

n�2

x

n�1

; : (T; sk)

K

R

n�1

= K

L

n

= B

x

n�1

x

n

;K

R

n

= K

L

1

= C

x

n

x

1

;

Y

1

= K

R

1

=K

L

1

; Y

2

= K

R

2

=K

L

2

; : : : ; Y

n

= K

R

n

=K

L

n

;

T = (X

1

; : : : ;X

n

;Y

1

; : : : ; Y

n

); sk = K

R

1

K

R

2

: : : K

R

n

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

The distribution Real and the distribution fa; b � Z

�

q

; A = g

a

; B = g

b

; C = g

ab

; (T; sk) � Dist

0

: (T; sk)g

are statisti
ally equivalent as long as the exponents x

j

used in Dist

0

are random. On the other hand, the dis-

tribution Fake

0

and the distribution fa; b � Z

�

q

;
 � Z

�

q

nfabg; A = g

a

; B = g

b

; C = g

; (T; sk) � Dist

0

:

(T; sk)g are statisti
ally equivalent but for a fa
tor of

1

jGj

. In distribution Fake

0

, the value of K

R

n

(= K

L

1

)

is
hosen uniformly at random from G whereas in Dist

0

, this value is
hosen uniformly from G n fg

ab

g.

These two dristributions are statisti
ally equivalent by the self redu
ibility property of DDH problem.

Hen
e jProb[(T; sk) � Real : A(T; sk) = 1℄ � Prob[(T; sk) � Fake

0

: A(T; sk) = 1℄j � jProb[a; b � Z

�

q

:

D(g

a

; g

b

; g

ab

) = 1℄ � Prob[a; b � Z

�

q

;
 � Z

�

q

n fabg : D(g

a

; g

b

; g

) = 1℄j +

1

jGj

� Adv

DDH

G

(t

00

) +

1

jGj

as the

time of D is dominated by the time t

00

of A. (of Claim 1)

Next we de�ne the �nal distribution Fake as follows and prove the Claim 2 stated below:

Fake :=

8

>

>

>

>

>

<

>

>

>

>

>

:

x

1

; : : : x

n

 � Z

�

q

;

X

1

= g

x

1

;X

2

= g

x

2

; : : : ;X

n

= g

x

n

;

K

R

1

= K

L

2

;K

R

2

= K

L

3

;K

R

3

= K

L

4

; : : : ;K

R

n

= K

L

1

 � G; : (T; sk)

Y

1

= K

R

1

=K

L

1

; Y

2

= K

R

2

=K

L

2

; : : : ; Y

n

= K

R

n

=K

L

n

;

T = (X

1

; : : : ;X

n

;Y

1

; : : : ; Y

n

); sk = K

R

1

K

R

2

: : : K

R

n

9

>

>

>

>

>

=

>

>

>

>

>

;

Claim 2: For any algorithm A running in time t, we have jProb[(T; sk) � Fake

0

: A(T; sk) = 1℄ �

Prob[(T; sk) � Fake : A(T; sk) = 1℄j � Adv

DDH

G

(t

00

) +

1

jGj

:

Proof : Given an adversary, we
onstru
t an algorithm D that takes (A;B;C) 2 G

3

as input, generates

a pair (T; sk) a

ording to the distribution Dist des
ribed below (whi
h depends on A;B;C), runs A on

(T; sk) and outputs whatever A outputs.

13

Dist :=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

x

1

; : : : x

n

 � Z

�

q

;

if n is even then

for i = 1 (2) n do

X

i

= A

x

i

;X

i+1

= B

x

i+1

;

end for

end if

if n is odd then

for i = 1 (2) n� 2 do : (T; sk)

X

i

= A

x

i

;X

i+1

= B

x

i+1

;

end for

X

n

= A

x

n

end if

for i = 1 (2) n� 2 do

K

R

i

= K

L

i+1

= C

x

i

x

i+1

;K

R

i+1

= K

L

i+2

= C

x

i+1

x

i+2

;

end do

K

R

n�1

= K

L

n

= C

x

n�1

x

n

;K

R

n

= K

L

1

 � G;

Y

1

= K

R

1

=K

L

1

; Y

2

= K

R

2

=K

L

2

; : : : ; Y

n

= K

R

n

=K

L

n

;

T = (X

1

; : : : ;X

n

;Y

1

; : : : ; Y

n

); sk = K

R

1

K

R

2

: : : K

R

n

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

The distribution Fake

0

and the distribution fa; b � Z

�

q

; A = g

a

; B = g

b

; C = g

ab

; (T; sk) � Dist : (T; sk)g

are statisti
ally equivalent as long as the exponents x

j

used in Dist are random. On the other hand, the dis-

tribution Fake and the distribution fa; b � Z

�

q

;
 � Z

�

q

n fabg; A = g

a

; B = g

b

; C = g

; (T; sk) � Dist :

