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Abstract. Identity-based encryption (IBE) is a special asymmetric en-
cryption method where a public encryption key can be an arbitrary iden-
tifier and the corresponding private decryption key is created by binding
the identifier with a system’s master secret. In 2003 Sakai and Kasahara
proposed a new IBE scheme, which has the potential to improve per-
formance. However, to our best knowledge, the security of their scheme
has not been properly investigated. This work is intended to build con-
fidence in the security of the Sakai-Kasahara IBE scheme. In this paper,
we first present an efficient IBE scheme that employs a simple version
of the Sakai-Kasahara scheme and the Fujisaki-Okamoto transformation,
which we refer to as SK-IBE. We then prove that SK-IBE has chosen
ciphertext security in the random oracle model based on a reasonably
well-explored hardness assumption.

1 Introduction

Shamir in 1984 [33] first formulated the concept of Identity-Based Cryptography
(IBC) in which a public and private key pair is set up in a special way, i.e., the
public key is the identifier (an arbitrary string) of an entity, and the correspond-
ing private key is created by using an identity-based key extraction algorithm,
which binds the identifier with a master secret of a trusted authority. In the
same paper, Shamir provided the first key extraction algorithm that was based
on the RSA problem, and presented an identity-based signature scheme. By using
varieties of the Shamir key extraction algorithm, more identity-based signature
schemes and key agreement schemes were proposed (e.g., [22, 23]). However, con-
structing a practical Identity-Based Encryption (IBE) scheme remained an open
problem for many years.

After nearly twenty years, Boneh and Franklin [4], Cocks [15] and Sakai et
al. [30] presented three IBE solutions in 2001. The Cocks solution is based on the
quadratic residuosity. Both the Boneh and Franklin solution and the Sakai et al.
solution are based on bilinear pairings on elliptic curves [34], and the security of
their schemes is based on the Bilinear Diffie-Hellman (BDH) problem [4]. Their
schemes are efficient in practice. Boneh and Franklin defined a well-formulated
security model for IBE in [4]. The Boneh-Franklin scheme (BF-IBE for short)



has received much attention owing to the fact that it was the first IBE scheme
to have a proof of security in an appropriate model.

Both BF-IBE and the Sakai et al. IBE solution have a very similar private
key extraction algorithm, in which an identity string is mapped to a point on an
elliptic curve and then the corresponding private key is computed by multiplying
the mapped point with the master private key. This key extraction algorithm
was first shown in Sakai et al.’s work [29] in 2000 as the preparation step of an
identity-based key establishment protocol. Apart from BF-IBE and the Sakai et
al. IBE scheme [30], many other identity-based cryptographic primitives have
made use of this key extraction idea, such as the signature schemes [10, 21], the
authenticated key agreement schemes [11, 35], and the signcryption schemes [7,
12]. The security of these schemes were scrutinized (although some errors in a
few reductions were pointed out recently but fixed as well, e.g., [14, 18]).

Based on the same tool, the bilinear pairing, Sakai and Kasahara in 2003 [28]
presented a new IBE scheme using another identity-based key extraction algo-
rithm. The idea of this algorithm can be tracked back to the work in 2002 [27].
This algorithm requires much simpler hashing and therefore improves perfor-
mance. More specifically, it maps an identity to an element h ∈ Z

∗
q instead of a

point on an elliptic curve. The corresponding private key is generated as follow:
first, compute the inverse of the sum of the master key (a random integer from
Z
∗
q) and the mapped h; secondly, multiply a point of the elliptic curve (which is

the generator of an order q subgroup of the group of points on the curve) with
the inverse (obtained in the first step). After the initial paper was published, a
number of other identity-based schemes based on this key extraction idea have
been published, for examples [25, 26].

However, these schemes are either unproven or their security proof is prob-
lematic (e.g., [13]). In modern cryptography, a carefully scrutinized security re-
duction in a formal security model to a hardness assumption is desirable for any
cryptographic scheme. Towards this end, this work is intended to build confi-
dence in the security of the Sakai and Kasahara IBE scheme.

The remaining part of the paper is organized as follows. In next section,
we recall the existing primitive, some related assumptions and the IBE security
model. In Section 3, we first employ a simple version of the Sakai and Kasahara
IBE scheme from [28] and the Fujisaki-Okamoto transformation [16] to present
an efficient IBE scheme (we refer to it as SK-IBE). We then prove that SK-IBE
has chosen ciphertext security in the random oracle model. Our proof is based
on a reasonably well-explored hardness assumption. In Section 4, we show some
possible improvements of SK-IBE, both on security and performance. In Section
5, we compare between SK-IBE and BF-IBE. We conclude the paper in Section
6.

2 Preliminaries

In this section, we recall the existing primitives, including bilinear pairings, some
related assumptions and the security model of IBE.



2.1 Bilinear Groups and Some Assumptions

Here we review the necessary facts about bilinear maps and the associated groups
using a similar notation of [5].

– G1, G2 and GT are cyclic groups of prime order q.
– P1 is a generator of G1 and P2 is a generator of G2.
– ψ is an isomorphism from G2 to G1 with ψ(P2) = P1.
– ê is a map ê : G1 × G2 → GT .

The map ê must have the following properties.

Bilinear: For all P ∈ G1, all Q ∈ G2 and all a, b ∈ Z we have ê(aP, bQ) =
ê(P,Q)ab.

Non-degenerate: ê(P1, P2) 6= 1.
Computable: There is an efficient algorithm to compute ê(P,Q) for all P ∈ G1

and Q ∈ G2.

Note that following [36], we can either assume that ψ is efficiently computable
or make our security proof relative to some oracle which computes ψ.

There are a batch of assumptions related to the bilinear groups. Some of
them have already been used in the literature and some are new variants. We
list them below and show how they are related to each other. We also correct a
minor inaccuracy in stating an assumption in the literature. Recently it has come
to our attention that some other related assumptions were discussed in [39].

We use a unified naming method; in particular, provided that X stands for
an assumption, sX stands for a stronger assumption of X, which implies that the
problem corresponding to sX would be easier than the problem corresponding
to X. In the following description, α ∈R β denotes that α is an element chosen
at random from a set β.

Assumption 1 (Diffie-Hellman (DH)) For x, y ∈R Z
∗
q , P ∈ G

∗
1, given (P ,

xP , yP ), computing xyP is hard.

Assumption 2 (Bilinear DH (BDH) [4]) For x, y, z ∈R Z
∗
q , P2 ∈ G

∗
2,

P1 = ψ(P2), ê : G1 × G2 → GT , given (P1, P2, xP2, yP2, zP2), computing
ê(P1, P2)

xyz is hard.

