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Abstrat. We desribe an identity based key enapsulation mehanism (ID-

KEM). It is possible to use this ID-KEM to build a seure identity based

enryption sheme using the tehniques of Bentahar et al. The resulting en-

ryption sheme has a number of performane advantages over existing meth-

ods.

1. Introdution

To simplify the management of publi keys in publi key based ryptosystems,

Shamir [14℄ proposed identity-based ryptography in whih the publi key of eah

party may be derived from the party's identity. For a long while it was an open

problem to obtain a seure and eÆient identity based enryption (IBE) sheme.

In 2000 and 2001, Sakai et al. presented an elegant identity-based key onstrution

and other appliations [16, 17℄. Also in 2001 Boneh and Franklin [3℄, and Coks [7℄

presented another two IBE solutions. Among these three shemes, the Sakai et al.

sheme and the Boneh-Franklin sheme use bilinear pairings on ellipti urves.

In [3℄, Boneh and Franklin de�ned a seurity model for IBE. The Boneh-Franklin

sheme (whih we shall denote by BF-IBE) has reeived muh attention owing to

the fat that it was the �rst IBE sheme to have a proof of seurity in an appropriate

model.

In 2003 Sakai and Kasahara proposed a new IBE system using ellipti urve

pairings [18℄. This system onstruts keys using a di�erent tehnique from pre-

vious shemes. In partiular the key onstrution has the potential to improve

performane over existing shemes. After employing the Fujisaki-Okamoto trans-

formation [9℄, as in the BF-IBE onstrution, Chen and Cheng [6℄ proved that the

seurity of the strengthened variant of Sakai-Kasahara sheme (whih we shall de-

note by SK-IBE) an be redued to a well-exploited hard problem: the q-bilinear

DiÆe-Hellman inversion problem (q-BDHI) [2℄.

A natural way to proess arbitrarily long messages is to use hybrid enryption,

unlike BF-IBE and SK-IBE whih are stand alone onstrutions making use of the

Fujisaki-Okamoto transformation. A hybrid enryption sheme onsists of two basi

operations. One operation uses a publi-key enryption tehnique (a so alled key

enapsulation mehanism or KEM) to derive and enrypt a shared key; the other

operation uses the shared key in a symmetri-key algorithm (a so alled data enap-

sulation mehanism or DEM) to enrypt the atual message. Cramer and Shoup [8℄
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formalized the notion of hybrid enryption and presented suÆient onditions for a

KEM and a DEM to onstrut IND-CCA2 seure publi key enryption. Reently,

Bentahar et al. [4℄ extended the KEM onept to the identity based setting and

gave three onstrutions of suh an ID-KEM whih when ombined with a standard

DEM provides a hybrid identity based enryption sheme whih is ID-IND-CCA2,

as de�ned by Boneh and Franklin [3℄.

One of the onstrutions of Bentahar et al. is a generi onstrution. It takes

any identity based enryption sheme that is one-way under hosen plaintext at-

tak (ID-OW-CPA) and transforms it into an ID-KEM that an easily be used to

onstrut enryption shemes that are semantially seure against adaptive hosen

iphertext attak (ID-IND-CCA2). We shall present an ID-OW-CPA enryption

sheme based on the Sakai-Kasahara method of onstruting keys, and then via the

generi onstrution of Bentahar et al. we shall produe an ID-IND-CCA2 seure

ID-KEM and hene an ID-IND-CCA2 hybrid enryption sheme.

The sheme that we desribe in this paper is more eÆient than all previous

shemes, and avoids many of the potential pitfalls related to the exat hoie of

groups whih are used to instantiate the pairing. For more on these pitfalls on-

sult [19℄.

The paper proeeds as follows. In the next setion we set up notation and

explain the onepts from related work on whih we build. In partiular we review

the seurity de�nitions we require. In Setion 3 we present an ID-KEM following

the SK-IBE onstrution (whih we all SK-ID-KEM) and prove its seurity. Then

in Setion 4 we ompare our SK-ID-KEM's seurity and performane with some

other ID based enryption shemes and ID-KEMs.

2. Preliminaries

We �rst present details of the bilinear groups we require and some assoiated

hard problems. Having done this, in Setion 2.2, we formally desribe ID-based

enryption and over the basi seurity de�nitions. In Setion 2.3 we present the

extension of these ideas to the hybrid setting by reapping on ID-KEMs and how

one onstruts a full IBE sheme by ombining an ID-KEM with a DEM.

2.1. Bilinear Groups. Our shemes will require groups equipped with a bilinear

map. Here we review the neessary fats about bilinear maps and the assoiated

groups using the notation of [5℄.

� G

1

, G

2

and G

T

are (multipliative) yli groups of prime order p.

� g

1

is a generator of G

1

and g

2

is a generator of G

2

.

�  is an isomorphism from G

2

to G

1

with  (g

2

) = g

1

.

� ê is a map ê : G

1

� G

2

! G

T

.

The map ê must have the following properties.

Bilinear: For all u 2 G

1

, all v 2 G

2

and all a; b 2 Z we have ê(u

a

; v

b

) =

ê(u; v)

ab

.

Non-degenerate: ê(g

1

; g

2

) 6= 1.

