
AN EFFICIENT ID-KEM BASED ON THE SAKAI-KASAHARA

KEY CONSTRUCTION

L. CHEN, Z. CHENG, J. MALONE-LEE, AND N.P. SMART

Abstra
t. We des
ribe an identity based key en
apsulation me
hanism (ID-

KEM). It is possible to use this ID-KEM to build a se
ure identity based

en
ryption s
heme using the te
hniques of Bentahar et al. The resulting en-


ryption s
heme has a number of performan
e advantages over existing meth-

ods.

1. Introdu
tion

To simplify the management of publi
 keys in publi
 key based 
ryptosystems,

Shamir [14℄ proposed identity-based 
ryptography in whi
h the publi
 key of ea
h

party may be derived from the party's identity. For a long while it was an open

problem to obtain a se
ure and eÆ
ient identity based en
ryption (IBE) s
heme.

In 2000 and 2001, Sakai et al. presented an elegant identity-based key 
onstru
tion

and other appli
ations [16, 17℄. Also in 2001 Boneh and Franklin [3℄, and Co
ks [7℄

presented another two IBE solutions. Among these three s
hemes, the Sakai et al.

s
heme and the Boneh-Franklin s
heme use bilinear pairings on ellipti
 
urves.

In [3℄, Boneh and Franklin de�ned a se
urity model for IBE. The Boneh-Franklin

s
heme (whi
h we shall denote by BF-IBE) has re
eived mu
h attention owing to

the fa
t that it was the �rst IBE s
heme to have a proof of se
urity in an appropriate

model.

In 2003 Sakai and Kasahara proposed a new IBE system using ellipti
 
urve

pairings [18℄. This system 
onstru
ts keys using a di�erent te
hnique from pre-

vious s
hemes. In parti
ular the key 
onstru
tion has the potential to improve

performan
e over existing s
hemes. After employing the Fujisaki-Okamoto trans-

formation [9℄, as in the BF-IBE 
onstru
tion, Chen and Cheng [6℄ proved that the

se
urity of the strengthened variant of Sakai-Kasahara s
heme (whi
h we shall de-

note by SK-IBE) 
an be redu
ed to a well-exploited hard problem: the q-bilinear

DiÆe-Hellman inversion problem (q-BDHI) [2℄.

A natural way to pro
ess arbitrarily long messages is to use hybrid en
ryption,

unlike BF-IBE and SK-IBE whi
h are stand alone 
onstru
tions making use of the

Fujisaki-Okamoto transformation. A hybrid en
ryption s
heme 
onsists of two basi


operations. One operation uses a publi
-key en
ryption te
hnique (a so 
alled key

en
apsulation me
hanism or KEM) to derive and en
rypt a shared key; the other

operation uses the shared key in a symmetri
-key algorithm (a so 
alled data en
ap-

sulation me
hanism or DEM) to en
rypt the a
tual message. Cramer and Shoup [8℄
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formalized the notion of hybrid en
ryption and presented suÆ
ient 
onditions for a

KEM and a DEM to 
onstru
t IND-CCA2 se
ure publi
 key en
ryption. Re
ently,

Bentahar et al. [4℄ extended the KEM 
on
ept to the identity based setting and

gave three 
onstru
tions of su
h an ID-KEM whi
h when 
ombined with a standard

DEM provides a hybrid identity based en
ryption s
heme whi
h is ID-IND-CCA2,

as de�ned by Boneh and Franklin [3℄.

One of the 
onstru
tions of Bentahar et al. is a generi
 
onstru
tion. It takes

any identity based en
ryption s
heme that is one-way under 
hosen plaintext at-

ta
k (ID-OW-CPA) and transforms it into an ID-KEM that 
an easily be used to


onstru
t en
ryption s
hemes that are semanti
ally se
ure against adaptive 
hosen


iphertext atta
k (ID-IND-CCA2). We shall present an ID-OW-CPA en
ryption

s
heme based on the Sakai-Kasahara method of 
onstru
ting keys, and then via the

generi
 
onstru
tion of Bentahar et al. we shall produ
e an ID-IND-CCA2 se
ure

ID-KEM and hen
e an ID-IND-CCA2 hybrid en
ryption s
heme.

The s
heme that we des
ribe in this paper is more eÆ
ient than all previous

s
hemes, and avoids many of the potential pitfalls related to the exa
t 
hoi
e of

groups whi
h are used to instantiate the pairing. For more on these pitfalls 
on-

sult [19℄.

The paper pro
eeds as follows. In the next se
tion we set up notation and

explain the 
on
epts from related work on whi
h we build. In parti
ular we review

the se
urity de�nitions we require. In Se
tion 3 we present an ID-KEM following

the SK-IBE 
onstru
tion (whi
h we 
all SK-ID-KEM) and prove its se
urity. Then

in Se
tion 4 we 
ompare our SK-ID-KEM's se
urity and performan
e with some

other ID based en
ryption s
hemes and ID-KEMs.

2. Preliminaries

We �rst present details of the bilinear groups we require and some asso
iated

hard problems. Having done this, in Se
tion 2.2, we formally des
ribe ID-based

en
ryption and 
over the basi
 se
urity de�nitions. In Se
tion 2.3 we present the

extension of these ideas to the hybrid setting by re
apping on ID-KEMs and how

one 
onstru
ts a full IBE s
heme by 
ombining an ID-KEM with a DEM.

2.1. Bilinear Groups. Our s
hemes will require groups equipped with a bilinear

map. Here we review the ne
essary fa
ts about bilinear maps and the asso
iated

groups using the notation of [5℄.

� G

1

, G

2

and G

T

are (multipli
ative) 
y
li
 groups of prime order p.