(T; sk)g are statisti
ally equivalent but a fa
tor of

1

jGj

. In distribution Fake, the values of K

R

i

(= K

L

i+1

)

for 1 � i � n are
hosen uniformly at random from G and in Dist, these value are
hosen uniformly

from G n fg

ab

g. Then by the self redu
ibility property of DDH problem, we have jProb[(T; sk) � Fake

0

:

A(T; sk) = 1℄�Prob[(T; sk) � Fake : A(T; sk) = 1℄j � jProb[a; b � Z

�

q

: D(g

a

; g

b

; g

ab

) = 1℄�Prob[a; b �

Z

�

q

;
 � Z

�

q

n fabg : D(g

a

; g

b

; g

) = 1℄j +

1

jGj

� Adv

DDH

G

(t

00

) +

1

jGj

as the time of D is dominated by that of

A (whi
h is t

00

). (of Claim 2)

Now we provide the proof of the following
laim whi
h deals with the Test query of A.

Claim 3: For any
omputationally-unbounded adversary A, we have Prob[(T; sk

0

) � Fake; sk

1

 �

G; b � f0; 1g : A(T; sk

b

) = b℄ =

1

2

:

Proof : In Fake, let v

R

i

:= log

g

K

R

i

; 1 � i � n. Then we have the following system of equations:

log

g

Y

1

= �v

R

n

+ v

R

1

; log

g

Y

2

= �v

R

1

+ v

R

2

; : : : ; log

g

Y

n

= �v

R

n�1

+ v

R

n

. Besides sk = g

v

R

1

+v

R

2

+���+v

R

n

gives

the equation log

g

sk = v

R

1

+v

R

2

+ � � �+v

R

n

whi
h is linearly independent from the above system of equations.

This implies that the session key sk is independent of the trans
ript T in Fake. Hen
e for any
omputa-

tionally unbounded adversary A, Prob[(T; sk

0

) � Fake; sk

1

 � G; b � f0; 1g : A(T; sk

b

) = b℄ =

1

2

: (of

Claim 3)

Now Adv

KA

UP;A

(t; 1) := j2Prob[Su

℄ � 1j = 2jProb[(T; sk

0

) � Real; sk

1

 � G; b � f0; 1g : A(T; sk

b

) =

b℄ �

1

2

j = 2jProb[(T; sk

0

) � Real; sk

1

 � G; b � f0; 1g : A(T; sk

b

) = b℄ � Prob[(T; sk

0

) � Fake; sk

1

 �

G; b � f0; 1g : A(T; sk

b

) = b℄j by Claim 3 and using Claim 1 and Claim 2, we obtain Adv

KA

UP

(t; 1) �

4Adv

DDH

G

(t

00

) +

4

jGj

: Then by applying the self-redu
ibility property of DDH problem, we get the result

stated in the Theorem.

14

Consider the
ase for q

E

(> 1) Exe
ute query. The adversary �rst generates q

E

tuples (A

i

; B

i

; C

i

), 1 � i � q

E

with the following properties from the tuple (A;B;C) 2 G

3

given to the adversary.

1. If (A;B;C) � �

Real

, then (A

i

; B

i

; C

i

) � �

Real

for all i, 1 � i � q

E

with (A

i

; B

i

) randomly

distributed in G

2

(independently of anything else).

2. If (A;B;C) � �

Rand

, then (A

i

; B

i

; C

i

) � �

Rand

for all i, 1 � i � q

E

(independently of anything

else) with all but a probability

q

E

jGj

it will be the
ase that log

g

C

i

6= log

g

A

i

log

g

B

i

for all i.

Then pro
eeding in the similar way as above of de�ning distributions Real, Fake', Dist', Fake, Dist, we may

de�ne distributions Real

q

E

, Fake

0

q

E

, Dist

0

q

E

, Fake

q

E

and Dist

q

E

whi
h simply
onsist of q

E

independent
opies

of ea
h of the
orresponding distributions. In
ase of Dist

0

q

E

and Dist

q

E

, we use the
orresponding tuple

(A

i

; B

i

; C

i

) for the i-th
opy. We use notation (

~

T ;

~

sk) to denote the trans
ript/session key pair generated

by these distributions. Then similar to the
laims 1, 2 and 3, we
an prove the following
laims:

Claim 4 : For any algorithm A running in time t, we have jProb[(

~

T ;

~

sk) � Real

q

E

: A(

~

T ;

~

sk) =

1℄ � Prob[(

~

T ;

~

sk) � Fake

0

q

E

: A(

~

T ;

~

sk) = 1℄j � Adv

DDH

G

(t

0

) +

2q

E

jGj

: where t

0

is as in the statement of

the Theorem.

Claim 5 : For any algorithm A running in time t, we have jProb[(

~

T ;

~

sk) � Fake

0

q

E

: A(

~

T ;

~

sk) =

1℄ � Prob[(

~

T ;

~

sk) � Fake

q

E

: A(

~

T ;

~

sk) = 1℄j � Adv

DDH

G

(t

0

) +

2q

E

jGj

where t

0

is as in the statement of

the Theorem.