Computable: There is an eÆient algorithm to ompute ê(u; v) for all u 2 G

1

and v 2 G

2

.

Note that the map  always exists, the issue is whether it an be eÆiently

omputed. For the purposes of de�ning our shemes we do not assume that  is

eÆiently omputable, however our seurity proofs require the simulator to be able
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to ompute  . Hene, following [19℄, we an either assume that  is eÆiently

omputable or make our seurity proofs relative to some orale whih omputes  .

This property ours for a number of pairing based ryptographi shemes, but is

very rarely pointed out by the authors.

Sine the publiation of [10℄ many hard problems pertaining to bilinear groups

have been suggested for use in the design of ryptosystems. We desribe two of

these here.

De�nition 1 (Bilinear DiÆe-Hellman (BDH) [3℄).

Given group elements (g

1

; g

2

; g

x

2

; g

y

2

; g

z

2

) for x; y; z 2

R

Z

p

, ompute ê(g

1

; g

2

)

xyz

.

De�nition 2 (q-Bilinear DiÆe-Hellman Inverse (q-BDHI) [2℄).

Given group elements (g

1

; g

2

; g

x

2

; g

x2

2

; : : : ; g

x

q

2

) with x 2

R

Z

p

, ompute ê(g

1

; g

2

)

1=x

.

It is the last of these problems on whih our sheme's seurity is based, however

we present the BDH problem for the purpose of subsequent omparisons between

various shemes.

2.2. ID-Based Enryption Shemes. For an IBE sheme we de�ne the message,

iphertext and randomness spaes by M

ID

(�), C

ID

(�), R

ID

(�). These spaes are

parametrised by the master publi key M

pk

, and hene by the seurity parameter

t. The sheme itself is spei�ed by four polynomial time algorithms:

� G

ID

(1

t

): A probabilisti, polynomial-time (PPT heneforth) algorithmwhih

takes as input 1

t

and returns the master publi key M

pk

and the master

seret key M

sk

.

� X

ID

(M

pk

;M

sk

; ID

A

): A PPT private key extration algorithm whih takes

as input M

pk

;M

sk

and ID

A

2 f0; 1g

�

, an identi�er string for A, and returns

the assoiated private key D

ID

A

.

� E

ID

(M

pk

; ID

A

;m; r): This is the PPT enryption algorithm. On input of

an identi�er ID

A

, the master publi key M

pk

, a message m 2 M

ID

(M

pk

)

and possibly some randomness r 2 R

ID

(M

pk

) this algorithm outputs  2

C

ID

(M

pk

).

� D

ID

(M

pk

; ID

A

; D

ID

A

; ): This is the deterministi deryption algorithm. On

input of the master publi keyM

pk

, the identi�er ID

A

, the private key D

ID

A

and a iphertext  this outputs the orresponding value of the plaintext m

or a failure symbol ?.

Following Boneh and Franklin [3℄ we an de�ne various seurity notions for an

IBE sheme. All are based on one of the following two-stage games between an

adversary A = (A

1

; A

2

) of the enryption algorithm and a hallenger.

ID-OW Adversarial Game

(1) (M

pk

;M

sk

) G

ID

(1

t

).

(2) (s; ID

�

) A

O

ID

1

(M

pk

).

(3) m M

ID

(M

pk

).

(4) 

�

 E

ID

(M

pk

; ID

�

;m; r).

(5) m

0

 A

O

ID

2

(M

pk

; 

�

; s; ID

�

).

ID-IND Adversarial Game

(1) (M

pk

;M

sk

) G

ID

(1

t

).

(2) (s; ID

�

;m

0

;m

1

) A

O

ID

1

(M

pk

).

(3) b f0; 1g.

(4) 

�

 E

ID

(M

pk

; ID

�

;m

b

; r).

(5) b

0

 A

O

ID

2

(M

pk

; 

�

; s; ID

�

;m

0

;m

1

).

In the above, s is some state information and O

ID

are orales to whih the

adversary has aess. There are various possibilities for these orales depending on

the attak model for our game:
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� CPA Model: In this model the adversary only has aess to a private key

extration orale whih on input of ID 6= ID

�

will output the orresponding

value of D

ID

.

� CCA2 Model: In this model the adversary has aess to the private key

extration orale as above and it also has aess to a deryption orale

with respet to any identity ID of its hoie. There is one restrition on

how the adversary uses this orale: in the seond phase A is not allowed to

all the deryption orale with the pair (

�

; ID

�

).

If we let MOD denote the mode of attak, either CPA or CCA2, the adversary's

advantage in the �rst game is de�ned to be

Adv

ID�OW�MOD

ID

(A) = Pr[m

0

= m℄;

while the advantage in the seond game is given by

Adv

ID�IND�MOD

ID

(A) = j2Pr[b

0

= b℄� 1j:

An IBE algorithm is onsidered to be seure, in the sense of a given goal and

attak model (ID-IND-CCA2 for example) if, for all PPT adversaries, the advantage

in the relevant game is a negligible funtion of the seurity parameter t.