� g

1

is a generator of G

1

and g

2

is a generator of G

2

.

�  is an isomorphism from G

2

to G

1

with  (g

2

) = g

1

.

� ê is a map ê : G

1

� G

2

! G

T

.

The map ê must have the following properties.

Bilinear: For all u 2 G

1

, all v 2 G

2

and all a; b 2 Z we have ê(u

a

; v

b

) =

ê(u; v)

ab

.

Non-degenerate: ê(g

1

; g

2

) 6= 1.

Computable: There is an eÆ
ient algorithm to 
ompute ê(u; v) for all u 2 G

1

and v 2 G

2

.

Note that the map  always exists, the issue is whether it 
an be eÆ
iently


omputed. For the purposes of de�ning our s
hemes we do not assume that  is

eÆ
iently 
omputable, however our se
urity proofs require the simulator to be able
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to 
ompute  . Hen
e, following [19℄, we 
an either assume that  is eÆ
iently


omputable or make our se
urity proofs relative to some ora
le whi
h 
omputes  .

This property o

urs for a number of pairing based 
ryptographi
 s
hemes, but is

very rarely pointed out by the authors.

Sin
e the publi
ation of [10℄ many hard problems pertaining to bilinear groups

have been suggested for use in the design of 
ryptosystems. We des
ribe two of

these here.

De�nition 1 (Bilinear DiÆe-Hellman (BDH) [3℄).

Given group elements (g

1

; g

2

; g

x

2

; g

y

2

; g

z

2

) for x; y; z 2

R

Z

p

, 
ompute ê(g

1

; g

2

)

xyz

.

De�nition 2 (q-Bilinear DiÆe-Hellman Inverse (q-BDHI) [2℄).

Given group elements (g

1

; g

2

; g

x

2

; g

x2

2

; : : : ; g

x

q

2

) with x 2

R

Z

p

, 
ompute ê(g

1

; g

2

)

1=x

.

It is the last of these problems on whi
h our s
heme's se
urity is based, however

we present the BDH problem for the purpose of subsequent 
omparisons between

various s
hemes.

2.2. ID-Based En
ryption S
hemes. For an IBE s
heme we de�ne the message,


iphertext and randomness spa
es by M

ID

(�), C

ID

(�), R

ID

(�). These spa
es are

parametrised by the master publi
 key M

pk

, and hen
e by the se
urity parameter

t. The s
heme itself is spe
i�ed by four polynomial time algorithms:

� G

ID

(1

t

): A probabilisti
, polynomial-time (PPT hen
eforth) algorithmwhi
h

takes as input 1

t

and returns the master publi
 key M

pk

and the master

se
ret key M

sk

.

� X

ID

(M

pk

;M

sk

; ID

A

): A PPT private key extra
tion algorithm whi
h takes

as input M

pk

;M

sk

and ID

A

2 f0; 1g

�

, an identi�er string for A, and returns

the asso
iated private key D

ID

A

.

� E

ID

(M

pk

; ID

A

;m; r): This is the PPT en
ryption algorithm. On input of

an identi�er ID

A

, the master publi
 key M

pk

, a message m 2 M

ID

(M

pk

)

and possibly some randomness r 2 R

ID

(M

pk

) this algorithm outputs 
 2

C

ID

(M

pk

).

� D

ID

(M

pk

; ID

A

; D

ID

A

; 
): This is the deterministi
 de
ryption algorithm. On

input of the master publi
 keyM

pk

, the identi�er ID

A

, the private key D

ID

A

and a 
iphertext 
 this outputs the 
orresponding value of the plaintext m

or a failure symbol ?.

Following Boneh and Franklin [3℄ we 
an de�ne various se
urity notions for an

IBE s
heme. All are based on one of the following two-stage games between an

adversary A = (A

1

; A

2

) of the en
ryption algorithm and a 
hallenger.

ID-OW Adversarial Game

(1) (M

pk

;M

sk

) G

ID

(1

t

).

(2) (s; ID

�

) A

O

ID

1

(M

pk

).

(3) m M

ID

(M

pk

).

(4) 


�

 E

ID

(M

pk

; ID

�

;m; r).

(5) m

0

 A

O

ID

2

(M

pk

; 


�

; s; ID

�

).

ID-IND Adversarial Game

(1) (M

pk

;M

sk

) G

ID

(1

t

).

(2) (s; ID

�

;m

0

;m

1

) A

O

ID

1

(M

pk

).

(3) b f0; 1g.

(4) 


�

 E

ID

(M

pk

; ID

�

;m

b

; r).

(5) b

0

 A

O

ID

2

(M

pk

; 


�

; s; ID

�

;m

0

;m

1

).

In the above, s is some state information and O

ID

are ora
les to whi
h the

adversary has a

ess. There are various possibilities for these ora
les depending on

the atta
k model for our game:
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� CPA Model: In this model the adversary only has a

ess to a private key

extra
tion ora
le whi
h on input of ID 6= ID

�

will output the 
orresponding

value of D

ID

.

� CCA2 Model: In this model the adversary has a

ess to the private key

extra
tion ora
le as above and it also has a

ess to a de
ryption ora
le

with respe
t to any identity ID of its 
hoi
e. There is one restri
tion on

how the adversary uses this ora
le: in the se
ond phase A is not allowed to


all the de
ryption ora
le with the pair (


�

; ID

�

).

If we let MOD denote the mode of atta
k, either CPA or CCA2, the adversary's

advantage in the �rst game is de�ned to be

Adv

ID�OW�MOD

ID

(A) = Pr[m

0

= m℄;

while the advantage in the se
ond game is given by

Adv

ID�IND�MOD

ID

(A) = j2Pr[b

0

= b℄� 1j:

An IBE algorithm is 
onsidered to be se
ure, in the sense of a given goal and

atta
k model (ID-IND-CCA2 for example) if, for all PPT adversaries, the advantage

in the relevant game is a negligible fun
tion of the se
urity parameter t.