Claim 6: For any
omputationally-unbounded adversary A, we have Prob[(

~

T ;

~

sk

0

) � Fake;

~

sk

1

 �

G

q

E

; b � f0; 1g : A(

~

T ;

~

sk

b

) = b℄ =

1

2

:

These three
laims yield the result stated in the theorem.

Note : If n is even, then we need not to de�ne the intermediate (T; sk) distribution Fake

0

. In this
ase,

we
an obtain a smaller upper bound of Adv

KA

UP

(1; q

E

)
onsidering only the distributions Real and Fake and

de�ning Dist as in the proof of Claim 2. Consequently, we get a more tighter upper bound for Adv

KA

UP

(t; q

E

).

4.2 Se
urity of the Authenti
ated (Stati
) Proto
ol

We prove that the se
urity of our stati
 authenti
ated proto
ol AP (subse
tion 3.2) relies on that of UP

under the assumption that the underlying signature s
heme DSig is se
ure. In fa
t, given any a
tive

adversary atta
king AP, we
an
onstru
t a passive adversary atta
king UP of subse
tion 3.1. We state

the se
urity result of AP below in Theorem 4.2. Our proof te
hnique is based on the proof te
hnique used

by Katz and Yung [25℄. However, there are
ertain te
hni
al di�eren
es of our proof from that of [25℄.

1. The Katz-Yung te
hnique is a generi
 te
hnique for
onverting any unauthenti
ated proto
ol into an

authenti
ated proto
ol. On the other hand, we
on
entrate on one parti
ular proto
ol. Hen
e we

an avoid some of the
omplexities of the Katz-Yung proof.

2. Katz-Yung proto
ol uses random non
es whereas our proto
ol does not.

3. In our unauthenti
ated proto
ol, there are no long term se
ret keys. Thus we
an avoid the Corrupt

ora
le queries and
an trivially a
hieve forward se
re
y.

15

Theorem 4.2 The authenti
ated proto
ol AP des
ribed in se
tion 3.2 is se
ure against a
tive adversary

under DDH assumption, a
hieves forward se
re
y and satis�es the following:

Adv

AKA

AP

(t; q

E

; q

S

) � Adv

KA

UP

(t

0

; q

E

+

q

S

2

) + jPj Adv

DSig

(t

0

)

where q

E

and q

S

are respe
tively the maximum number of Exe
ute and Send query an adversary may ask.

Proof : Let A

0

be an adversary whi
h atta
ks the authenti
ated proto
ol AP. Using this we
onstru
t an

adversary A whi
h atta
ks the unauthenti
ated proto
ol UP. We �rst have the following
laim.

Claim : Let Forge be the event that a signature of DSig is forged by A

0

. Then Prob[Forge℄ � jPj Adv

DSig

(t

0

):

Proof of Claim: Suppose the event Forge o

urs. Then A

0

makes a query of the type Send(V; i; Y) where Y

is either of the form Y = U

k

j1jX

k

j�

k

with V(pk

U

k

; U

k

j1jX

k

; �

k

) = 1 or of the form Y = U

k

j2jX

k

jd

k

j�

k

with

V(pk

U

k

; U

k

j2jX

k

jd

k

j; �

k

) = 1 for some instan
e �

d

k

U

k

with X

k

2 G and �

k

was not output by any instan
e

of U

k

on the respe
tive messages. Using A

0

, we
onstru
t an algorithm F that forges a signature for DSig

as follows: Given a publi
 key pk, algorithm F
hooses a random U 2 P and sets pk

U

= pk. The other

publi
 keys and private keys for the system are generated honestly by F . The forger F simulates all ora
le

queries of A

0

by exe
uting proto
ol AP itself, obtaining the ne
essary signatures with respe
t to pk

U

, as

needed, from its signing ora
le. Thus F provides a perfe
t simulation for A

0

. If A

0

ever outputs a new

valid message/signature pair with respe
t to pk

U

= pk, then F outputs this pair as its forgery. The su

ess

probability of F is equal to

Prob[Forge℄

jPj

and hen
e Prob[Forge℄ � jPj Adv

DSig

(t

0

): (of Claim)

Now we des
ribe the
onstru
tion of the passive adversary A atta
king UP that uses adversary A

0

atta
king AP. Adversary A uses a list tlist. It stores pairs of session IDs and trans
ripts in tlist.

Adversary A generates the veri�
ation/signing keys pk

U

; sk

U

for ea
h user U 2 P and gives the veri�-

ation keys to A

0

. If ever the event Forge o

urs, adversary A aborts and outputs a random bit. Otherwise,

A outputs whatever bit is eventually output by A

0

. Note that sin
e the signing and veri�
ation keys are

generated by A, it
an dete
t o

urren
e of the event Forge.