Assumption 3 (Decisional Bilinear DH (DBDH)) For x, y, z, r ∈R Z
∗
q ,

P2 ∈ G
∗
2, P1 = ψ(P2), ê : G1×G2 → GT , distinguishing between the distributions

(P1, P2, xP2, yP2, zP2, ê(P1, P2)
xyz) and (P1, P2, xP2, yP2, zP2, ê(P1, P2)

r)
is hard.

Assumption 4 (DH Inversion (k-DHI) [27]) For an integer k, and x ∈R

Z
∗
q , P ∈ G

∗
1, given (P , xP , x2P , . . ., xkP ), computing 1

xP is hard.

Theorem 1 (Mitsunari et al. [27]) DH and 1-DHI are polynomial time equiv-
alent, i.e., if there exists a polynomial time algorithm to solve DH, then there
exists a polynomial time algorithm for 1-DHI, and if there exists a polynomial
time algorithm to solve 1-DHI, then there exists a polynomial time algorithm for
DH.



Assumption 5 (Collision Attack Assumption 1 (k-CAA1)) For an inte-
ger k, and x ∈R Z

∗
q , P ∈ G

∗
1, given (P , xP , h0, (h1,

1
h1+xP ), . . ., (hk,

1
hk+xP ))

where hi ∈R Z
∗
q and distinct for 0 ≤ i ≤ k, computing 1

h0+xP is hard.

Theorem 2 If there exists a polynomial time algorithm to solve (k-1)-DHI, then
there exists a polynomial time algorithm for k-CAA1. If there exists a polyno-
mial time algorithm to solve (k-1)-CAA1, then there exists a polynomial time
algorithm for k-DHI.

The proof is presented in Appendix A.

Assumption 6 (Collision Attack Assumption 2 (k-CAA2) [27]) For an
integer k, and x ∈R Z

∗
q , P ∈ G

∗
1, given (P, h0, (h1,

1
h1+xP ), . . . , (hk, 1

hk+xP ))

where hi ∈R Z
∗
q and distinct for 0 ≤ i ≤ k, computing 1

h0+xP is hard.

Mitsunari et al. established the relation between k-CAA2 and k-DHI (also called
k-wDHA) in [27], while in the definition of k-CAA2 the value h0 was not given
as input. However, when consulting their proof of Theorem 3.5 [27], we note that
h0 has to be given as part of the problem.

Theorem 3 (Mitsunari et al. [27]) There exists a polynomial time algorithm
to solve (k-1)-DHI if and only there exists a polynomial time algorithm for k-
CAA2.

Assumption 7 (Strong CAA (k-sCAA1) [40]) For an integer k, and x ∈R

Z
∗
q , P ∈ G

∗
1, given (P , xP , (h1,

1
h1+xP ), . . ., (hk,

1
hk+xP )) where hi ∈R Z

∗
q

and distinct for 1 ≤ i ≤ k, computing (h, 1
h+xP ) for some h ∈ Z

∗
q but h /∈

{h1, . . . , hk} is hard.

Zhang et al.’s short signature proof [40] and Mitsunari et al.’s traitor tracing
scheme [27] used this assumption. However, the traitor tracing scheme was bro-
ken by Tô et al. in [37] because it was found to be in fact based on a “slightly”
different assumption, which does not require to output the value of h. Obviously,
if one does not have to demonstrate that he knows the value of h, the problem
is not hard. He can simply choose a random element from G1 that is not shown
in the problem as the answer, because G1 is of prime order q and any r ∈ Z

∗
q

satisfies r = 1
h+x mod q for some h.

Assumption 8 (Strong DH (k-sDH) [2]) For an integer k, and x ∈R Z
∗
q ,

P ∈ G
∗
1, given (P, xP, x2P, . . . , xkP ), computing (h, 1

h+xP ) where h ∈ Z
∗
q is

hard.

Theorem 4 If there exists a polynomial time algorithm to solve (k-1)-sCAA1,
then there exists a polynomial time algorithm for k-sDH. If there exists a poly-
nomial time algorithm to solve (k-1)-sDH, then there exists a polynomial time
algorithm for k-sCAA1.



The proof is presented in Appendix B.

Assumption 9 (Exponent Problem ((k+1)-EP) [40]) For an integer k,
and x ∈R Z

∗
q , P ∈ G

∗
1, given (P , xP , x2P , . . ., xkP ), computing xk+1P is hard.

Theorem 5 (Zhang et al. [40]) There exists a polynomial time algorithm to
solve k-DHI if and only if there exists a polynomial time algorithm for (k+1)-EP.

Assumption 10 (Bilinear DH Inversion (k-BDHI) [1]) For an integer k,
and x ∈R Z

∗
q , P2 ∈ G

∗
2, P1 = ψ(P2), ê : G1 × G2 → GT , given (P1, P2, xP2,

x2P2, . . ., xkP2), computing ê(P1, P2)
1/x is hard.

Assumption 11 (Decisional Bilinear DH Inversion (k-DBDHI)) For an
integer k, and x, r ∈R Z

∗
q , P2 ∈ G

∗
2, P1 = ψ(P2), ê : G1 × G2 → GT , dis-

tinguishing between the distributions (P1,P2, xP2, x2P2, . . ., xkP2, ê(P1, P2)
1/x)

and (P1, P2, xP2, x2P2, . . ., xkP2, ê(P1, P2)
r) is hard.

Theorem 6 BDH and 1-BDHI are polynomial time equivalent, i.e., if there
exists a polynomial time algorithm to solve BDH, then there exists a polynomial
time algorithm for 1-BDHI, and if there exists a polynomial time algorithm to
solve 1-BDHI, then there exists a polynomial time algorithm for BDH.

The proof is presented in Appendix C.

Assumption 12 (Bilinear CAA 1 (k-BCAA1)) For an integer k, and x ∈R

Z
∗
q , P2 ∈ G

∗
2, P1 = ψ(P2), ê : G1 × G2 → GT , given (P1, P2, xP2, h0, (h1,

1
h1+xP2), . . ., (hk, 1

hk+xP2)) where hi ∈R Z
∗
q and distinct for 0 ≤ i ≤ k, comput-

ing ê(P1, P2)
1/(x+h0) is hard.

Theorem 7 If there exists a polynomial time algorithm to solve (k-1)-BDHI,
then there exists a polynomial time algorithm for k-BCAA1. If there exists a
polynomial time algorithm to solve (k-1)-BCAA1, then there exists a polynomial
time algorithm for k-BDHI.

The proof is presented in Appendix D.
The relation among these assumptions can be described by Fig. 1. In the

literature, the k-DBDHI assumption was used in [1] to construct a selective-
identity secure IBE scheme (see next section for definition) without random
oracles [6] and k-sDH is used to construct a short signature [2] without random
oracles, while k-sCAA1 is used by [40] to construct a short signature with random
oracles and to build a traitor tracing scheme [27].