To 
ope with probabilisti
 
iphers, we will require that not too many 
hoi
es for

r en
rypt a given message to a given 
iphertext. To formalize this 
on
ept we let


(M

pk

) be the least upper bound su
h that

(1) jfr 2 R

ID

(M

pk

) : E

ID

(M

pk

; ID;m; r) = 
gj � 
(M

pk

)

for every ID, m 2 M

PK

(M

pk

) and 
 2 C

PK

(M

pk

). Our requirement is that the

quantity 
(M

pk

)=jR

PK

(M

pk

)j is a negligible fun
tion of the se
urity parameter.

2.3. ID-Based Key En
apsulation Me
hanisms. Following Cramer and Shoup's

formalisation of hybrid en
ryption [8℄, Bentahar et al. extended the hybrid en
ryp-

tion 
on
ept to identity-based s
hemes [4℄. The idea is to 
onstru
t an ID-IND-

CCA2 se
ure IBE s
heme from an ID-IND-CCA2 se
ure ID-KEM and a se
ure

DEM.

An ID-KEM s
heme is spe
i�ed by four polynomial time algorithms:

� G

ID�KEM

(1

t

): The PPTmaster key generation algorithm whi
h takes as input

1

t

. It outputs the master publi
 key M

pk

and the master se
ret key M

sk

.

� X

ID�KEM

(M

pk

;M

sk

; ID

A

): The PPT private key extra
tion algorithm whi
h

takes as input M

pk

;M

sk

and ID

A

2 f0; 1g

�

, an identi�er string for A. It

outputs the asso
iated private key D

ID

A

.

� E

ID�KEM

(M

pk

; ID

A

): The PPT en
apsulation algorithm whi
h takes as input

ID

A

andM

pk

. It outputs a pair (k; 
) where k 2 K

ID�KEM

(M

pk

) is a key and


 2 C

ID�KEM

(M

pk

) is the en
apsulation of that key.

� D

ID�KEM

(M

pk

; ID

A

; D

ID

A

; 
): The deterministi
 de
apsulation algorithm whi
h

takes as input M

pk

, ID

A

, 
 and D

ID

A

. It outputs k or a failure symbol ?.

We shall only require one se
urity de�nition for our ID-KEMs, although other

weaker de�nitions 
an be de�ned in the standard way. Consider the following two-

stage game between an adversary A = (A

1

; A

2

) of the ID-KEM and a 
hallenger.
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ID-IND Adversarial Game

(1) (M

pk

;M

sk

) G

ID�KEM

(1

t

).

(2) (s; ID

�

) A

O

ID

1

(M

pk

).

(3) (k

0

; 


�

) E

ID�KEM

(M

pk

; ID

�

).

(4) k

1

 K

ID�KEM

(M

pk

).

(5) b f0; 1g.

(6) b

0

 A

O

ID

2

(M

pk

; 


�

; s; ID

�

; k

b

).

In the above s is some state information and O

ID

denotes ora
les to whi
h the

adversary has a

ess. We shall be interested in the CCA2 atta
k model where the

adversary has a

ess to two ora
les:

(1) A private key extra
tion ora
le whi
h, on input of ID 6= ID

�

, will output

the 
orresponding value of D

ID

.

(2) A de
apsulation ora
le whi
h, on input an identity ID and en
apsulation of

its 
hoi
e, will return the en
apsulated key. This is subje
t to the restri
tion

that in the se
ond phase A is not allowed to 
all this ora
le with the pair

(


�

; ID

�

).

The adversary's advantage is de�ned to be

Adv

ID�IND�CCA2

ID�KEM

(A) = j2Pr[b

0

= b℄� 1j:

An ID-KEM is 
onsidered to be se
ure, if for all PPT adversaries A, the advan-

tage in the game above is a negligible fun
tion of the se
urity parameter t.

2.4. Hybrid IBE. A hybrid IBE E = (G

ID

;X

ID

; E

ID

; D

ID

) 
onstru
tion 
onsists of


ombining an ID-KEM E

1

= (G

ID�KEM

;X

ID�KEM

; E

ID�KEM

; D

ID�KEM

) with a standard

DEM E

2

= (E

SK

; D

SK

) as des
ribed below. For the formal de�nition of a DEM and

its se
urity de�nition that we use in Theorem 1, refer to [8℄ and [4℄.

We assume that the key-spa
e of the KEM is the same as the key-spa
e of

the asso
iated DEM. To generate M

pk

, for the hybrid IBE s
heme, the algorithm

G

ID�KEM

(1

t

) is run. We denote the resulting full key M

pk

below. Key extra
tion for

E is simply the key extra
tion of E

1

.

E

ID

(M

pk

; ID;m)

� (k; 


1

) E

ID�KEM

(M

pk

; ID)

� 


2

 E

SK

(k;m)

� Return 
 = (


1

; 


2

)

D

ID

(M

pk

; ID; D

ID

; 
)

� Parse 
 as (


1

; 


2

)

� k D

ID�KEM

(M

pk

; ID; D

ID

; 
)

� If k =?, return ?

� m D

SK

(k; 


2

)

� Return m

Similar to the result of hybrid en
ryption in [8℄, Bentahar et al. obtained the

following theorem 
on
erning the se
urity of hybrid IBE.