A simulates the ora
le queries of A

0

using its own queries to the Exe
ute ora
le. The idea is that the

adversary A queried its Exe
ute ora
le to obtain a trans
ript T of UP for ea
h Exe
ute query of A

0

and also

for ea
h initial send query Send

0

(U; i; �) of A

0

. A then pat
hes appropriate signatures with the messages

in T to obtain a trans
ript T

0

of AP and uses T

0

to answer queries of A

0

. Sin
e by assumption, A

0

an not

forge, A

0

is `limitted' to send messages already
ontained in T

0

. This te
hnique provides a good simulation.

We dis
uss details below.

Exe
ute queries: Suppose A

0

makes a query Exe
ute((U

i

1

; d

1

); : : : ; (U

i

k

; d

k

)). This means that instan
es

�

d

1

U

i

1

; : : : ;�

d

k

U

i

k

are involved in this session. A de�nes S = f(U

i

1

; d

1

); : : : ; (U

i

k

; d

k

)g and sends the exe
ute

query to its Exe
ute ora
le. It re
eives as output a trans
ript T of an exe
ution of UP. It appends (S; T)

to tlist. Adversary A then expands the trans
ript T for the unauthenti
ated proto
ol into a trans
ript T

0

for the authenti
ated proto
ol a

ording to the modi�
ation des
ribed in Se
tion 3.2. It returns T

0

to A

0

.

Send queries: The �rst send query that A

0

makes to an instan
e is to start a new session. We will denote

su
h queries by Send

0

queries. To start a session between unused instan
es �

d

1

U

i

1

; : : : ;�

d

k

U

i

k

, the adversary

has to make the send queries: Send

0

(U

i

j

; d

j

; hU

i

1

; : : : ; U

i

k

inU

i

j

) for 1 � j � k: Note that these queries may

be made in any order. When all these queries have been made, A sets S = f(U

i

1

; d

1

); : : : ; (U

i

k

; d

k

)g and

makes an Exe
ute query to its own exe
ute ora
le. It re
eives a trans
ript T in return and stores (S; T) in

the list tlist.

16

Assuming that signatures
annot be forged, any subsequent Send query (i.e., after a Send

0

query) to an

instan
e �

i

U

is a properly stru
tured message with a valid signature. For any su
h Send query, A veri�es the

query a

ording to the algorithm of Se
tion 3.2. If the veri�
ation fails, A sets a

i

U

= 0 and sk

i

U

= NULL

and aborts �

i

U

. Otherwise, A performs the a
tion to be done by �

i

U

in the authenti
ated proto
ol. This

is done in the following manner: A �rst �nds the unique entry (S; T) in tlist su
h that (U; i) 2 S. Su
h a

unique entry exists for ea
h instan
e by assumption. Now from T , A �nds the appropriate message whi
h

orresponds to the message sent by A

0

to �

i

U

. From the trans
ript T , adversary A �nds the next publi

information to be output by �

i

U

and returns it to A

0

.

Reveal/Test queries : Suppose A

0

makes the query Reveal(U; i) or Test(U; i) to an instan
e �

i

U

for whi
h

a

i

U

= 1. At this point the trans
ript T

0

in whi
h �

i

U

parti
ipates has already been de�ned. Now A �nds

the unique pair (S; T) in tlist su
h that (U; i) 2 S. Assuming that the event Forge does not o

ur, T is the

unique unauthenti
ated trans
ript whi
h
orresponds to the trans
ript T

0

. Then A makes the appropriate

Reveal or Test query to one of the instan
es involved in T and returns the result to A

0

.

As long as Forge does not o

ur, the above simulation for A

0

is perfe
t. Whenever Forge o

urs,

adversary A aborts and outputs a random bit. So Prob

A

0

;AP

[Su

jForge℄ =

1

2

: Now

Adv

A;UP

:= 2 jProb

A;UP

[Su

℄� 1=2j

= 2 jProb

A

0

;AP

[Su

 ^ Forge℄ + Prob

A

0

;AP

[Su

 ^ Forge℄� 1=2j

= 2 jProb

A

0

;AP

[Su

 ^ Forge℄ + Prob

A

0

;AP

[Su

jForge℄ Prob

A

0

;AP

[Forge℄� 1=2j

= 2 jProb

A

0

;AP

[Su

 ^ Forge℄ + (1=2)Prob

A

0

;AP

[Forge℄� 1=2j

= 2 jProb

A

0

;AP

[Su

℄� Prob

A

0

;AP

[Su

 ^ Forge℄ + (1=2)Prob

A

0

;AP

[Forge℄� 1=2j

� j2 Prob

A

0

;AP

[Su

℄� 1j � jProb

A

0

;AP

[Forge℄� 2 Prob

A

0

;AP

[Su

 ^ Forge℄j

� Adv

A

0

;AP

� Prob[Forge℄

The adversary A makes an Exe
ute query for ea
h Exe
ute query of A

0

. Also A makes an Exe
ute query

for ea
h session started by A

0

using Send queries. Sin
e a session involves at least two instan
es, su
h an

Exe
ute query is made after at least two Send queries of A

0

. The total number of su
h Exe
ute queries is

at most q

S

=2, where q

S

is the number of Send queries made by A

0

. The total number of Exe
ute queries

made by A is at most q

E

+ q

S

=2, where q

E

is the number of Exe
ute queries made by A

0

.