2.2 IBE Schemes and Their Security Model

Let k be a security parameter, and M and C denote the message and cipher-
text spaces respectively. An IBE scheme is specified by four polynomial time
algorithms:
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k-A −→ k-B: if k-A is polynomial-time solvable, so is k-B;
k-A 99K k-B: if (k-1)-A is polynomial-time solvable, so is k-B.

Fig. 1. Relation among the assumptions.

– Setup takes as input 1k, and returns a master public key Mpk and a master
secret key Msk;

– Extract takes as input Mpk, Msk and IDA ∈ {0, 1}∗, an identifier string for
entity A, and returns the associated private key dA;

– Encrypt takes as input Mpk, IDA and a message m ∈ M, and returns a
ciphertext C ∈ C; and

– Decrypt takes as input Mpk, IDA, dA and C, and returns the corresponding
value of the plaintext m or a failure symbol ⊥.

The security of an IBE scheme is defined by the following game between a
challenger C and an adversary A formalized in [4].

– Setup. C takes a security parameter k and runs the Setup algorithm. It gives
A Mpk and keeps Msk to itself.

– Phase 1. A issues queries as one of follows:
• Extraction query on IDi. C runs the Extract algorithm to generate dIDi

and passes it to A.
• Decryption query on (IDi, Ci). C decrypts the ciphertext by finding dIDi

first (through running Extract if necessary), and then running the De-
crypt algorithm. It responds with the resulting plaintext.

– Challenge. Once A decides that Phase 1 is over, it outputs two equal length
plaintexts m0,m1 ∈ M, and an identity IDch on which it wishes to be
challenged. The only constraint is that A must not have queried the extrac-
tion oracle on IDch in Phase 1. C picks a random bit b ∈ {0, 1} and sets
Cch=Encrypt(Mpk, IDch, mb) ∈ C. It sends Cch as the challenge to A .

– Phase 2. A issues more queries as in Phase 1 but with two restrictions: (1)
Extraction queries cannot be issued on IDch; (2) Decryption queries cannot
be issued on (IDch, Cch).

– Guess. Finally, A outputs a guess b′ ∈ {0, 1} and wins the game if b′ = b.

We refer to this type of adversary as an IND-ID-CCA adversary. If A cannot ask
decryption queries, we call it an IND-ID-CPA adversary. The advantage of an
IND-ID-CCA adversary A against an IBE scheme EID is the function of security
parameter k defined as: AdvEID,A(k) = |Pr[b′ = b] − 1/2|.



Definition 1 An identity-based encryption scheme EID is IND-ID-CCA secure
if for any IND-ID-CCA adversary, AdvEID,A(k) is negligible.

Canetti et al. formulated a weaker IBE notion, selective-identity adaptive
chosen ciphertext attacks secure scheme (IND-sID-CCA for short), in which, an
adversary has to commit the identity on which it wants to be challenged before
it sees the public system parameters (the master public key) [8]. The latest
work [19] provides some formal security analysis of this formulation.

3 SK-IBE

In this section, we investigate the security strength of SK-IBE. We choose the
simplest variant of the Sakai and Kasahara IBE scheme [28] as the basic version
of SK-IBE. This basic version was also described by Scott in [31]. To achieve
security against adaptive chosen ciphertext attacks, we make use of the Fujisaki-
Okamoto transformation [16] as it was used in BF-IBE [4].

3.1 Scheme

SK-IBE is specified by four polynomial time algorithms:

Setup. Given a security parameter k, the parameter generator follows the steps.

1. Generate three cyclic groups G1, G2 and GT of prime order q, an isomor-
phism ψ from G2 to G1, and a bilinear pairing map ê : G1 ×G2 → GT . Pick
a random generator P2 ∈ G

∗
2 and set P1 = ψ(P2).

2. Pick a random s ∈ Z
∗
q and compute Ppub = sP1.

3. Pick four cryptographic hash functions H1 : {0, 1}∗ → Z
∗
q , H2 : GT →

{0, 1}n, H3 : {0, 1}n × {0, 1}n → Z
∗
q and H4 : {0, 1}n → {0, 1}n for some

integer n > 0.

The message space is M = {0, 1}n. The ciphertext space is C = G
∗
1×{0, 1}n×

{0, 1}n. The master public key is Mpk = (q, G1, G2, GT , ψ, ê, n, P1, P2, Ppub,
H1, H2, H3, H4), and the master secret key is Msk = s.

Extract. Given an identifer string IDA ∈ {0, 1}∗ of entity A, Mpk and Msk, the
algorithm returns dA = 1

s+H1(IDA)P2.

Remark 1 The result of the Extract algorithm is a short signature dA on the
message IDA signed under the private signing key s. As proved in Theorem 3
of [40], this signature scheme is existentially unforgeable under chosen-message
attack [20] in the random oracle model [6], provided that the k-sCAA1 assump-
tion is sound in G2.

Encrypt. Given a plaintext m ∈ M, IDA and Mpk, the following steps are
performed.



1. Pick a random σ ∈ {0, 1}n and compute r = H3(σ,m).
2. Compute QA = H1(IDA)P1 + Ppub, gr = ê(P1, P2)

r.
3. Set the ciphertext to C = (rQA, σ ⊕ H2(g

r),m ⊕ H4(σ)).

Remark 2 In the Encrypt algorithm, the pairing g = ê(P1, P2) is fixed and
can be pre-computed. It can further be treated as a system public parameter.
Therefore, no pairing computation is required in Encrypt.

Decrypt. Given a ciphertext C = (U, V,W ) ∈ C, IDA, dA and Mpk, follow the
steps:

1. Compute g′ = ê(U, dA) and σ′ = V ⊕ H2(g
′)

2. Compute m′ = W ⊕ H4(σ
′) and r′ = H3(σ

′,m′).
3. If U 6= r′(H1(IDA)P1 + Ppub), output ⊥, else return m′ as the plaintext.

3.2 Security of SK-IBE

Now we evaluate the security of SK-IBE. We prove that the security of SK-IBE
can reduce to the hardness of the k-BDHI problem. The reduction is similar to
the proof of BF-IBE [4]. However, we will take into account the error in Lemma
4.6 of [4] corrected by Galindo [18].

Theorem 8 SK-IBE is secure against IND-ID-CCA adversaries provided that
Hi(1 ≤ i ≤ 4) are random oracles and the k-BDHI assumption is sound. Specifi-
cally, suppose there exists an IND-ID-CCA adversary A against SK-IBE that
has advantage ǫ(k) and running time t(k). Suppose also that during the at-
tack A makes at most qD decryption queries and at most qi queries on Hi for
1 ≤ i ≤ 4 respectively (note that Hi can be queried directly by A or indirectly by
an extraction query, a decryption query or the challenge operation). Then there
exists an algorithm B to solve the q1-BDHI problem with advantage AdvB(k) and
running time tB(k) where

AdvB(k) ≥ 1
q2(q3+q4)

[( ǫ(k)
q1

+ 1)(1 − 2
q )qD − 1]

tB(k) ≤ t(k) + O((q3 + q4) · (n + log q) + qD · T1 + q2
1 · T2 + qD · χ)

where χ is the time of computing pairing, Ti is the time of a multiplication
operation in Gi, and q is the order of G1 and n is the length of σ. We assume
the computation complexity of ψ is trivial.