To ope with probabilisti iphers, we will require that not too many hoies for

r enrypt a given message to a given iphertext. To formalize this onept we let

(M

pk

) be the least upper bound suh that

(1) jfr 2 R

ID

(M

pk

) : E

ID

(M

pk

; ID;m; r) = gj � (M

pk

)

for every ID, m 2 M

PK

(M

pk

) and  2 C

PK

(M

pk

). Our requirement is that the

quantity (M

pk

)=jR

PK

(M

pk

)j is a negligible funtion of the seurity parameter.

2.3. ID-Based Key Enapsulation Mehanisms. Following Cramer and Shoup's

formalisation of hybrid enryption [8℄, Bentahar et al. extended the hybrid enryp-

tion onept to identity-based shemes [4℄. The idea is to onstrut an ID-IND-

CCA2 seure IBE sheme from an ID-IND-CCA2 seure ID-KEM and a seure

DEM.

An ID-KEM sheme is spei�ed by four polynomial time algorithms:

� G

ID�KEM

(1

t

): The PPTmaster key generation algorithm whih takes as input

1

t

. It outputs the master publi key M

pk

and the master seret key M

sk

.

� X

ID�KEM

(M

pk

;M

sk

; ID

A

): The PPT private key extration algorithm whih

takes as input M

pk

;M

sk

and ID

A

2 f0; 1g

�

, an identi�er string for A. It

outputs the assoiated private key D

ID

A

.

� E

ID�KEM

(M

pk

; ID

A

): The PPT enapsulation algorithm whih takes as input

ID

A

andM

pk

. It outputs a pair (k; ) where k 2 K

ID�KEM

(M

pk

) is a key and

 2 C

ID�KEM

(M

pk

) is the enapsulation of that key.

� D

ID�KEM

(M

pk

; ID

A

; D

ID

A

; ): The deterministi deapsulation algorithm whih

takes as input M

pk

, ID

A

,  and D

ID

A

. It outputs k or a failure symbol ?.

We shall only require one seurity de�nition for our ID-KEMs, although other

weaker de�nitions an be de�ned in the standard way. Consider the following two-

stage game between an adversary A = (A

1

; A

2

) of the ID-KEM and a hallenger.
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ID-IND Adversarial Game

(1) (M

pk

;M

sk

) G

ID�KEM

(1

t

).

(2) (s; ID

�

) A

O

ID

1

(M

pk

).

(3) (k

0

; 

�

) E

ID�KEM

(M

pk

; ID

�

).

(4) k

1

 K

ID�KEM

(M

pk

).

(5) b f0; 1g.

(6) b

0

 A

O

ID

2

(M

pk

; 

�

; s; ID

�

; k

b

).

In the above s is some state information and O

ID

denotes orales to whih the

adversary has aess. We shall be interested in the CCA2 attak model where the

adversary has aess to two orales:

(1) A private key extration orale whih, on input of ID 6= ID

�

, will output

the orresponding value of D

ID

.

(2) A deapsulation orale whih, on input an identity ID and enapsulation of

its hoie, will return the enapsulated key. This is subjet to the restrition

that in the seond phase A is not allowed to all this orale with the pair

(

�

; ID

�

).

The adversary's advantage is de�ned to be

Adv

ID�IND�CCA2

ID�KEM

(A) = j2Pr[b

0

= b℄� 1j:

An ID-KEM is onsidered to be seure, if for all PPT adversaries A, the advan-

tage in the game above is a negligible funtion of the seurity parameter t.

2.4. Hybrid IBE. A hybrid IBE E = (G

ID

;X

ID

; E

ID

; D

ID

) onstrution onsists of

ombining an ID-KEM E

1

= (G

ID�KEM

;X

ID�KEM

; E

ID�KEM

; D

ID�KEM

) with a standard

DEM E

2

= (E

SK

; D

SK

) as desribed below. For the formal de�nition of a DEM and

its seurity de�nition that we use in Theorem 1, refer to [8℄ and [4℄.

We assume that the key-spae of the KEM is the same as the key-spae of

the assoiated DEM. To generate M

pk

, for the hybrid IBE sheme, the algorithm

G

ID�KEM

(1

t

) is run. We denote the resulting full key M

pk

below. Key extration for

E is simply the key extration of E

1

.

E

ID

(M

pk

; ID;m)

� (k; 

1

) E

ID�KEM

(M

pk

; ID)

� 

2

 E

SK

(k;m)

� Return  = (

1

; 

2

)

D

ID

(M

pk

; ID; D

ID

; )

� Parse  as (

1

; 

2

)

� k D

ID�KEM

(M

pk

; ID; D

ID

; )

� If k =?, return ?

� m D

SK

(k; 

2

)

� Return m

Similar to the result of hybrid enryption in [8℄, Bentahar et al. obtained the

following theorem onerning the seurity of hybrid IBE.