Also sin
e Adv

A;UP

� Adv

KA

UP

(t

0

; q

E

+ q

S

=2) by assumption, we obtain:

Adv

AKA

AP

� Adv

KA

UP

(t

0

; q

E

+ q

S

=2) + Prob[Forge℄:

This yields the statement of the theorem.

4.3 Se
urity of the Dynami
 Authenti
ated Proto
ol

In this subse
tion, we will show that the modi�
ations des
ribed in Se
tion 3.3
onverts the proto
ol UP of

Se
tion 3.1 into a dynami
 authenti
ated key agreement proto
ol DAP. Assuming that the signature s
heme

DSig is se
ure, we
an
onvert any adversary atta
king the proto
ol DAP into an adversary atta
king the

proto
ol UP. We ignore Corrupt queries sin
e our proto
ol DAP does not use any long-term se
ret keys. Thus

the proto
ol DAP trivially a
hieves forward se
re
y. We state below our se
urity result in Theorem 4.3.

Theorem 4.3 The dynami
 authenti
ated key agreement proto
ol DAP des
ribed in Se
tion 3.3 sati�es

the following:

Adv

AKA

DAP

(t; q

E

; q

J

; q

L

; q

S

) � Adv

KA

UP

(t

0

; q

E

+ (q

J

+ q

L

+ q

S

)=2) + jPj Adv

DSig

(t

0

)

17

where t

0

� t+(jPjq

E

+ q

J

+ q

L

+ q

S

)t

DAP

, where t

DAP

is the time required for exe
ution of DAP by any one

of the users.

Proof : Let A

0

be an adversary whi
h atta
ks the dynami
 authenti
ated proto
ol DAP. Using this we

onstru
t an adversary A whi
h atta
ks the unauthenti
ated proto
ol UP. As in the previous proof, we

have the following
laim.

Claim : Let Forge be the event that a signature is forged by A

0

. Then Prob[Forge℄ � jPj Adv

DSig

(t

0

):

Now we des
ribe the
onstru
tion of the passive adversary A atta
king UP that uses adversary A

0

atta
king

DAP. Adversary A
an exe
ute the unauthenti
ated proto
ol UP several times among any subset of P

and also
an obtain the session key of the proto
ol exe
ution by making Reveal queries to any instan
es

involved in the session. We will show that A itself simulates the Join and Leave queries of A

0

using its own

Exe
ute and Reveal ora
le. Adversary A maintains a list Tlist to store pairs of session IDs and trans
ripts.

It also uses two lists Jlist and Llist to be spe
i�ed later.

Adversary A generates the veri�
ation/signing keys pk

U

; sk

U

for ea
h user U 2 P and gives the veri�-

ation keys to A

0

. If ever the event Forge o

urs, adversary A aborts and outputs a random bit. Otherwise,

A outputs whatever bit is eventually output by A

0

. Note that sin
e the signing and veri�
ation keys are

generated by A, it
an dete
t o

urren
e of the event Forge. A simulates the ora
le queries of A

0

using its

own queries to the Exe
ute and Reveal ora
les. We provide details below.

Exe
ute queries: These queries are simulated as in the proof of Theorem 4.2.

Send queries: Apart from the usual send queries, there are two spe
ial type of send queries, Send

J

and

Send

L

.

If the set S

1

= f(U

i

k+1

; d

k+1

); : : : ; (U

i

k+l

; d

k+l

)g of unused instan
es wants to join the group S =

f(U

i

1

; d

1

); : : : ; (U

i

k

; d

k

)g, then A

0

will make Send

J

(U

i

j

; d

j

; hU

i

1

; : : : ; U

i

k

i) query for all j, k+ 1 � j � k + l.

These queries initiate Join(S; S

1

) query . Note that the instan
es in S might have already exe
uted either

the unauthenti
ated (a) key agreement proto
ol or (b) join proto
ol or (
) leave proto
ol. A

ordingly, A

�rst �nds any one of the following form of a unique entry: (1) (S; T) in Tlist or (2) (S

0

; S

00

; T) in Jlist with

S = S

0

[S

00

or (3) (S

0

; S

00

; T) in Llist with S = S

0

n S

00

. If no su
h entry, A makes an exe
ute query to its

own exe
ute ora
le on S, gets a trans
ript T and stores (S; T) in Tlist.

In
ase (S; T) 2 Tlist, A �rst makes a Reveal query to any instan
e in S to obtain the session key sk

orresponding to T ,
omputes the seed x = H(sk) and simulates the algorithm for Join by querying its

Exe
ute ora
le (making appropriate
hanges). Then pat
hing up signature in ea
h message, A obtains a

trans
ript T

0

and stores (S; S

1

; T

0

) in Jlist. A thus simulates the trans
ript T

0

of Join using its own Exe
ute

and Reveal ora
les. In the remaining
ases (2) and (3), T is generated by A itself and so A
an simulate

trans
ript T

0

of Join from T .