Proof: The theorem follows immediately by combining Lemma 1, 2 and 3. The
reduction with three steps can be sketched as follow. First we prove that if there
exists an IND-ID-CCA adversary, who is able to break SK-IBE by launching the
adaptive chosen ciphertext attacks as defined in the security model of Section 2.2,

then there exists an IND-CCA adversary to break the BasicPubhy scheme
defined in Lemma 1 with the adaptive chosen ciphertext attacks. Second, if such
IND-CCA adversary exists, then we show (in Lemma 2) that there must be
an IND-CPA adversary that breaks the corresponding BasicPub scheme by
merely launching the chosen plaintext attacks. Finally, in Lemma 3 we prove
that if the BasicPub scheme is not secure against an IND-CPA adversary, then
the corresponding k-BDHI assumption is flawed. ¤



Lemma 1 Suppose that H1 is a random oracle and that there exists an IND-ID-
CCA adversary A against SK-IBE with advantage ǫ(k) which makes at most q1

distinct queries to H1 (note that H1 can be queried directly by A or indirectly by
an extraction query, a decryption query or the challenge operation). Then there
exists an IND-CCA adversary B which runs in time O(time(A) + qD · (χ + T1))

against the following BasicPubhy scheme with advantage at least ǫ(k)/q1 where
χ is the time of computing pairing and T1 is the time of a multiplication operation
in G1.

BasicPubhy is specified by three algorithms: keygen, encrypt and decrypt.
keygen: Given a security parameter k, the parameter generator follows the steps.

1. Identical with step 1 in Setup algorithm of SK-IBE.
2. Pick a random s ∈ Z

∗
q and compute Ppub = sP1. Randomly choose different

elements hi ∈ Z
∗
q and compute 1

hi+sP2 for 0 ≤ i < q1.
3. Pick three cryptographic hash functions: H2 : GT → {0, 1}n, H3 : {0, 1}n ×

{0, 1}n → Z
∗
q and H4 : {0, 1}n → {0, 1}n for some integer n > 0.

The message space is M = {0, 1}n. The ciphertext space is C = G
∗
1×{0, 1}n×

{0, 1}n. The public key is Kpub = (q, G1, G2, GT , ψ, ê, n, P1, P2, Ppub, h0,
(h1,

1
h1+sP2), . . ., (hi,

1
hi+sP2), . . ., (hq1−1,

1
hq1−1+sP2), H2, H3, H4) and the

private key is dA = 1
h0+sP2. Note that ê(h0P1 + Ppub, dA) = ê(P1, P2).

encrypt: Given a plaintext m ∈ M and the public key Kpub,

1. Pick a random σ ∈ {0, 1}n and compute r = H3(σ,m), and gr = ê(P1, P2)
r.

2. Set the ciphertext to C = (r(h0P1 + Ppub), σ ⊕ H2(g
r),m ⊕ H4(σ)).

decrypt: Given a ciphertext C = (U, V,W ), Kpub, and the private key dA, follow
the steps.

1. Compute g′ = ê(U, dA) and σ′ = V ⊕ H2(g
′),

2. Compute m′ = W ⊕ H4(σ
′) and r′ = H3(σ

′,m′),
3. If U 6= r′(h0P1 +Ppub), reject the ciphertext, else return m′ as the plaintext.

Proof: We construct an IND-CCA adversary B that uses A to gain advan-

tage against BasicPubhy. The game between a challenger C and the adver-
sary B starts with the challenger first generating a random public key Kpub

by running algorithm keygen of BasicPubhy (log q1 is part of the security

parameter of BasicPubhy). The result is Kpub = (q, G1, G2, GT , ψ, ê, n, P1,
P2, Ppub, h0,(h1,

1
h1+sP2), . . . , (hi,

1
hi+sP2), . . . , (hq1−1,

1
hq1−1+sP2),H2,H3,H4),

where Ppub = sP1 with s ∈ Z
∗
q , and the private key dA = 1

h0+sP2. The challenger
passes Kpub to adversary B . Adversary B mounts an IND-CCA attack on the

BasicPubhy scheme with the public key Kpub using the help of A as follows.
B chooses an index I with 1 ≤ I ≤ q1 and simulates the algorithm Setup

of SK-IBE for A by supplying A with the SK-IBE master public key Mpk =
(q, G1, G2, GT , ψ, ê, n, P1, P2, Ppub, H1,H2, H3, H4) where H1 is a random oracle
controlled by B . The master secret key Msk for this cryptosystem is s, although



B does not know this value. Adversary A can make queries on H1 at any time.
These queries are handled by the following algorithm H1-query.
H1-query (IDi): B maintains a list of tuples (IDi, hi, di) indexed by IDi as
explained below. We refer to this list as H list

1 . The list is initially empty. When
A queries the oracle H1 at a point IDi, B responds as follows:

1. If IDi already appears on the H list
1 in a tuple (IDi, hi, di), then B responds

with H1(IDi) = hi.
2. Otherwise, if the query is on the I-th distinct ID and ⊥ is not used as di

(this could be inserted by the challenge operation specified later) by any
existing tuple, then B stores (IDI , h0,⊥) into the tuple list and responds
with H1(IDI) = h0.

3. Otherwise, B selects a random integer hi(i > 0) from Kpub which has not
been chosen by B and stores (IDi, hi,

1
hi+sP2) into the tuple list. B responds

with H1(IDi) = hi.

Phase 1: A launches Phase 1 of its attack, by making a series of requests, each
of which is either an extraction or a decryption query. B replies to these requests
as follows.
Extraction query (IDi): B first looks through list H list

1 . If IDi is not on the
list, then B queries H1(IDi). B then checks the value di: if di 6= ⊥, B responds
with di; otherwise, B aborts the game (Event 1).
Decryption query (IDi, Ci): B first looks through list H list

1 . If IDi is not on
the list, then B queries H1(IDi). If di = ⊥, then B sends the decryption query
Ci = (U, V,W ) to C and simply relays the plaintext got from C to A directly.
Otherwise, B decrypts the ciphertext by first computing g′ = ê(U, di), then
querying ζ = H2(g

′) (H2 is controlled by C ), and computing σ′ = V ⊕ ζ,m′ =
W ⊕H4(σ

′) and r′ = H3(σ
′,m′). Finally B checks the validity of Ci as step 3 of

algorithm decrypt and returns m′, if Ci is valid, otherwise the failure symbol ⊥.
Challenge: At some point, A decides to end Phase 1 and picks IDch and two
messages (m0,m1) of equal length on which it wants to be challenged. Based on
the queries on H1 so far, B responds differently.