Theorem 1. [Bentahar et al. [4℄℄ Let A be a PPT ID-IND-CCA2 adversary of the

IBE sheme E above. There exists PPT adversaries B

1

and B

2

, whose running

time is essentially that of A, suh that

Adv

ID�IND�CCA2

ID

(A) � 2Adv

ID�IND�CCA2

ID�KEM

(B

1

) + Adv

FG�CCA

DEM

(B

2

):

Some IND-CCA seure DEMs are readily available, see [15℄ and [1℄. Bentahar

et al. presented two seure ID-KEMs using the same key format as that used in

the BF-IBE sheme [3℄. In the following setion, we introdue another ID-KEM

based on Sakai and Kasahara's IBE proposal whih has the potential to ahieve

even better performane.
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3. An SK-ID-KEM Constrution

Before disussing our onstrution we briey summarise the primitives proposed

by Sakai et al. [16, 17, 18℄, on whih our own ontribution is based. In what follows

we will assume that we have bilinear groups as de�ned in Setion 2.1. We make

the assumption that G

1

= G

2

while we are desribing the shemes of Sakai et al.;

elsewhere in the paper we do not make this assumption.

In the �rst two of the papers by Sakai et al. [16, 17℄, the shemes work using a

funtion

� : f0; 1g

�

! G

1

whih is used to map identities ID 2 f0; 1g

�

to elements of G

1

. There is a TA that

hooses a master seret key s from Z

p

. One appliation disussed by Sakai et al.

is key agreement. Suppose that ID

a

wishes to enrypt a message and send it to

ID

b

. It �rst obtains its seret key D

ID

a

= �(ID

a

)

s

from the TA. It then omputes

a key K

ab

 ê(D

ID

a

; �(ID

b

)). If ID

b

obtains its own seret key D

ID

b

= �(ID

b

)

s

, it

an also ompute K

ab

 ê(�(ID

a

); D

ID

b

). This onstrution of keys is exatly the

same as that used in the Boneh{Franklin sheme [3℄, where � is instantiated using

a ryptographi hash funtion.

The method used to onstrut keys given in the paper by Sakai and Kasahara [18℄

is slightly di�erent. The TA hooses two generators u

�

and u

�

of G

1

. It also hooses

a polynomial � of degree d (where d is a parameter of the sheme)

�(x) = a

d

x

d

+ a

d�1

x

d�1

+ : : :+ a

1

x+ a

0

where the oeÆients are randomly hosen from Z

p

. The TA's master seret key is

made up of the oeÆients of the polynomial. Its orresponding master publi key

is ê(u

�

; u

�

) together with u

a

d

�

; u

a

d�1

�

; : : : ; u

a

1

�

; u

a

0

�

. Now, to extrat a seret key for

identity ID, the TA omputes

D

ID

 u

1=�(ID)

�

:

It is this method of onstruting keys that our sheme uses to produe our KEM,

however we are able to use the simpli�ation of setting d = 1.

We are now ready to desribe our onstrution. Two stages are required. In

the �rst stage, Setion 3.1, we present a onrete instantiation of a new ID-OW-

CPA seure IBE sheme. One should think of this onstrution as analogous to

the BasiIdent sheme in [3℄. In the seond stage, Setion 3.1, we use a generi

onstrution from [4℄ whih turns an ID-OW-CPA seure IBE sheme into an ID-

IND-CCA2 seure ID-KEM. Suh an ID-KEM an then be used to build an ID-

IND-CCA2 seure enryption sheme using the onstrution of Theorem 1 [4℄. We

denote the resulting enryption SK-C2 heneforth.

3.1. An ID-OW-CPA IBE sheme based on Sakai-Kasahara keys. Let t be

the seurity parameter. The system parameters onsist of groups G

1

, G

2

and G

T

,

as de�ned in Setion 2.1, with order p � 2

t

and a bilinear pairing ê : G

1

�G

2

! G

T

.

In addition we require a generator u

1

for G

1

and a generator u

2

for G

2

suh that

u

1

=  (u

2

). The sheme also uses two hash funtions:

H

1

: f0; 1g ! Z

p

and H

2

: G

T

! f0; 1g

n

where f0; 1g

n

is the message spae. It works as follows.
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� G

ID

(1

t

): Selet s 2 Z

p

at random and set R = u

s

1

. The value s is the

master seret key M

sk

of the TA (a trusted authority), while R along with

the other system parameters is the master publi key M

pk

.

� X

ID

(M

pk

; ID; s): This outputs the identity-based seret key

D

ID

= u

1=(s+H

1

(ID))

2

:

Note this will fail and, moreover, M

sk

will be revealed if H

1

(ID) = �s;

however, this happens with negligible probability.

� E

ID

(M

pk

; ID;m; r):

- Q R � u

H

1

(ID)

1

- U Q

r

- V m�H

2

(ê(u

1

; u

2

)

r

)

- Return (U; V )

� D

ID

(M

pk

; ID; D

ID

; (U; V )): This outputs

V �H

2

(ê(U;D

ID

))

We now present the seurity result for the IBE sheme above.

Theorem 2. Suppose that there is algorithm A whih breaks the above sheme in

terms of ID-OW-CPA. If we model H

1

and H

2

as random orales, and we let q

1

,

q

2

and q

X

be the number of queries that A makes to H

1

, H

2

and its key extration

orale respetively. Then there is an algorithm B to solve the q-BDHI problem in

groups of order p with q = q

1

+ q

X

+ 1 suh that

Adv

ID�OW�CPA

ID

(A) � (q � q

2

+ 1) �Adv

q�BDHI

(B) +

1

2

n

+

q + 1

p

:

The proof of this theorem is given in the appendix.