Similarly, when a set S

2

= f(U

l

1

; d

l

1

); : : : ; (U

l

m

; d

l

m

)g of unused instan
es wants to leave the group S =

f(U

i

1

; d

1

); : : : ; (U

i

k

; d

k

)g, then A

0

will make Send

L

(U

i

j

; d

j

; hU

i

1

; : : : ; U

i

k

i) query for all j; j 2 fl

1

; : : : ; l

m

g.

These queries initiate Leave(S; S

2

) query. As mentioned above in
ase of member join, A �rst �nds a

unique entry of the form (S; T) in Tlist or a unique entry of the form (S

0

; S

00

; T) in Jlist with S = S

0

[S

00

or a unique entry of the form (S

0

; S

00

; T) in Llist with S = S

0

n S

00

. If no su
h entry, then A makes a query

to its own exe
ute ora
le on S, gets a trans
ript T and stores (S; T) in Tlist.

A then simulates the algorithm for Leave by itself and gets a modi�ed trans
ript T

0

from T as follows:

A �rst dete
ts the positions in T where the new messages are to be inje
ted or the old messages are to be

repla
ed by new messages. A do these modi�
ations in T a

ording to the algorithm Leave des
ribed in

Se
tion 3.3.1 and gets a modi�ed trans
ript T

0

by pat
hing up appropriate signature with ea
h message.

Thus A expands T into a trans
ript T

0

for Leave algorithm. A stores (S; S

2

; T

0

) in Llist.

18

Send

0

queries are answered as in Theorem 4.2. The usual send queries are simulated as in Theorem 4.2

with the following modi�
ations.

Suppose A

0

makes a Send query to instan
e �

i

U

. After proper veri�
ation, A �nds a unique entry (S; T)

in Tlist su
h that (U; i) 2 S. The answer to this query is as in Theorem 4.2. If no su
h entry is found, then

A �nds a unique entry (S; S

1

; T

0

) in Jlist su
h that (U; i) 2 S

1

. This means that the session for Join has

already been initiated. A then obtains the next publi
 information for T

0

to be output by �

i

U

(provided

all ne
essary information has been re
eived by �

i

U

by send queries from A

0

) and sends it to A

0

. If A �nds

a unique entry (S; S

2

; T

0

) in Llist su
h that (U; i) 2 S

2

, then as above, the appropriate answer to the query

is found from T

0

.

Join queries : Suppose A

0

makes a query Join(S; S

1

) where S = f(U

i

1

; d

1

); : : : ; (U

i

k

; d

k

)g and S

1

=

f(U

i

k+1

; d

k+1

); : : : ; (U

i

k+l

; d

k+l

). The instan
es �

d

k+1

U

i

k+1

; : : : ;�

d

k+l

U

i

k+l

want to join in the group �

d

1

U

i

1

; : : :�

d

k

U

i

k

.

A �nds an entry of the form (S; S

1

; T

0

) in Jlist. If no su
h entry, then the adversary A

0

is given no output.

Otherwise, A returns T

0

to A

0

Leave queries : Suppose A

0

makes a query Leave(S; S

2

) where S = f(U

i

1

; d

1

); : : : ; (U

i

k

; ; d

k

)g and

S

2

= f(U

l

1

; d

l

1

); : : : ; (U

l

m

; d

l

m

)g where (U

l

j

; d

l

j

) 2 S for 1 � j � m. The instan
e �

d

l

1

U

l

1

; : : :�

d

l

m

U

l

m

want

to leave the group �

d

1

U

i

1

; : : : ;�

d

k

U

i

k

where U

l

j

2 fU

i

1

; : : : ; U

i

k

g for 1 � j � m. A �nds an entry of the form

(S; S

2

; T

0

) in Llist. If no su
h entry, then the adversary A

0

is given no output. Otherwise, A returns T

0

to

A

0

.

Reveal/Test queries : Suppose A

0

makes the query Reveal(U; i) or Test(U; i) for an instan
e �

i

U

for

whi
h a

i

U

= 1. At this point the trans
ript T

0

in whi
h �

i

U

parti
ipates has already been de�ned. If T

0

orresponds to the trans
ript of the authenti
ated proto
ol, then A �nds the unique pair (S; T) in Tlist

su
h that (U; i) 2 S. Assuming that the event Forge does not o

ur, T is the unique unauthenti
ated

trans
ript whi
h
orresponds to the trans
ript T

0

. Then A makes the appropriate Reveal or Test query to

one of the instan
es involved in T and returns the result to A

0

. Otherwise, T

0

is the trans
ript for Join or

Leave, as the
ase may be. Sin
e T

0

has been simulated by A, A is able to
ompute the modi�ed session

key and hen
e send an appropriate reply to A

0

.