1. If the I-th query on H1 has been issued,
– if IDI = IDch (and so dch = ⊥), B continues;
– otherwise, B aborts the game (Event 2).

2. Otherwise,
– if the tuple corresponding to IDch is on list H list

1 (and so dch 6= ⊥), then
B aborts the game (Event 3);

– otherwise, B inserts the tuple (IDch, h0,⊥) into the list and continues
(this operation is treated as an H1 query in the simulation).

Note that after this point, it must have H1(IDch) = h0 and dch = ⊥.
B passes C the pair (m0,m1) as the messages on which it wishes to be challenged.
C randomly chooses b ∈ {0, 1}, encrypts mb and responds with the ciphertext
Cch = (U ′, V ′,W ′). Then B forwards Cch to A.
Phase 2: B continues to respond to requests in the same way as it did in Phase
1. Note that following the rules, the adversary will not issue the extraction query



on IDch (for which dch = ⊥) and the decryption query on (IDch, Cch). And so,
B always can answer other queries without aborting the game.
Guess: A makes a guess b′ for b. B outputs b′ as its own guess.

Claim: If the algorithm B does not abort during the simulation then algorithm
A ’s view is identical to its view in the real attack.

Proof: B ’s responses to H1 queries are uniformly and independently distributed
in Z

∗
q as in the real attack because of the behavior of algorithm keygen of the

BasicPubhy scheme. All responses to A’s requests are valid, if B does not abort.
Furthermore, the challenge ciphertext Cch = (U ′, V ′,W ′) is a valid encryption
in SK-IBE for mb where b ∈ {0, 1} is random.

The remaining problem is to calculate the probability that B does not abort
during simulation. Algorithm B could abort when one of the following events
happens: (1) Event 1, denoted as H1: A queried a private key which is rep-
resented by ⊥ at some point. Recall that only one private key is represented
by ⊥ in the whole simulation which could be inserted in an H1 query (as the
private key of IDI) in Phase 1 or in the challenge phase (as the private key of
IDch). Because of the rules of the game, the adversary will not query the private
key of IDch. Hence, this event only happens when the adversary extracted the
private key of IDI 6= IDch, meanwhile dI = ⊥, i.e., IDI 6= IDch and H1(IDI)
was queried in Phase 1; (2) Event 2, denoted as H2: the adversary wants to be
challenged on an identity IDch 6= IDI and H1(IDI) was queried in Phase 1; (3)
Event 3, denoted as H3: the adversary wants to be challenged on an identity
IDch 6= IDI and H1(IDI) was queried in Phase 2.

Notice that all the three events imply Event 4, denoted by H4, that the
adversary did not choose IDI as the challenge identity. Hence we have

Pr[B does not abort] = Pr[¬H1 ∧ ¬H2 ∧ ¬H3] ≥ Pr[¬H4] ≥ 1/q1.

So, the lemma follows. ¤

Remark 3 If an adversary only engages in the selective-identity adaptive chosen
ciphertext attack game, the reduction could be tighter (B has the advantage ǫ(k)
as A), because B now knows exactly which identity should be hashed to h0, so the
game will never abort. Note that, in such game, B can pass the SK-IBE system
parameters (the master public key) to A first, then A commits an identity IDch

before issuing any oracle query. Hence the reduction could still be tightened to
a stronger formulation than the one in [8] (see the separation in [19]).

Lemma 2 Let H3,H4 be random oracles. Let A be an IND-CCA adversary

against BasicPubhy defined in Lemma 1 with advantage ǫ(k). Suppose A has
running time t(k), makes at most qD decryption queries, and makes q3 and
q4 queries to H3 and H4 respectively. Then there exists an IND-CPA adversary
B against the following BasicPub scheme, which is specified by three algorithms:
keygen, encrypt and decrypt.
keygen: Given a security parameter k, the parameter generator follows the steps.



1. Identical with step 1 in algorithm keygen of BasicPubhy.

2. Identical with step 2 in algorithm keygen of BasicPubhy.
3. Pick a cryptographic hash function H2 : GT → {0, 1}n for some integer

n > 0.

The message space is M = {0, 1}n. The ciphertext space is C = G
∗
1 ×{0, 1}n.

The public key is Kpub = (q, G1, G2, GT , ψ, ê, n, P1, P2, Ppub, h0, (h1,
1

h1+sP2),

. . ., (hi,
1

hi+sP2), . . ., (hq1−1,
1

hq1−1+sP2), H2) and the private key is dA =
1

h0+sP2. Again it has ê(h0P1 + Ppub, dA) = ê(P1, P2).
encrypt: Given a plaintext m ∈ M and the public key Kpub, choose a random
r ∈ Z

∗
q and compute ciphertext C = (r(h0P1 + Ppub),m ⊕ H2(g

r)) where gr =
ê(P1, P2)

r.
decrypt: Given a ciphertext C = (U, V ), Kpub, and the private key dA, compute
g′ = ê(U, dA) and plaintext m = V ⊕ H2(g

′).

with advantage ǫ1(k) and running time t1(k) where

ǫ1(k) ≥ 1
2(q3+q4)

[(ǫ(k) + 1)(1 − 2
q )qD − 1]

t1(k) ≤ t(k) + O((q3 + q4) · (n + log q)).

Proof: This lemma follows from the result of the Fujisaki-Okamoto transforma-
tion [16] and BF-IBE has a similar result (Theorem 4.5 [4]). We note that it is
assumed that n and log q are of similar size in [4]. ¤

Lemma 3 Let H2 be a random oracle. Suppose there exists an IND-CPA ad-
versary A against the BasicPub defined in Lemma 2 which has advantage
ǫ(k) and queries H2 at most q2 times. Then there exists an algorithm B to
solve the q1-BDHI problem with advantage at least 2ǫ(k)/q2 and running time
O(time(A) + q2

1 · T2) where T2 is the time of a multiplication operation in G2.

Proof: Algorithm B is given as input a random q1-BDHI instance (q, G1, G2, GT ,
ψ, ê, P1, P2, xP2, x

2P2, . . . x
q1P2) where x is a random element from Z

∗
q . Algo-

rithm B finds ê(P1, P2)
1/x by interacting with A as follows:

Algorithm B first simulates algorithm keygen of BasicPub, which was de-
fined in Lemma 2, to create the public key as below. A similar approach is used
in [1, 2].