3.2. Generi Redution. Here we take a generi, probabilisti ID-based enryp-

tion sheme, whih is ID-OW-CPA seure. Let the enryption algorithm be denoted

E

ID

(M

pk

; ID;m; r) and the deryption algorithm be denoted D

ID

(M

pk

; ID; D

ID

; ),

where D

ID

is the output from the extration algorithm X

ID�KEM

(M

pk

;M

sk

; ID). We

assume the message spae of E

ID

is given by M

ID

(M

pk

) and the spae of randomness

is given by R

ID

(M

pk

). The onstrution uses two ryptographi hash funtions:

H

3

: f0; 1g

�

! R

ID

(M

pk

) and H

4

: f0; 1g

�

! f0; 1g

�

for � 2 Z: the length of the resulting keys. Using this we onstrut an ID-KEM as

follows.

E

ID�KEM

(M

pk

; ID):

� m M

ID

(M

pk

)

� r H

3

(m)

�  E

ID

(M

pk

; ID;m; r)

� k H

4

(m)

� Return (k; )

D

ID�KEM

(M

pk

; ID; D

ID

; ):

� m D

ID

(M

pk

; ID; D

ID

; )

� If m =?, return ?

� r H

3

(m)

� If  6= E

ID

(M

pk

; ID;m; r), return ?

� k H

4

(m)

� Return k

From [4℄ we have the following theorem onerning the seurity of the onstru-

tion above.
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Theorem 3. If E

ID

is an ID-OW-CPA seure ID-based enryption sheme and

H

3

and H

4

are modelled as random orales then the onstrution above is seure

against adaptive hosen iphertext attak.

Spei�ally, if A is a PPT algorithm that breaks the ID-KEM onstrution above

using a hosen iphertext attak, then there exists a PPT algorithm B, with

Adv

ID�IND�CCA2

ID�KEM

(A) � 2(q

3

+ q

4

+ q

D

) � Adv

ID�OW�CPA

ID

(B) +

2q

D

(M

pk

)

jR

ID

(M

pk

)j

;

where q

3

, q

4

and q

D

are the number of queries made by A to H

3

, H

4

and the

deryption orale respetively, and (M

pk

) is as in (1).

When we instantiate this generi onstrution with our ID-OW-CPA sheme

from Stage 1, we have

(M

pk

)

jR

ID

(M

pk

)j

�

1

p

:

3.3. Full Sheme. The full ID-KEM sheme works as follows. The algorithms

G

ID�KEM

and X

ID�KEM

are simply G

ID

and X

ID

for the IBE sheme above.

E

ID�KEM

(M

pk

; ID)

� m f0; 1g

n

� r H

3

(m)

� Q R � u

H

1

(ID)

1

� U Q

r

� V m�H

2

(ê(u

1

; u

2

)

r

)

� k H

4

(m)

�  (U; V )

� Return (k; )

D

ID�KEM

(M

pk

; ID; D

ID

; )

� Parse  as (U; V )

� � ê(U;D

ID

)

� m H

2

(�) � V

� r H

3

(m)

� If (U; V ) 6= E

ID

(M

pk

; ID;m; r),

return ?

� k H

4

(m)

� Return k

Note that ê(u

1

; u

2

) an be inluded in the master publi key to minimise the number

of pairing omputations neessary.

We now look at the validity hek in more detail. We need to ensure that the

following holds

U = Q

r

V = m�H

2

(ê(u

1

; u

2

)

r

);

where

Q = R � u

H

1

(ID)

1

m = V �H

2

(ê(u

1

; u

2

)

r

):

However, if U = Q

r

then � is always equal to ê(u

1

; u

2

)

r

. In this ase V always equals

m�H

2

(�) and m is de�ned to be V �H

2

(�). This means that heking whether

or not V is orret is redundant. Hene, we only need to hek whether U = Q

r

.

Sine the deryptor knows its own identity, it an be assumed to have preomputed

the value of Q, therefore the validity hek involves only one exponentiation in G

1

.

4. Comparison with Other Shemes

In this setion we ompare the SK-C2 sheme from Setion 3 with the other

eÆient ID-based enryption shemes in the literature.
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pairings exponentiations hashes

Sheme E

ID

D

ID

E

ID

D

ID

E

ID

D

ID

BF-IBEa 1 1 2 1 4 3

SK-IBEa 0 1 3 1 4 3

BF-C1 1 1 2 0 2 1

BF-C2 1 1 2 1 4 3

SK-C2 0 1 3 1 4 3

Table 1. The omputations neessary for various IBE shemes

� BF-IBE: The original Boneh-Franklin sheme whih is seure assuming the

BDH problem is hard. The ID-based keys are onstruted in the standard

way by hashing to a point in either G

1

or G

2

. The assoiated seret key is

obtained by multiplying this point by the master seret. We use BF-IBEa

to denote the extension of the Boneh-Franklin in whih an arbitrary blok

ipher is used instead of xor. In [4℄ this latter version is referred to as

FullIdent-2. Note, BF-IBEa does not need to be used with a full DEM; a

standard blok ipher seure against passive attaks is suÆient.