As long as Forge does not o

ur, the above simulation for A

0

is perfe
t. Whenever Forge o

urs,

adversary A aborts and outputs a random bit. So Prob

A

0

;AP

[Su

jForge℄ =

1

2

: Using this, one
an show

Adv

A;UP

� Adv

A

0

;DAP

� Prob[Forge℄

The adversary A makes an Exe
ute query for ea
h Exe
ute query of A

0

. A

0

makes q

J

Join queries and

q

L

Leave queries. These queries are initialized respe
tively by Send

J

and Send

L

queries of A

0

. Now ea
h

of Send

J

and Send

L

query of A

0

makes at most one Exe
ute query of A. Thus there are at most q

J

+ q

L

exe
ute query made by A to respond all the Send

J

and Send

L

queries of A

0

.

Also A makes an Exe
ute query for ea
h session started by A

0

using Send queries. Sin
e a session

involves at least two instan
es, su
h an Exe
ute query is made after at least two Send queries of A

0

. Thus

there are (q

S

� q

J

� q

L

)=2 exe
ute queries of A to respond all other Send queries of A

0

, where q

S

is the

number of Send queries made by A

0

. Hen
e the total number of Exe
ute queries made by A is at most

q

E

+ q

J

+ q

L

+ (q

S

� q

J

� q

L

)=2 = q

E

+ (q

J

+ q

L

+ q

S

)=2, where q

E

is the number of Exe
ute queries made

by A

0

. Also sin
e Adv

A;UP

(t; q

E

; q

J

; q

L

; q

S

) � Adv

KA

UP

(t

0

; q

E

+ q

J

=2+ q

L

=2+ q

S

=2) by assumption, we obtain:

Adv

AKA

DAP

� Adv

KA

UP

(t

0

; q

E

+ (q

J

+ q

L

+ q

S

)=2) + Prob[Forge℄:

This yields the statement of the theorem.

19

5 Con
lusion

We present and analyze a simple and elegant
onstant round group key agreement proto
ol and enhan
e it

to dynami
 setting where a set of users
an leave or join the group at any time during proto
ol exe
ution

with updated keys. The emphasis of this work is to a
hieve provable se
urity of our s
heme under DDH

assumption. We provide a
on
rete se
urity analysis of our proto
ol against a
tive adversary in the standard

se
urity model of Bresson et al. [15℄ adapting Katz-Yung [25℄ te
hnique. The proto
ol is forward se
ure,

eÆ
ient and fully symmetri
.

Referen
es

[1℄ M. Abdalla, M. Bellare and P. Rogaway. DHIES : An en
ryption s
heme based on the DiÆe-Hellman

problem, CT-RSA 2001 : 143-158.

[2℄ G. Ateniese, M. Steiner, and G. Tsudik. Authenti
ated Group Key Agreement and Friends. In ACM

CCS98[1℄, pages 17-26.

[3℄ G. Ateniese, M. Steiner, and G. Tsudik. New Multiparty Authenti
ated Servi
es and Key Agreement

Proto
ols, Journal of Sele
ted Areas in Communi
ations, 18(4):1-13, IEEE, 2000.

[4℄ P. S. L. M. Barreto, H. Y. Kim and M. S
ott. EÆ
ient algorithms for pairing-based
ryptosystems.

Advan
es in Cryptology - Crypto '2002, LNCS 2442, Springer-Verlag (2002), pp. 354-368.

[5℄ R.Barua, R.Dutta, P.Sarkar. Extending Joux Proto
ol to MultiParty Key Agreement. Indo
rypt2003.

Also available at http://eprint.ia
r.org/2003/062.

[6℄ K. Be
ker and U. Wille. Communi
ation Complexity of Group Key Distribution. ACMCCS '98.

[7℄ M. Bellare, R. Canetti, and H. Kraw
zyk. A Modular Approa
h to the Design and Analysis of

Authenti
ation and Key Ex
hange Proto
ols. In Pro
eedings of the 30th Annual Symposium on the

Theory of Computing, pages 419-428. ACM, 1998. http://www.
s.edu/users/mihir/papers/key-

distribution.html/.

[8℄ M. Bellare and P. Rogaway. Entity Authenti
ation and Key Distribution. Advan
es in Cryptology

- CRYPTO '93, LNCS Vol. 773, D. Stinson ed., Springer-Verlag, 1994, pp. 231-249.

[9℄ D. Boneh and M. Franklin. Identity-Based En
ryption from the Weil Pairing. In Advan
es in Cryp-

tology - CRYPTO '01, LNCS 2139, pages 213-229, Springer-Verlag, 2001.

Veri�ably En
rypted

[10℄ D. Boneh, B. Lynn, and H. Sha
ham. Short Signature from Weil Pairing, Pro
. of Asia
rypt 2001,

LNCS, Springer, pp. 213-229, 2001.

[11℄ C. Boyd and J. M. G. Nieto. Round-Optimal Contributory Conferen
e Key Agreement, Publi
 Key

Cryptography, LNCS vol. 2567, Y. Desmedt ed., Springer-Verlag, 2003, pp. 161-174.

[12℄ A. Boldyreva. Threshold Signatures, Multisignatures and Blind Signatures Based on the Gap-DiÆe-

Hellman-Group Signature S
heme. Publi
 Key Cryptography 2003: 31-46.