1. Randomly choose different h0, . . . , hq1−1 ∈ Z
∗
q and let f(z) be the polynomial

f(z) =
∏q1−1

i=1 (z+hi). Reformulate f to get f(z) =
∑q1−1

i=0 ciz
i. The constant

term c0 is non-zero because hi 6= 0 and ci are computable from hi.
2. Compute Q2 =

∑q1−1
i=0 cix

iP2 = f(x)P2 and xQ2 =
∑q1−1

i=0 cix
i+1P2 =

xf(x)P2.
3. Check that Q2 ∈ G

∗
2. If Q2 = 1G2

, then there must exist an hi = −x
which can be easily identified, and so, B solves the q1-BDHI problem directly.
Otherwise, B computes Q1 = ψ(Q2) and continues.

4. Compute fi(z) = f(z)/(z + hi) =
∑q1−2

j=0 djz
j and 1

x+hi
Q2 = fi(x)P2 =

∑q1−2
j=0 djx

jP2 for 1 ≤ i < q1.



5. Set T ′ =
∑q1−1

i=1 cix
i−1P2 and compute T0 = ê(ψ(T ′), Q2 + c0P2).

6. Now, B passes A the public key Kpub = (q, G1, G2, GT , ψ, ê, n,Q1, Q2, xQ1−
h0Q1, h0, (h1+h0,

1
h1+xQ2), . . . , (hi+h0,

1
hi+xQ2), . . . , (hq1−1+h0,

1
hq1−1+xQ2),

H2) (i.e., setting Ppub = xQ1 − h0Q1), and the private key is dA = 1
xQ2

which B does not know. H2 is a random oracle controlled by B . Note
that ê((hi + h0)Q1 + Ppub,

1
hi+xQ2) = ê(Q1, Q2) for i = 1, . . . , q1 − 1 and

ê(h0Q1 + Ppub, dA) = ê(Q1, Q2). Hence Kpub is a valid public key of Ba-
sicPub.

Now B starts to respond to queries as follows.

H2-query (Xi): At any time algorithm A can issue queries to the random oracle
H2. To respond to these queries B maintains a list of tuples called H list

2 . Each
entry in the list is a tuple of the form (Xi, ζi) indexed by Xi. To respond to a
query on Xi, B does the following operations:

1. If on the list there is a tuple indexed by Xi, then B responds with ζi.

2. Otherwise, B randomly chooses a string ζi ∈ {0, 1}n and inserts a new tuple
(Xi, ζi) to the list. It responds to A with ζi.

Challenge: Algorithm A outputs two messages (m0,m1) of equal length on
which it wants to be challenged. B chooses a random string R ∈ {0, 1}n and a
random element r ∈ Z

∗
q , and defines Cch = (U, V ) = (rQ1, R). B gives Cch as

the challenge to A . Observe that the decryption of Cch is

V ⊕ H2(ê(U, dA)) = R ⊕ H2(ê(rQ1,
1

x
Q2)).

Guess: After algorithm A outputs its guess, B picks a random tuple (Xi, ζi)

from H list
2 . B first computes T = X

1/r
i , and then returns (T/T0)

1/c2
0 . Note that

ê(P1, P2)
1/x = (T/T0)

1/c2
0 if T = ê(Q1, Q2)

1/x.

Let H be the event that algorithm A issues a query for H2(ê(rQ1,
1
xQ2)) at

some point during the simulation above. Using the same methods in [4], we can
prove the following two claims:

Claim 1: Pr[H] in the simulation above is equal to Pr[H] in the real attack.

Claim 2: In the real attack we have Pr[H] ≥ 2ǫ(k).

Following from the above two claims, we have that B produces the correct
answer with probability at least 2ǫ(k)/q2. ¤

Remark 4 In the proof, B’s simulation of algorithm keygen of BasicPub is
similar to the preparation step in Theorem 5.1 [1] (both follow the method
in [27]. Note that in [1] ψ is an identity map, so Q = Q1 = Q2). However,
the calculation of T0 in [1] is incorrect, and should be computed as T0 =
∏q−1

i=0

∏q−2
j=0 ê(g(αi), g(αj

)cicj+1 ·
∏q−2

j=0 ê(g, g(αj))c0cj+1 .

This completes the proof of Theorem 8.



4 Possible Improvements of SK-IBE

SK-IBE can be improved both on computation performance and security reduc-
tion. The only two known bilinear pairing instances so far are the Weil pairing
and Tate pairing on elliptic curves (and hyperelliptic curves) [34]. When imple-
menting these pairings, some special structures of these pairings can be exploited
to improve the performance. As noticed by Scott and Barreto [32], the Tate pair-
ing can be compressed when the curve has the characteristic 3 or greater than 3.
The compressing technique not only can reduce the size of pairing, but also can
speed up the computation of pairing and the exponentiation in GT . Pointed by
Galindo [18], an improved Fujisaki-Okamoto’s transformation [17] has a tighter
security reduction. Using the trick played in [24], the reduction can be further
tightened by including the point rQA in H2 (this also removes the potential
ambiguity introduced by the compressed pairing). So, combined with these two
improvements, a faster scheme (SK-IBE2) with better security reduction can be
specified as follow.

Setup. Identical with SK-IBE, except that H4 is not required and H2 : G1×F →
{0, 1}2n, where F depends on the used compressed pairing (see [32] for details).

Extract. Identical with SK-IBE.

Encrypt. Given a plaintext m ∈ M({0, 1}n), the identity IDA of entity A and
the master public key Mpk, the following steps are performed.

1. Pick a random σ ∈ {0, 1}n and compute r = H3(σ,m).
2. Compute QA = H1(IDA)P1 + Ppub, ϕ(gr) = ϕ(ê(P1, P2)

r), where ϕ is the
pairing compressing algorithm as specified in [32]. Note that ϕ and ê can
be computed by a single algorithm, so to improve the computation perfor-
mance [32].

3. Set the ciphertext to C = (rQA, (m‖σ) ⊕ H2(rQA, ϕ(gr))).

Decrypt. Given a ciphertext (U, V ) ∈ C, the identity IDA, the private key dA

and Mpk, follow the steps:

1. Compute ϕ(g′) = ϕ(ê(U, dA)) and m′‖σ′ = V ⊕ H2(U,ϕ(g′)).
2. Compute r′ = H3(σ

′,m′). If U 6= r′(H1(IDA)P1 + Ppub), output ⊥, else
return m′ as the plaintext.

Using the similar approach employed in the proof of Theorem 8 and the result
of Theorem 5.4 in [17], we can reduce the security of SK-IBE2 to the k-BDHI
assumption. We leave the details to the readers.

5 Comparison between SK-IBE and BF-IBE

From the reduction described in Section 3.2, we have proved that SK-IBE is a
secure IBE scheme based on the k-BDHI problem. The complexity analysis of
k-DHI, k-sDH and k-BDHI in [1, 2, 40] has built confidence on these assumptions.