� SK-IBE: The sheme desribed in [6℄. This uses the keys onstrution of

Sakai and Kasahara as in the urrent paper. The sheme is seure assuming

the q-BDHI problem is hard. Similar to BF-IBEa, we an de�ne an SK-

IBEa by replaing xor with a blok ipher.

� BF-C1: Constrution C-1 from [4℄. This is a hybrid KEM based onstru-

tion, originally mentioned in a paper by Lynn [11℄. It is seure assuming

a suitable gap problem is hard. The keys are of the same form as those in

the Boneh-Franklin sheme.

� BF-C2: Constrution C-2 from [4℄. This uses the generi onstrution

used in this paper applied to the BasiIdent sheme of [3℄.

Note, all of the above sheme are seure in the random orale model. We have

not onsidered omparisons with shemes seure in the standard model as they are

very ineÆient.

To ompare eÆieny we �rst look at the omputations neessary to implement

the various shemes in Table 1. The �rst two rows of the table orrespond to IBE

shemes, while the last three refer to ID-KEM/DEM hybrid onstrutions. We

assume that the obvious preomputations have been performed in all ases.

We see that the shemes based on the Sakai-Kasahara key onstrution do not

have to perform a pairing in their enryption routine. This omes at the expense

of an extra group exponentiation, however these are usually muh heaper than a

pairing omputation. In addition we note that using the Sakai-Kasahara method

of onstruting keys, as opposed to the method of Boneh and Franklin, avoids the

need to hash into an ellipti urve group. As pointed out in [19℄, hashing into

the group an ause problems if the groups are not hosen in a suitable way. In

addition, hashing into an ellipti urve is in general more expensive both in terms

of CPU time and ode footprint size than hashing into the integers.
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BF-IBEa SK-C2

ID-Publi Key Gen 18 4

ID-Private Key Gen 113 88

ID-Enrypt 75 30

ID-Derypt 55 62

Table 2. Comparison of CPU time in milliseonds

In Table 2 we ompare an implementation of our onstrution with that of BF-

IBEa for a 160-bit MNT-type urve

1

. The improvement in performane omes from

the lak of a pairing omputation on enryption and the lak of a need to hash into

an ellipti urve group.

We reiterate that using an ID-KEM/DEM onstrution is more exible as it

failitates identity based enryption with any appropriate DEM to enrypt the

atual data paket, or even the use of the KEM on its own to transmit a key for

another appliation. This philosophy for designing publi key enryption algorithms

is well explained in [8℄ and [15℄, so we do not go into the bene�ts more here.

We now turn to the iphertext sizes of the various shemes above. In Table 3

we let jG

1

j denote the number of bits needed to represent an element in the group

G

1

and use analogous notation for other omponents. It is onvention that when

instantiated with ellipti urves, the group G

1

refers to the subgroup of order p of

an ellipti urve over the \small" �nite �eld. Then for supersingular ellipti urves

we have G

1

= G

2

, however for so-alled MNT urves we have that G

2

is related to

a subgroup of the twisted ellipti urve over a large �nite �eld. Hene, representing

elements of G

2

an require more bits than are required to represent elements of G

1

.

In Table 3 we also mention whether the sheme requires hashing into either

the group G

1

or the group G

2

. One should note that hashing into G

2

an be

omputationally expensive as pointed out in [19℄ for ertain hoies of groups, while

hashing into G

1

is usually very eÆient. As in [13℄, we let BF-IBE

?

denote the

protool BF-IBE but with the roles of G

1

and G

2

reversed. We use analogous

notation for other shemes. Note, reversing the roles of G

1

and G

2

an have e�ets

on the seurity proof or on other aspets related to eÆieny. See [19℄ for more

details. Note that the only ase in whih reversing the roles of G

1

and G

2

makes

no di�erene is the ase of supersingular ellipti urves for whih G

1

= G

2

.

We do not give rows for the Sakai-Kasahara based shemes where the roles of

G

1

and G

2

are reversed; reversing the roles of G

1

and G

2

only redues bandwidth

eÆieny for no gain in performane, as for these shemes one never has to hash

into G

1

or G

2

.

In Table 3, n either refers to the key length of the DEM, or the size of � in

the standard Boneh-Franklin IBE shemes. We note that for the shemes with

Boneh-Franklin style keys one either needs to hoose, for MNT urves, between low

bandwidth and hashing into G

2

, or high bandwidth and hashing into G

1

.