Theorem 1. [Bentahar et al. [4℄℄ Let A be a PPT ID-IND-CCA2 adversary of the

IBE s
heme E above. There exists PPT adversaries B

1

and B

2

, whose running

time is essentially that of A, su
h that

Adv

ID�IND�CCA2

ID

(A) � 2Adv

ID�IND�CCA2

ID�KEM

(B

1

) + Adv

FG�CCA

DEM

(B

2

):

Some IND-CCA se
ure DEMs are readily available, see [15℄ and [1℄. Bentahar

et al. presented two se
ure ID-KEMs using the same key format as that used in

the BF-IBE s
heme [3℄. In the following se
tion, we introdu
e another ID-KEM

based on Sakai and Kasahara's IBE proposal whi
h has the potential to a
hieve

even better performan
e.
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3. An SK-ID-KEM Constru
tion

Before dis
ussing our 
onstru
tion we brie
y summarise the primitives proposed

by Sakai et al. [16, 17, 18℄, on whi
h our own 
ontribution is based. In what follows

we will assume that we have bilinear groups as de�ned in Se
tion 2.1. We make

the assumption that G

1

= G

2

while we are des
ribing the s
hemes of Sakai et al.;

elsewhere in the paper we do not make this assumption.

In the �rst two of the papers by Sakai et al. [16, 17℄, the s
hemes work using a

fun
tion

� : f0; 1g

�

! G

1

whi
h is used to map identities ID 2 f0; 1g

�

to elements of G

1

. There is a TA that


hooses a master se
ret key s from Z

p

. One appli
ation dis
ussed by Sakai et al.

is key agreement. Suppose that ID

a

wishes to en
rypt a message and send it to

ID

b

. It �rst obtains its se
ret key D

ID

a

= �(ID

a

)

s

from the TA. It then 
omputes

a key K

ab

 ê(D

ID

a

; �(ID

b

)). If ID

b

obtains its own se
ret key D

ID

b

= �(ID

b

)

s

, it


an also 
ompute K

ab

 ê(�(ID

a

); D

ID

b

). This 
onstru
tion of keys is exa
tly the

same as that used in the Boneh{Franklin s
heme [3℄, where � is instantiated using

a 
ryptographi
 hash fun
tion.

The method used to 
onstru
t keys given in the paper by Sakai and Kasahara [18℄

is slightly di�erent. The TA 
hooses two generators u

�

and u

�

of G

1

. It also 
hooses

a polynomial � of degree d (where d is a parameter of the s
heme)

�(x) = a

d

x

d

+ a

d�1

x

d�1

+ : : :+ a

1

x+ a

0

where the 
oeÆ
ients are randomly 
hosen from Z

p

. The TA's master se
ret key is

made up of the 
oeÆ
ients of the polynomial. Its 
orresponding master publi
 key

is ê(u

�

; u

�

) together with u

a

d

�

; u

a

d�1

�

; : : : ; u

a

1

�

; u

a

0

�

. Now, to extra
t a se
ret key for

identity ID, the TA 
omputes

D

ID

 u

1=�(ID)

�

:

It is this method of 
onstru
ting keys that our s
heme uses to produ
e our KEM,

however we are able to use the simpli�
ation of setting d = 1.

We are now ready to des
ribe our 
onstru
tion. Two stages are required. In

the �rst stage, Se
tion 3.1, we present a 
on
rete instantiation of a new ID-OW-

CPA se
ure IBE s
heme. One should think of this 
onstru
tion as analogous to

the Basi
Ident s
heme in [3℄. In the se
ond stage, Se
tion 3.1, we use a generi



onstru
tion from [4℄ whi
h turns an ID-OW-CPA se
ure IBE s
heme into an ID-

IND-CCA2 se
ure ID-KEM. Su
h an ID-KEM 
an then be used to build an ID-

IND-CCA2 se
ure en
ryption s
heme using the 
onstru
tion of Theorem 1 [4℄. We

denote the resulting en
ryption SK-C2 hen
eforth.

3.1. An ID-OW-CPA IBE s
heme based on Sakai-Kasahara keys. Let t be

the se
urity parameter. The system parameters 
onsist of groups G

1

, G

2

and G

T

,

as de�ned in Se
tion 2.1, with order p � 2

t

and a bilinear pairing ê : G

1

�G

2

! G

T

.

In addition we require a generator u

1

for G

1

and a generator u

2

for G

2

su
h that

u

1

=  (u

2

). The s
heme also uses two hash fun
tions:

H

1

: f0; 1g ! Z

p

and H

2

: G

T

! f0; 1g

n

where f0; 1g

n

is the message spa
e. It works as follows.
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� G

ID

(1

t

): Sele
t s 2 Z

p

at random and set R = u

s

1

. The value s is the

master se
ret key M

sk

of the TA (a trusted authority), while R along with

the other system parameters is the master publi
 key M

pk

.

� X

ID

(M

pk

; ID; s): This outputs the identity-based se
ret key

D

ID

= u

1=(s+H

1

(ID))

2

:

Note this will fail and, moreover, M

sk

will be revealed if H

1

(ID) = �s;

however, this happens with negligible probability.

� E

ID

(M

pk

; ID;m; r):

- Q R � u

H

1

(ID)

1

- U Q

r

- V m�H

2

(ê(u

1

; u

2

)

r

)

- Return (U; V )

� D

ID

(M

pk

; ID; D

ID

; (U; V )): This outputs

V �H

2

(ê(U;D

ID

))

We now present the se
urity result for the IBE s
heme above.

Theorem 2. Suppose that there is algorithm A whi
h breaks the above s
heme in

terms of ID-OW-CPA. If we model H

1

and H

2

as random ora
les, and we let q

1

,

q

2

and q

X

be the number of queries that A makes to H

1

, H

2

and its key extra
tion

ora
le respe
tively. Then there is an algorithm B to solve the q-BDHI problem in

groups of order p with q = q

1

+ q

X

+ 1 su
h that

Adv

ID�OW�CPA

ID

(A) � (q � q

2

+ 1) �Adv

q�BDHI

(B) +

1

2

n

+

q + 1

p

:

The proof of this theorem is given in the appendix.