The security of BF-IBE is based on the BDH problem [4]. As shown in
Theorem 6, BDH and 1-BDHI are polynomial time equivalent. It is obvious
that the k-BDHI problem (when k > 1) is easier that the 1-BDHI problem,
and therefore, is easier than the BDH problem as well. This certainly shows the
disadvantage of current reduction for SK-IBE as compared with one for BF-
IBE [4, 18]. We leave it an open problem to find a tight reduction for SK-IBE
based on a harder problem than k-BDHI.

However, the advantage of SK-IBE is that it has better performance than BF-
IBE, particularly in encryption. We show a comparison of their performances in
Table 1. If taking a closer look between SK-IBE and BF-IBE, SK-IBE is faster

pairings multiplications exponentiations hashes
Scheme Encrypt Decrypt Encrypt Decrypt Encrypt Decrypt Encrypt Decrypt

SK-IBE 0 1 2∗1 1 1 0 4 3
BF-IBE 1 1 1 1 1 0 4∗2 3

∗1 An extra multiplication required than BF-IBE is used to map an identifier to an
element in G1.

∗2 BF-IBE requires the maptopoint operation to map an identifier to an element in
G1 (or G2) which is slower than the hash function used in SK-IBE which maps an
identifier to an element in Z

∗

q .

Table 1. Performance comparison between SK-IBE and BF-IBE

than BF-IBE in two aspects. First, in the Encrypt algorithm of SK-IBE, no
pairing computation is required because ê(P1, P2) can be pre-computed. Second,
in operation of mapping an identity to an element in G1 or G2, the maptopoint
algorithm used by BF-IBE is not required. Instead of that, SK-IBE makes use
of an ordinary hash-function.

6 Conclusion

In this paper, an identity-based encryption scheme, SK-IBE, is investigated.
SK-IBE provides an attractive performance. We prove that SK-IBE is secure
against adaptive chosen ciphertext attacks in the random oracle model based on
the k-BDHI assumption.
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Appendix

A Proof of Theorem 2

This proof is similar to the proof of Theorem 3.5 [27].

Proof: If there is a polynomial time algorithm A to solve the (k-1)-DHI prob-
lem, we construct a polynomial time algorithm B to solve the k-CAA1 problem.
Given an instance of k-CAA1 problem (Q, yQ, h0, (h1,

1
h1+y Q), . . . , (hk, 1

hk+y Q)),

B works as follow to compute 1
y+h0

Q.

1. Set x = y + h0 which B does not know, and P = 1
(y+h1)···(y+hk)Q.

2. For j = 0, . . . , (k − 1), B computes xjP = (y+h0)
j

(y+h1)···(y+hk)Q =
∑k

i=1
cij

y+hi
Q

where cij ∈ Zq are computable from hi.
3. Pass A the (k-1)-DHI challenge, (P, xP, · · · , xk−1P ), and get T = 1

xP .

4. Set f(z) =
∏k

i=1(z + hi − h0) =
∑k

i=0 diz
i where di are computable from hi

and d0 6= 0 because hi are different.

5. Note that Q = f(x)P =
∑k

i=0 dix
iP , so compute 1

y+h0
Q = 1

xQ = f(x)
x P=

∑k
i=0 dix

i−1P = d0
1
xP +

∑k
i=1 dix

i−1P= d0T +
∑k

i=1 dix
i−1P .

If there is a polynomial time algorithm A to solve the (k-1)-CAA1 prob-
lem, we construct a polynomial time algorithm B to solve the k-DHI problem.
Given an instance of k-DHI problem (P, xP, x2P, . . . , xkP ), B works as follow to
compute 1

xP .

1. Randomly choose different h0, . . . , hk−1 ∈ Z
∗
q and set y = x − h0 which

B does not know.
2. Let f(z) be the polynomial f(z) =

∏k−1
i=1 (z + hi − h0) =

∑k−1
i=0 ciz

i. The
constant term c0 is non-zero because hi are different.

3. Compute Q =
∑k−1

i=0 cix
iP = f(x)P and yQ =

∑k−1
i=0 cix

i+1P − h0Q =
xf(x)P − h0Q.

4. Compute fi(z) = f(z)/(z+hi−h0) =
∑k−2

j=0 djz
j and 1

y+hi
Q = 1

x+hi−h0
f(x)P

= fi(x)P =
∑k−2

j=0 djx
jP for 1 ≤ i ≤ k − 1.

5. Pass the following instance of the (k-1)-CAA problem to A

(Q, yQ, h0, (h1,
1

y + h1
Q), . . . , (hk−1,

1

y + hk−1
Q))

to get the response T = 1
y+h0

Q = 1
xQ.



6. Note that T = f(x)
x P =

∑k−1
i=0 cix

i−1P = c0
1
xP +

∑k−1
i=1 cix

i−1P . So compute
1
xP = c−1

0 (T −
∑k−1

i=1 cix
i−1P ). ¤

B Proof of Theorem 4

This proof is similar to the proof of Theorem 2 above.

Proof: If there exists an algorithm A to solve a random instance of the (k-1)-
sCAA1 problem in polynomial time, we can construct a polynomial time algo-
rithm B to solve the k-sDH problem. Given a random instance of the k-sDH prob-
lem, (P, xP, x2P, . . . , xkP ), B takes the following steps to compute (h, 1

x+hP ).

1. Randomly choose different h1, . . . , hk−1 ∈ Z
∗
q and let f(z) be the polynomial

f(z) =
∏k−1

i=1 (z + hi). Reformulate f to get f(z) =
∑k−1

i=0 ciz
i. The constant

term c0 is non-zero and ci are computable from hi.

2. Compute Q =
∑k−1

i=0 cix
iP = f(x)P and xQ =

∑k−1
i=0 cix

i+1P = xf(x)P .

3. Check that Q ∈ G
∗
1. If Q = 1G1

, then there must be such hi = −x which
can be easily identified, and so, B solves the problem directly. Otherwise,
B continues.

4. Compute fi(z) = f(z)/(z + hi) =
∑k−2

j=0 djz
j and 1

x+hi
Q = fi(x)P =

∑k−2
j=0 djx

jP for 1 ≤ i ≤ k − 1.

5. Pass the following instance of the (k-1)-sCAA1 problem to A .

(Q,xQ, (h1,
1

x + h1
Q), . . . , (hk−1,

1

x + hk−1
Q))

to get (h0,
1

h0+xQ).

6. Note that 1
h0+xf(x) = w0

h0+x +
∑k−1

i=1 wix
i−1 where wi are computable from

hi, and w0 6= 0 because hi are different. Compute 1
x+h0

P = w−1
0 ( 1

x+h0
Q −

∑k−1
i=1 wix

i−1P ). Output (h0,
1

x+h0
P ).