Bandwidth for iphertexts an be further redued as follows. In the iphertext we

transmit the element U 2 G

1

, whih is a point on an ellipti urve in pratie. We

ould learly ompress the point U . However, ompression usually entails sending

1

The MNT urves are those non-supersingular ellipti urves that are suitable for pairing-based

ryptography. The name omes from the initials of the authors who gave the �rst onstrution of

suh urves [12℄.
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sheme iphertext hashing

size G

1

G

2

BF-IBE jG

1

j+ n+ jmj N Y

BF-IBEa jG

1

j+ n+ jE

SK

(m)j N Y

BF-IBE

?

jG

2

j+ n+ jmj Y N

BF-IBEa

?

jG

2

j+ n+ jE

SK

(m)j Y N

SK-IBE jG

1

j+ n+ jmj N N

SK-IBEa jG

1

j+ n+ jE

SK

(m)j N N

BF-C1 jG

1

j+ jE

DEM

(m)j N Y

BF-C2 jG

1

j+ n+ jE

DEM

(m)j N Y

BF-C1

?

jG

2

j+ jE

DEM

(m)j Y N

BF-C2

?

jG

2

j+ n+ jE

DEM

(m)j Y N

SK-C2 jG

1

j+ n+ jE

DEM

(m)j N N

Table 3. The bandwidth requirements of various IBE shemes

an extra bit so as to uniquely deompress the point. This is unneessary for the

ost of one �eld inversion. Suppose we only transmit the x-oordinate of the point

U , in whih ase the reeiver only knows U up to sign. Hene, he an only ompute

� ê(�U;D

ID

)

�1

:

But by omputing

H

2

(�+ �

�1

)

instead of

H

2

(�);

a unique value will be produed. In partiular this tehnique avoids the need to

transmit an extra bit to unompress the x-oordinate x(U) to a unique point, and

it does not a�et the seurity proof. One obviously has to modify the validity hek

slightly.

We note that an analogous onstrution to C-1 from [4℄ an be applied to the

Sakai-Kasahara method of onstruting keys. This sheme is eÆient and an be

proved seure using a suitable, but slightly unnatural, gap problem using similar

tehniques to the proof of onstrution C-1 from [4℄.
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Appendix A. Proof of Theorem 2

To prove our theorem we will show how to use A to onstrut an algorithm

B to solve the q-BDHI problem, where q = q

1

+ q

X

+ 1. This onstrution will

involve running A in a simulated environment. Heneforth all probabilities will be

probabilities in our simulated environment.

Algorithm B proeeds as follows. It takes as input

(g

1

; g

2

; g

x

2

; g

x2

2

; g

x3

2

; : : : ; g

x

q

2

) 2 G

1

� G

q+1

2

with g

1

=  (g

2

) and then selets an integer I 2 f1; : : : ; qg. It uses these to set up

the domain parameters and keys for the ID-based enryption algorithm as desribed

below.

Algorithm B selets h

0

; : : : ; h

q�1

uniformly at random from Z

p

. We de�ne the

event Guess to be that in whih h

i

= �x for some i in f1; : : : ; q � 1g. (This event

an be heked by omputing g

�h

i

2

for i in f1; : : : ; q�1g and omparing these values

with g

x

2

.)
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We say that A wins if it outputs the orret value of the enrypted message in

its attak. By de�nition have

Adv

ID�OW�CPA

ID

(A) =Pr[A wins ^ Guess℄ + Pr[A wins ^ :Guess℄

�Pr[Guess℄ + Pr[A winsj:Guess℄

�Adv

q�BDHI

(B) + Pr[A winsj:Guess℄:(2)

Equation (2) follows from the fat that, in the event Guess, algorithm B �nds

x whih it an then use to solve the q-BDHI problem diretly by omputing

ê(g

1

; g

2

)

1=x

.

We are now ready to desribe the non-trivial part of the simulation. In the

remainder of the proof we will assume that the event :Guess has ourred and so

all probabilities are onditioned on this event.

Now, B de�nes the polynomial

f(z) =

q�1

Y

i=1

(z + h

i

) =

q�1

X

i=0



i

z

i

;

omputes

u

2

=

q�1

Y

i=0

(g

x

i

2

)



i

= g

f(x)

2

and

u

0

2

=

q�1

Y

i=0

(g

x

i+1

2

)



i

= g

xf(x)

2

= u

x

2

:

Note that, in the event :Guess, we have u

2

6= 1 and so u

2

is a generator of G

2

.

Algorithm B then de�nes the polynomials

f

i

(z) = f(z)=(z + h

i

) =

q�2

X

j=0

d

i;j

z

j

; for 1 � i < q:

Note that

u

1=(x+h

i

)

2

= g

f

i

(x)

2

=

q�2

Y

j=0

(g

x

j

2

)

d

i;j

:

Let PS denote the set

n�

h

j

+ h

0

; u

1=(x+h

j

)

2

�o

q�1

j=1

:

Algorithm B sets

t

0

=

q�1

Y

i=1

(g

x

i�1

2

)



i

= g

(f(x)�

0

)=x

2

and sets



0

= ê( (t

0

); u

2

� g



0

2

):

It de�nes u

1

=  (u

2

) and omputes the publi key of the TA as

R =  (u

0

2

� u

�h

0

2

) =  (u

0

2

) � u

�h

0

1

= u

x�h

0

1

:

We need to hek that this has the orret distribution. Sine we are onditioning

on the event :Guess we know that u

2

is a generator of G

2

whih means that u

1

must be a generator of G

1

as required for the sheme.
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Consider the following distributions assoiated with a generator u

1

of G

1

. Note

that in the desription below D

x

is one of a olletion of distributions fD

x

g

x2Z

p

parameterised by x 2 Z

p

.

D = fu

s

1

: s  Z

p

g and D

x

=

n

u

x�h

0

1

: h

0

 Z

p

o

:

Clearly, for any x 2 Z

p

, these distributions are idential and, moreover, R is

hosen from D when the sheme is used in reality and R is hosen from D

x

in our

simulation (onditioned on the event :Guess). We onlude that R has the orret

distribution.