3.2. Generi
 Redu
tion. Here we take a generi
, probabilisti
 ID-based en
ryp-

tion s
heme, whi
h is ID-OW-CPA se
ure. Let the en
ryption algorithm be denoted

E

ID

(M

pk

; ID;m; r) and the de
ryption algorithm be denoted D

ID

(M

pk

; ID; D

ID

; 
),

where D

ID

is the output from the extra
tion algorithm X

ID�KEM

(M

pk

;M

sk

; ID). We

assume the message spa
e of E

ID

is given by M

ID

(M

pk

) and the spa
e of randomness

is given by R

ID

(M

pk

). The 
onstru
tion uses two 
ryptographi
 hash fun
tions:

H

3

: f0; 1g

�

! R

ID

(M

pk

) and H

4

: f0; 1g

�

! f0; 1g

�

for � 2 Z: the length of the resulting keys. Using this we 
onstru
t an ID-KEM as

follows.

E

ID�KEM

(M

pk

; ID):

� m M

ID

(M

pk

)

� r H

3

(m)

� 
 E

ID

(M

pk

; ID;m; r)

� k H

4

(m)

� Return (k; 
)

D

ID�KEM

(M

pk

; ID; D

ID

; 
):

� m D

ID

(M

pk

; ID; D

ID

; 
)

� If m =?, return ?

� r H

3

(m)

� If 
 6= E

ID

(M

pk

; ID;m; r), return ?

� k H

4

(m)

� Return k

From [4℄ we have the following theorem 
on
erning the se
urity of the 
onstru
-

tion above.
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Theorem 3. If E

ID

is an ID-OW-CPA se
ure ID-based en
ryption s
heme and

H

3

and H

4

are modelled as random ora
les then the 
onstru
tion above is se
ure

against adaptive 
hosen 
iphertext atta
k.

Spe
i�
ally, if A is a PPT algorithm that breaks the ID-KEM 
onstru
tion above

using a 
hosen 
iphertext atta
k, then there exists a PPT algorithm B, with

Adv

ID�IND�CCA2

ID�KEM

(A) � 2(q

3

+ q

4

+ q

D

) � Adv

ID�OW�CPA

ID

(B) +

2q

D


(M

pk

)

jR

ID

(M

pk

)j

;

where q

3

, q

4

and q

D

are the number of queries made by A to H

3

, H

4

and the

de
ryption ora
le respe
tively, and 
(M

pk

) is as in (1).

When we instantiate this generi
 
onstru
tion with our ID-OW-CPA s
heme

from Stage 1, we have


(M

pk

)

jR

ID

(M

pk

)j

�

1

p

:

3.3. Full S
heme. The full ID-KEM s
heme works as follows. The algorithms

G

ID�KEM

and X

ID�KEM

are simply G

ID

and X

ID

for the IBE s
heme above.

E

ID�KEM

(M

pk

; ID)

� m f0; 1g

n

� r H

3

(m)

� Q R � u

H

1

(ID)

1

� U Q

r

� V m�H

2

(ê(u

1

; u

2

)

r

)

� k H

4

(m)

� 
 (U; V )

� Return (k; 
)

D

ID�KEM

(M

pk

; ID; D

ID

; 
)

� Parse 
 as (U; V )

� � ê(U;D

ID

)

� m H

2

(�) � V

� r H

3

(m)

� If (U; V ) 6= E

ID

(M

pk

; ID;m; r),

return ?

� k H

4

(m)

� Return k

Note that ê(u

1

; u

2

) 
an be in
luded in the master publi
 key to minimise the number

of pairing 
omputations ne
essary.

We now look at the validity 
he
k in more detail. We need to ensure that the

following holds

U = Q

r

V = m�H

2

(ê(u

1

; u

2

)

r

);

where

Q = R � u

H

1

(ID)

1

m = V �H

2

(ê(u

1

; u

2

)

r

):

However, if U = Q

r

then � is always equal to ê(u

1

; u

2

)

r

. In this 
ase V always equals

m�H

2

(�) and m is de�ned to be V �H

2

(�). This means that 
he
king whether

or not V is 
orre
t is redundant. Hen
e, we only need to 
he
k whether U = Q

r

.

Sin
e the de
ryptor knows its own identity, it 
an be assumed to have pre
omputed

the value of Q, therefore the validity 
he
k involves only one exponentiation in G

1

.

4. Comparison with Other S
hemes

In this se
tion we 
ompare the SK-C2 s
heme from Se
tion 3 with the other

eÆ
ient ID-based en
ryption s
hemes in the literature.
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pairings exponentiations hashes

S
heme E

ID

D

ID

E

ID

D

ID

E

ID

D

ID

BF-IBEa 1 1 2 1 4 3

SK-IBEa 0 1 3 1 4 3

BF-C1 1 1 2 0 2 1

BF-C2 1 1 2 1 4 3

SK-C2 0 1 3 1 4 3

Table 1. The 
omputations ne
essary for various IBE s
hemes

� BF-IBE: The original Boneh-Franklin s
heme whi
h is se
ure assuming the

BDH problem is hard. The ID-based keys are 
onstru
ted in the standard

way by hashing to a point in either G

1

or G

2

. The asso
iated se
ret key is

obtained by multiplying this point by the master se
ret. We use BF-IBEa

to denote the extension of the Boneh-Franklin in whi
h an arbitrary blo
k


ipher is used instead of xor. In [4℄ this latter version is referred to as

FullIdent-2. Note, BF-IBEa does not need to be used with a full DEM; a

standard blo
k 
ipher se
ure against passive atta
ks is suÆ
ient.