If there is a polynomial time algorithm A to solve the (k-1)-sDH problem, we
construct a polynomial time algorithm B to solve the k-sCAA1 problem. Given
an instance of k-sCAA1 problem (Q, yQ, (h1,

1
h1+y Q), . . . , (hk, 1

hk+y Q)), B works

as follow to compute (h, 1
y+hQ).

1. For j = 0, . . . , (k − 1), B computes yjP = yj

(y+h1)···(y+hk)Q =
∑k

i=1
cij

y+hi
Q

where cij ∈ Zq are computable from hi.

2. Pass A the (k-1)-sDH challenge, (P, yP, · · · , yk−1P ), and get (h0,
1

y+h0
P ).

3. Note that 1
y+h0

P = 1
(y+h0)(y+h1)···(y+hk)Q =

∑k
i=0

ci

y+hi
Q, for ci ∈ Zq are

computable from hi and c0 6= 0 because hi are different. Compute 1
y+h0

Q =

c−1
0 ( 1

y+h0
P −

∑k
i=1

ci

y+hi
Q). Output (h0,

1
y+h0

Q). ¤



C Proof of Theorem 6

Proof: If there is a polynomial time algorithm A to solve the BDH problem, we
construct a polynomial time algorithm B to solve the 1-BDHI problem. Given
an instance of 1-BDHI problem (Q1, Q2, yQ2), B works as follow to compute
ê(Q1, Q2)

1/y.

1. Set x = 1/y, which B does not know.
2. Set P1 = Q1, P2 = yQ2 and xP2 = Q2.
3. Pass A the BDH challenge, (P1, P2, xP2, xP2, P2), and get T = ê(P1, P2)

x2

= ê(Q1, yQ2)
(1/y)2 = ê(Q1, Q2)

1/y.

If there is a polynomial time algorithm A to solve the 1-BDHI problem, we
construct a polynomial time algorithm B to solve the BDH problem. Given an
instance of BDH problem (P1, P2, aP2, bP2, cP2), B works as follow to compute
ê(P1, P2)

abc.

1. (a) Set d = 1/(a + b + c), which B does not know.
(b) Set Q1 = (a + b + c)P1 = ψ((a + b + c)P2), Q2 = (a + b + c)P2 and

dQ2 = P2.
(c) Pass A the 1-BDHI challenge, (Q1, Q2, dQ2), and get T1 = ê(Q1, Q2)

1/d

= ê(P1, P2)
(a+b+c)3 .

2. Follow Item 1 (a) - (c) to get T2 = ê(P1, P2)
a3

, T3 = ê(P1, P2)
b3 , T4 =

ê(P1, P2)
c3

, T5 = ê(P1, P2)
(a+b)3 , T6 = ê(P1, P2)

(a+c)3 , T7 = ê(P1, P2)
(b+c)3 .

3. Compute ê(P1, P2)
abc = (T1·T2·T3·T4

T5·T6·T7
)1/6. ¤

D Proof of Theorem 7

Proof: If there is a polynomial time algorithm A to solve the (k-1)-BDHI prob-
lem, we construct a polynomial time algorithm B to solve the k-BCAA1 prob-
lem. Given an instance of k-BCAA1 problem (Q1, Q2, yQ2, h0, (h1,

1
h1+y Q2), . . . ,

(hk, 1
hk+y Q2)), B works as follow to compute ê(Q1, Q2)

1/(y+h0).

1. Set x = y + h0 which B does not know, and P2 = 1
(y+h1)···(y+hk)Q2.

2. For j = 0, . . . , (k−1), B computes xjP2 = (y+h0)
j

(y+h1)···(y+hk)Q2 =
∑k

i=1
cij

y+hi
Q2

where cij ∈ Zq are computable from hi.
3. Set P1 = ψ(P2).
4. Pass A the (k-1)-BDHI challenge, (P1, P2, xP2, · · · , xk−1P2), and get T =

ê(P1, P2)
1/x.

5. Set f(z) =
∏k

i=1(z + hi − h0) =
∑k

i=0 diz
i where di is computable from hi

and d0 6= 0 because hi are different.

6. Note that Q2 = f(x)P2 =
∑k

i=0 dix
iP2 and 1

xQ2 = f(x)
x P2 =

∑k
i=0 dix

i−1P2.

7. Compute ê(Q1, Q2)
1/(y+h0) = ê( 1

xψ(Q2), Q2) = ê(
∑k

i=0 dix
i−1ψ(P2), Q2)=

T d2
0 · ê(d0P1,

∑k
i=1 dix

i−1P2) · ê(
∑k

i=1 diψ(xi−1P2), Q2).



If there is a polynomial time algorithm A to solve the (k-1)-BCAA1 problem,
we construct a polynomial time algorithm B to solve the k-BDHI problem. Given
an instance of k-BDHI problem (P1, P2, xP2, x

2P2, . . . , x
kP2), B works as follow

to compute ê(P1, P2)
1/x.

1. Randomly choose different h0, . . . , hk−1 ∈ Z
∗
q and set y = x − h0 which

B does not know.
2. Let f(z) be the polynomial f(z) =

∏k−1
i=1 (z + hi − h0) =

∑k−1
i=0 ciz

i. The
constant term c0 is non-zero because hi are different and ci are computable
from hi.

3. Compute Q2 =
∑k−1

i=0 cix
iP2 = f(x)P2 and yQ2 =

∑k−1
i=0 cix

i+1P2 −h0Q2 =
xf(x)P2 − h0Q2.

4. Compute fi(z) = f(z)/(z+hi−h0) =
∑k−2

j=0 djz
j and 1

y+hi
Q2 = 1

x+hi−h0
f(x)P2

= fi(x)P2 =
∑k−2

j=0 djx
jP2 for 1 ≤ i ≤ k − 1.

5. Set Q1 = ψ(Q2).
6. Pass the following instance of the (k-1)-BCAA1 problem to A

(Q1, Q2, yQ2, h0, (h1,
1

y + h1
Q2), . . . , (hk−1,

1

y + hk−1
Q2))

to get T = ê(Q1, Q2)
1/(y+h0) = ê(Q1, Q2)

1/x = ê(P1, P2)
f2(x)/x.

7. Note that 1
xQ2 = f(x)

x P2 =
∑k−1

i=0 cix
i−1P2 = c0

1
xP2 +

∑k−1
i=1 cix

i−1P2.

Set T ′ =
∑k−1

i=1 cix
i−1P2 = f(x)−c0

x P2. Then, ê( 1
xQ1, Q2) = ê(P1, P2)

c2
0/x ·

ê(ψ(T ′), Q2 + c0P2). Compute ê(P1, P2)
1/x = (T/ê(ψ(T ′), Q2 + c0P2))

1/c2
0 .
¤