20

[13℄ E. Bresson and D. Catalano. Constant Round Authenti
ated Group Key Agreement via Distributed

Computing. In Pro
eedings of PKC'04, LNCS 2947, pp. 115-129, 2004.

[14℄ E. Bresson, O. Chevassut, and D. Point
heval. Provably Authenti
ated Group DiÆe-Hellman Key

Ex
hange - The Dynami
 Case. Advan
es in Cryptology - Asia
rypt 2001, LNCS vol. 2248, C. Boyd

ed., Springer-Verlag, 2001, pp. 290-309.

[15℄ E. Bresson, O. Chevassut, and D. Point
heval. Dynami
 Group DiÆe-Hellman Key Ex
hange under

Standard Assumptions. Advan
es in Cryptology - Euro
rypt '02, LNCS 2332, L. Knudsen ed.,

Springer-Verlag, 2002, pp. 321-336.

[16℄ E. Bresson, O. Chevassut, A. Essiari and D. Point
heval. Mutual Authenti
ation and Group Key

Agreement for low-power Mobile Devi
es. Computer Communi
ation, vol. 27(17), 2004, pp. 1730-

1737. A preliminary version appeared in Pro
eedings of the 5th IFIP-TC6/IEEE , MWCN'03.

[17℄ E. Bresson, O. Chevassut, D. Point
heval, and J. J. Quisquater. Provably Authenti
ated Group

DiÆe-Hellman Key Ex
hange. Pro
. 8th Annual ACM Conferen
e on Computer and Communi
a-

tions Se
urity, ACM, 2001, pp. 255-264.

[18℄ M. Burmester and Y. Desmedt. A Se
ure and EÆ
ient Conferen
e Key Distribution System. In

A. De Santis, editor, Advan
es in Cryptology EUROCRYPT '94, Workshop on the theory and

Appli
ation of Cryptographi
 Te
hniques, LNCS 950, pages 275-286, Springer-Verlag, 1995.

[19℄ R. Dutta, R. Barua and P. Sarkar. Pairing Based Cryptographi
 Proto
ols : A Survey. Cryptology

ePrint Ar
hive, Report 2004/064, available at http://eprint.ia
r.org/2004/064.

[20℄ R. Dutta, R. Barua and P. Sarkar. Provably Se
ure Authenti
ated Tree Based Group Key Agreement.

Pro
eedings of ICICS'04, LNCS, Springer-Verlag, 2004. Also available at Cryptology ePrint Ar
hive,

Report 2004/090.

[21℄ W. DiÆe and M. Hellman. New Dire
tions In Cryptography, IEEE Transa
tions on Information

Theory, IT-22(6) : 644-654, November 1976.

[22℄ S. Galbraith, K. Harrison and D. Soldera. Implementing the Tate Pairing, Algorithm Number

Theory Symposium - ANTS V, LNCS 2369, Springer- Verlag (2002), pp. 324-337.

[23℄ I. Ingemarsson, D. T. Tang, and C. K. Wong. A Conferen
e Key Distribution System, IEEE Trans-

a
tions on Information Theory 28(5) : 714-720 (1982).

[24℄ A. Joux. A One Round Proto
ol for Tripartite DiÆe-Hellman, ANTS IV, LNCS 1838, pp. 385-394,

Springer-Verlag, 2000.

[25℄ J. Katz and M. Yung. S
alable Proto
ols for Authenti
ated Group Key Ex
hange, In Advan
es in

Cryptology - CRYPTO 2003.

[26℄ Y. Kim, A. Perrig, and G. Tsudik. Simple and Fault-tolerant Key Agreement for Dynami
 Collab-

orative Groups. In S. Jajodia, editor, 7th ACM Conferen
e on Computation and Communi
ation

Se
urity, pages 235-244, Athens, Gree
e, Nov. 2000, ACM press.

[27℄ Y. Kim, A. Perrig, and G. Tsudik. Tree based Group Key Agreement. Report 2002/009,

http://eprint.ia
r.org, 2002.

21

[28℄ H. J. Kim, S. M. Lee and D. H. Lee. Constant-Round Authenti
ated Group Key Ex
hange for

Dynami
 Groups. In the Pro
eedings of Asia
rypt'04, to appear.

[29℄ J. Nam, J. Lee, S. Kim and D. Won. DDH-Based Group Key Agreement For Mobile Computing.

Available at http://eprint.ia
r.org, Report 2004/127.

[30℄ J. Nam, S. Kim, H. Yang and D. Won. Se
ure Group Communi
ations over Combined

Wired/Wireless Network. Available at http:eprint.ia
r.org, Report 2004/260.

[31℄ M. Steiner, G. Tsudik, M. Waidner. DiÆe-Hellman Key Distribution Extended to Group Commu-

ni
ation, ACM Conferen
e on Computation and Communi
ation Se
urity, 1996.

Prob[Forge℄ � jPj Adv

DSig

(t

0

):

22