� SK-IBE: The s
heme des
ribed in [6℄. This uses the keys 
onstru
tion of

Sakai and Kasahara as in the 
urrent paper. The s
heme is se
ure assuming

the q-BDHI problem is hard. Similar to BF-IBEa, we 
an de�ne an SK-

IBEa by repla
ing xor with a blo
k 
ipher.

� BF-C1: Constru
tion C-1 from [4℄. This is a hybrid KEM based 
onstru
-

tion, originally mentioned in a paper by Lynn [11℄. It is se
ure assuming

a suitable gap problem is hard. The keys are of the same form as those in

the Boneh-Franklin s
heme.

� BF-C2: Constru
tion C-2 from [4℄. This uses the generi
 
onstru
tion

used in this paper applied to the Basi
Ident s
heme of [3℄.

Note, all of the above s
heme are se
ure in the random ora
le model. We have

not 
onsidered 
omparisons with s
hemes se
ure in the standard model as they are

very ineÆ
ient.

To 
ompare eÆ
ien
y we �rst look at the 
omputations ne
essary to implement

the various s
hemes in Table 1. The �rst two rows of the table 
orrespond to IBE

s
hemes, while the last three refer to ID-KEM/DEM hybrid 
onstru
tions. We

assume that the obvious pre
omputations have been performed in all 
ases.

We see that the s
hemes based on the Sakai-Kasahara key 
onstru
tion do not

have to perform a pairing in their en
ryption routine. This 
omes at the expense

of an extra group exponentiation, however these are usually mu
h 
heaper than a

pairing 
omputation. In addition we note that using the Sakai-Kasahara method

of 
onstru
ting keys, as opposed to the method of Boneh and Franklin, avoids the

need to hash into an ellipti
 
urve group. As pointed out in [19℄, hashing into

the group 
an 
ause problems if the groups are not 
hosen in a suitable way. In

addition, hashing into an ellipti
 
urve is in general more expensive both in terms

of CPU time and 
ode footprint size than hashing into the integers.
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BF-IBEa SK-C2

ID-Publi
 Key Gen 18 4

ID-Private Key Gen 113 88

ID-En
rypt 75 30

ID-De
rypt 55 62

Table 2. Comparison of CPU time in millise
onds

In Table 2 we 
ompare an implementation of our 
onstru
tion with that of BF-

IBEa for a 160-bit MNT-type 
urve

1

. The improvement in performan
e 
omes from

the la
k of a pairing 
omputation on en
ryption and the la
k of a need to hash into

an ellipti
 
urve group.

We reiterate that using an ID-KEM/DEM 
onstru
tion is more 
exible as it

fa
ilitates identity based en
ryption with any appropriate DEM to en
rypt the

a
tual data pa
ket, or even the use of the KEM on its own to transmit a key for

another appli
ation. This philosophy for designing publi
 key en
ryption algorithms

is well explained in [8℄ and [15℄, so we do not go into the bene�ts more here.

We now turn to the 
iphertext sizes of the various s
hemes above. In Table 3

we let jG

1

j denote the number of bits needed to represent an element in the group

G

1

and use analogous notation for other 
omponents. It is 
onvention that when

instantiated with ellipti
 
urves, the group G

1

refers to the subgroup of order p of

an ellipti
 
urve over the \small" �nite �eld. Then for supersingular ellipti
 
urves

we have G

1

= G

2

, however for so-
alled MNT 
urves we have that G

2

is related to

a subgroup of the twisted ellipti
 
urve over a large �nite �eld. Hen
e, representing

elements of G

2


an require more bits than are required to represent elements of G

1

.

In Table 3 we also mention whether the s
heme requires hashing into either

the group G

1

or the group G

2

. One should note that hashing into G

2


an be


omputationally expensive as pointed out in [19℄ for 
ertain 
hoi
es of groups, while

hashing into G

1

is usually very eÆ
ient. As in [13℄, we let BF-IBE

?

denote the

proto
ol BF-IBE but with the roles of G

1

and G

2

reversed. We use analogous

notation for other s
hemes. Note, reversing the roles of G

1

and G

2


an have e�e
ts

on the se
urity proof or on other aspe
ts related to eÆ
ien
y. See [19℄ for more

details. Note that the only 
ase in whi
h reversing the roles of G

1

and G

2

makes

no di�eren
e is the 
ase of supersingular ellipti
 
urves for whi
h G

1

= G

2

.

We do not give rows for the Sakai-Kasahara based s
hemes where the roles of

G

1

and G

2

are reversed; reversing the roles of G

1

and G

2

only redu
es bandwidth

eÆ
ien
y for no gain in performan
e, as for these s
hemes one never has to hash

into G

1

or G

2

.

In Table 3, n either refers to the key length of the DEM, or the size of � in

the standard Boneh-Franklin IBE s
hemes. We note that for the s
hemes with

Boneh-Franklin style keys one either needs to 
hoose, for MNT 
urves, between low

bandwidth and hashing into G

2

, or high bandwidth and hashing into G

1

.