Algorithm B now invokes the �rst stage of algorithm A with the domain param-

eters that it has onstruted. It responds to the orale alls made by A as follows.

H

1

-query on ID

i

: B maintains a list H

1

of tuples (ID

i

; h

i

; D

ID

i

) indexed by ID

i

.

On input of ID

i

, the ith distint query, algorithm B responds as follows.

(1) If i = I then B responds with h

0

and adds (ID

i

; h

0

;?) to the list H

1

.

(2) Otherwise it selets a random element (h

i

+h

0

; u

1=(x+h

i

)

2

) from PS (without

replaement). It adds (ID

i

; h

i

+ h

0

; u

1=(x+h

i

)

2

) to the list H

1

and it returns

h

i

+ h

0

.

If the query is a repeat query then B responds with the response that it gave the

�rst time by looking it up on the list.

H

2

-query on � : B maintains a list H

2

of tuples (�; �). If � appears in the list

H

2

then B responds with �. Otherwise it hooses � at random from f0; 1g

n

and it

adds (�; �) to the H

2

list before responding with �.

Extration Query on ID

i

: If ID

i

does not appear on the H

1

list then B �rst

makes an H

1

query. Algorithm B then heks whether the orresponding value

of D

ID

i

is ?. If so it terminates. (Note that this event orresponds to B failing

to orretly guess at what point A queries H

1

with its hosen ID

�

.) Otherwise it

responds with D

ID

i

where (ID

i

; h

i

; D

ID

i

) is the entry orresponding to ID

i

in the

H

1

list.

At some point A's �rst stage will terminate and it will return a hallenge identity

ID

�

. If A has not alledH

1

with input ID

�

then B does so for it. If the orresponding

value of D

ID

�

is not equal to ? then B will terminate.

Algorithm B hooses a random value of r 2 Z

p

and a random value V

�

in f0; 1g

n

.

It omputes U

�

= u

r

1

and sets the hallenge iphertext to be



�

= (U

�

; V

�

):

This hallenge iphertext is now passed to algorithm A's seond stage. Note,

due to the rules of the game, B will not terminate unexpetedly when responding

to extration queries made one A has been given the hallenge iphertext.

At some point algorithm A responds with its guess as to the value of the under-

lying plaintext m

�

. For a genuine hallenge iphertext we should have

m

�

= V

�

�H

2

(ê(U

�

; D

ID

�

)):
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If H

2

is modelled as a random orale we know that A only has any advantage if

the list H

2

ontains an input value

�

�

= ê(U

�

; D

ID

�

):(3)

Algorithm B selets a value � at random from the list H

2

. We assume that it

orretly selets � = �

�

and add a fator 1=q

2

to our subsequent analysis. It sets

 = �

�1=r

:

We have that

D

ID

�

= u

1=((x�h

0

)+h

0

)

2

and so

 = ê(u

1

; u

2

)

1=x

:

Algorithm B's job is to ompute ê(g

1

; g

2

)

1=x

. It sets

=

0

= ê(g

1

; g

2

)

f(x)�f(x)=x

=ê(g

(f(x)�

0

)=x

1

; g

f(x)+

0

2

)

= ê(g

1

; g

2

)

f(x)�f(x)=x�f(x)�f(x)=x+

0

2=x

= ê(g

1

; g

2

)



0

2=x

and it solves the q-BDHI problem by outputting

ê(g

1

; g

2

)

1=x

= (=

0

)

1=

0

2

:

Note that the above proedure for alulating the solution an fail if (1) r = 0

or (2) 

0

= 0. However, this will not happen if h

i

6= 0 for i = 0; : : : ; q�1 and r 6= 0.

We say that the event Fail ours if at least one of these onditions fails. We have

Pr[A winsj:Guess℄ = Pr[A wins ^ :Failj:Guess℄ + Pr[A wins ^ Failj:Guess℄

� Pr[A wins ^ j:Guess ^ :Fail℄ +

q + 1

p

(4)

Let us denote the event that A makes the query �

�

, as de�ned in (3), during its

attak by Ask.

Pr[A winsj:Guess ^ :Fail℄

= Pr[A wins ^ Askj:Guess ^ :Fail℄ + Pr[A wins ^ :Askj:Guess ^ :Fail℄

� Pr[A wins ^ Askj:Guess ^ :Fail℄ +

1

2

n

:(5)

The last inequality follows from the fat that, in the random orale model, if the

event Ask does not our, then A has no information about the message enrypted

in the hallenge iphertext.

To onlude the proof we note that, in event Ask, provided B (1) piks the

orret index I , whih happens with probability 1=(q

1

+ q

X

+ 1), and (2) hooses

the orret entry �

�

from list H

2

, whih happens with probability 1=q

2

, then B

sueeds in solving the q-BDHI problem. This means that

Pr[A wins ^ Askj:Guess℄ � ((q

1

+ q

X

+ 1) � q

2

) � Adv

q�BDHI

(B):(6)
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The result now follows from (2), (4), (5) and (6).
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