Bandwidth for 
iphertexts 
an be further redu
ed as follows. In the 
iphertext we

transmit the element U 2 G

1

, whi
h is a point on an ellipti
 
urve in pra
ti
e. We


ould 
learly 
ompress the point U . However, 
ompression usually entails sending

1

The MNT 
urves are those non-supersingular ellipti
 
urves that are suitable for pairing-based


ryptography. The name 
omes from the initials of the authors who gave the �rst 
onstru
tion of

su
h 
urves [12℄.
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s
heme 
iphertext hashing

size G

1

G

2

BF-IBE jG

1

j+ n+ jmj N Y

BF-IBEa jG

1

j+ n+ jE

SK

(m)j N Y

BF-IBE

?

jG

2

j+ n+ jmj Y N

BF-IBEa

?

jG

2

j+ n+ jE

SK

(m)j Y N

SK-IBE jG

1

j+ n+ jmj N N

SK-IBEa jG

1

j+ n+ jE

SK

(m)j N N

BF-C1 jG

1

j+ jE

DEM

(m)j N Y

BF-C2 jG

1

j+ n+ jE

DEM

(m)j N Y

BF-C1

?

jG

2

j+ jE

DEM

(m)j Y N

BF-C2

?

jG

2

j+ n+ jE

DEM

(m)j Y N

SK-C2 jG

1

j+ n+ jE

DEM

(m)j N N

Table 3. The bandwidth requirements of various IBE s
hemes

an extra bit so as to uniquely de
ompress the point. This is unne
essary for the


ost of one �eld inversion. Suppose we only transmit the x-
oordinate of the point

U , in whi
h 
ase the re
eiver only knows U up to sign. Hen
e, he 
an only 
ompute

� ê(�U;D

ID

)

�1

:

But by 
omputing

H

2

(�+ �

�1

)

instead of

H

2

(�);

a unique value will be produ
ed. In parti
ular this te
hnique avoids the need to

transmit an extra bit to un
ompress the x-
oordinate x(U) to a unique point, and

it does not a�e
t the se
urity proof. One obviously has to modify the validity 
he
k

slightly.

We note that an analogous 
onstru
tion to C-1 from [4℄ 
an be applied to the

Sakai-Kasahara method of 
onstru
ting keys. This s
heme is eÆ
ient and 
an be

proved se
ure using a suitable, but slightly unnatural, gap problem using similar

te
hniques to the proof of 
onstru
tion C-1 from [4℄.
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Appendix A. Proof of Theorem 2

To prove our theorem we will show how to use A to 
onstru
t an algorithm

B to solve the q-BDHI problem, where q = q

1

+ q

X

+ 1. This 
onstru
tion will

involve running A in a simulated environment. Hen
eforth all probabilities will be

probabilities in our simulated environment.

Algorithm B pro
eeds as follows. It takes as input

(g

1

; g

2

; g

x

2

; g

x2

2

; g

x3

2

; : : : ; g

x

q

2

) 2 G

1

� G

q+1

2

with g

1

=  (g

2

) and then sele
ts an integer I 2 f1; : : : ; qg. It uses these to set up

the domain parameters and keys for the ID-based en
ryption algorithm as des
ribed

below.

Algorithm B sele
ts h

0

; : : : ; h

q�1

uniformly at random from Z

p

. We de�ne the

event Guess to be that in whi
h h

i

= �x for some i in f1; : : : ; q � 1g. (This event


an be 
he
ked by 
omputing g

�h

i

2

for i in f1; : : : ; q�1g and 
omparing these values

with g

x

2

.)
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We say that A wins if it outputs the 
orre
t value of the en
rypted message in

its atta
k. By de�nition have

Adv

ID�OW�CPA

ID

(A) =Pr[A wins ^ Guess℄ + Pr[A wins ^ :Guess℄

�Pr[Guess℄ + Pr[A winsj:Guess℄

�Adv

q�BDHI

(B) + Pr[A winsj:Guess℄:(2)

Equation (2) follows from the fa
t that, in the event Guess, algorithm B �nds

x whi
h it 
an then use to solve the q-BDHI problem dire
tly by 
omputing

ê(g

1

; g

2

)

1=x

.

We are now ready to des
ribe the non-trivial part of the simulation. In the

remainder of the proof we will assume that the event :Guess has o

urred and so

all probabilities are 
onditioned on this event.

Now, B de�nes the polynomial

f(z) =

q�1

Y

i=1

(z + h

i

) =

q�1

X

i=0




i

z

i

;


omputes

u

2

=

q�1

Y

i=0

(g

x

i

2

)




i

= g

f(x)

2

and

u

0

2

=

q�1

Y

i=0

(g

x

i+1

2

)




i

= g

xf(x)

2

= u

x

2

:

Note that, in the event :Guess, we have u

2

6= 1 and so u

2

is a generator of G

2

.

Algorithm B then de�nes the polynomials

f

i

(z) = f(z)=(z + h

i

) =

q�2

X

j=0

d

i;j

z

j

; for 1 � i < q:

Note that

u

1=(x+h

i

)

2

= g

f

i

(x)

2

=

q�2

Y

j=0

(g

x

j

2

)

d

i;j

:

Let PS denote the set

n�

h

j

+ h

0

; u

1=(x+h

j

)

2

�o

q�1

j=1

:

Algorithm B sets

t

0

=

q�1

Y

i=1

(g

x

i�1

2

)




i

= g

(f(x)�


0

)=x

2

and sets




0

= ê( (t

0

); u

2

� g




0

2

):

It de�nes u

1

=  (u

2

) and 
omputes the publi
 key of the TA as

R =  (u

0

2

� u

�h

0

2

) =  (u

0

2

) � u

�h

0

1

= u

x�h

0

1

:

We need to 
he
k that this has the 
orre
t distribution. Sin
e we are 
onditioning

on the event :Guess we know that u

2

is a generator of G

2

whi
h means that u

1

must be a generator of G

1

as required for the s
heme.
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Consider the following distributions asso
iated with a generator u

1

of G

1

. Note

that in the des
ription below D

x

is one of a 
olle
tion of distributions fD

x

g

x2Z

p

parameterised by x 2 Z

p

.

D = fu

s

1

: s  Z

p

g and D

x

=

n

u

x�h

0

1

: h

0

 Z

p

o

:

Clearly, for any x 2 Z

p

, these distributions are identi
al and, moreover, R is


hosen from D when the s
heme is used in reality and R is 
hosen from D

x

in our

simulation (
onditioned on the event :Guess). We 
on
lude that R has the 
orre
t

distribution.

Algorithm B now invokes the �rst stage of algorithm A with the domain param-

eters that it has 
onstru
ted. It responds to the ora
le 
alls made by A as follows.

H

1

-query on ID

i

: B maintains a list H

1

of tuples (ID

i

; h

i

; D

ID

i

) indexed by ID

i

.

On input of ID

i

, the ith distin
t query, algorithm B responds as follows.

(1) If i = I then B responds with h

0

and adds (ID

i

; h

0

;?) to the list H

1

.

(2) Otherwise it sele
ts a random element (h

i

+h

0

; u

1=(x+h

i

)

2

) from PS (without

repla
ement). It adds (ID

i

; h

i

+ h

0

; u

1=(x+h

i

)

2

) to the list H

1

and it returns

h

i

+ h

0

.

If the query is a repeat query then B responds with the response that it gave the

�rst time by looking it up on the list.

H

2

-query on � : B maintains a list H

2

of tuples (�; �). If � appears in the list

H

2

then B responds with �. Otherwise it 
hooses � at random from f0; 1g

n

and it

adds (�; �) to the H

2

list before responding with �.

Extra
tion Query on ID

i

: If ID

i

does not appear on the H

1

list then B �rst

makes an H

1

query. Algorithm B then 
he
ks whether the 
orresponding value

of D

ID

i

is ?. If so it terminates. (Note that this event 
orresponds to B failing

to 
orre
tly guess at what point A queries H

1

with its 
hosen ID

�

.) Otherwise it

responds with D

ID

i

where (ID

i

; h

i

; D

ID

i

) is the entry 
orresponding to ID

i

in the

H

1

list.

At some point A's �rst stage will terminate and it will return a 
hallenge identity

ID

�

. If A has not 
alledH

1

with input ID

�

then B does so for it. If the 
orresponding

value of D

ID

�

is not equal to ? then B will terminate.

Algorithm B 
hooses a random value of r 2 Z

p

and a random value V

�

in f0; 1g

n

.

It 
omputes U

�

= u

r

1

and sets the 
hallenge 
iphertext to be




�

= (U

�

; V

�

):

This 
hallenge 
iphertext is now passed to algorithm A's se
ond stage. Note,

due to the rules of the game, B will not terminate unexpe
tedly when responding

to extra
tion queries made on
e A has been given the 
hallenge 
iphertext.

At some point algorithm A responds with its guess as to the value of the under-

lying plaintext m

�

. For a genuine 
hallenge 
iphertext we should have

m

�

= V

�

�H

2

(ê(U

�

; D

ID

�

)):
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If H

2

is modelled as a random ora
le we know that A only has any advantage if

the list H

2


ontains an input value

�

�

= ê(U

�

; D

ID

�

):(3)

Algorithm B sele
ts a value � at random from the list H

2

. We assume that it


orre
tly sele
ts � = �

�

and add a fa
tor 1=q

2

to our subsequent analysis. It sets


 = �

�1=r

:

We have that

D

ID

�

= u

1=((x�h

0

)+h

0

)

2

and so


 = ê(u

1

; u

2

)

1=x

:

Algorithm B's job is to 
ompute ê(g

1

; g

2

)

1=x

. It sets


=


0

= ê(g

1

; g

2

)

f(x)�f(x)=x

=ê(g

(f(x)�


0

)=x

1

; g

f(x)+


0

2

)

= ê(g

1

; g

2

)

f(x)�f(x)=x�f(x)�f(x)=x+


0

2=x

= ê(g

1

; g

2

)




0

2=x

and it solves the q-BDHI problem by outputting

ê(g

1

; g

2

)

1=x

= (
=


0

)

1=


0

2

:

Note that the above pro
edure for 
al
ulating the solution 
an fail if (1) r = 0

or (2) 


0

= 0. However, this will not happen if h

i

6= 0 for i = 0; : : : ; q�1 and r 6= 0.

We say that the event Fail o

urs if at least one of these 
onditions fails. We have

Pr[A winsj:Guess℄ = Pr[A wins ^ :Failj:Guess℄ + Pr[A wins ^ Failj:Guess℄

� Pr[A wins ^ j:Guess ^ :Fail℄ +

q + 1

p

(4)

Let us denote the event that A makes the query �

�

, as de�ned in (3), during its

atta
k by Ask.

Pr[A winsj:Guess ^ :Fail℄

= Pr[A wins ^ Askj:Guess ^ :Fail℄ + Pr[A wins ^ :Askj:Guess ^ :Fail℄

� Pr[A wins ^ Askj:Guess ^ :Fail℄ +

1

2

n

:(5)

The last inequality follows from the fa
t that, in the random ora
le model, if the

event Ask does not o

ur, then A has no information about the message en
rypted

in the 
hallenge 
iphertext.

To 
on
lude the proof we note that, in event Ask, provided B (1) pi
ks the


orre
t index I , whi
h happens with probability 1=(q

1

+ q

X

+ 1), and (2) 
hooses

the 
orre
t entry �

�

from list H

2

, whi
h happens with probability 1=q

2

, then B

su

eeds in solving the q-BDHI problem. This means that

Pr[A wins ^ Askj:Guess℄ � ((q

1

+ q

X

+ 1) � q

2

) � Adv

q�BDHI

(B):(6)



16 L. CHEN, Z. CHENG, J. MALONE-LEE, AND N.P. SMART

The result now follows from (2), (4), (5) and (6).
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