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Abstract

The anonymity provided by the threshold ring signature scheme proposed by Bres-
son et al (Crypto’02) is perfect. However, its complexity is prohibitively large even for
relatively small sets of signers. We propose use of threshold schemes based on cover-
ing designs that are efficient for large groups of signers. The cost we pay is non-perfect
anonymity.
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1 Introduction

The notion of a ring signature was first formalized by Rivest et al [9] in order to provide means
for anonymous signing that does not require group managers, setup procedures, revocation
procedures and coordination. Any user can select an arbitrary set (i.e., ring) of possible
signers that includes himself, and using his secret key and the public keys of the members of
the ring, he can sign an arbitrary message. Given a message and a ring signature for that
message, the verifiers cannot tell which member of the ring has produced the signature.

Bresson et al [2] extend the notion of a ring signature to a multi-signer threshold setting.
In a threshold ring signature scheme, only the subsets of the ring whose size is above some
threshold value can generate a signature for a given message. The signature is anonymous in
the sense that the verifiers cannot tell which members of the ring are the actual signers.

Our contribution. The complexity of the scheme proposed in [2] is exponential in the
number of actual signers, and the scheme is prohibitively expensive even for relatively small
number of signers. We propose use of threshold ring signature schemes based on covering
designs that are efficient even for large number of actual signers (e.g., the time complexity
can be linear in the number of possible signers). The drawback of the proposed schemes is
that the provided anonymity might not be perfect.

Related work. The concept of a ring signature has been informally discussed simultane-
ously with the appearance of group signatures [3, 4]. Some extensions of this concept can be
found in [7, 10, 11]. Covering designs have been used in the past both in threshold schemes
and to achieve anonymity (e.g., [5, 8]). Some efficient constructions of covering designs can
be found in [6, 8].

∗This work was supported in part by the National Science Foundation under Grant CCR-008588.
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2 Preliminaries

2.1 Ring signature schemes

In this section, we briefly describe the ring signature scheme (RSA version) proposed by
Rivest, Shamir and Tauman (see [9] for a more detailed description).

Ring signatures are used to convince any verifier that the author of the signatures belongs
to some set of possible signers, while hiding the identity of the actual signer. A ring signature
scheme consists of two algorithms:

• ring-sign produces a ring signature σ on a message m, given the public keys v1, . . . , vn

of all the members of the ring and the secret key ss of the s-th member (who is the
actual signer).

• ring-verify accepts a message m and a ring signature σ (which includes the public
keys of all the possible signers), and outputs either true or false.

Ring signature schemes are set-up free. The signer needs only the public keys of the
non-signers. He doesn’t need the knowledge, consent, or assistance of the non-signers. In
order to be secure, the scheme must satisfy the usual soundness and completeness conditions.
However, in addition, a ring signature scheme should be signer-ambiguous. Namely, the
verifier should not be able to determine the identity of the actual signer.

Fig. 1 depicts the ring signature scheme proposed by Rivest et al [9]. The steps of the
ring-sign algorithm in a scheme that allows for a message m to be signed by n ring members
are as follows:

1. Compute a key k for a symmetric encryption scheme Ek by hashing the message k =
h(m).

2. Pick a random glue value v.

3. Pick randomly xi and compute yi = gi(xi); 1 ≤ i ≤ n, i 6= s, where each gi is a trap-door
permutation.

4. Solve the ring equation

Ek(yn ⊕ Ek(yn−1 ⊕ Ek(. . . Ek(y1 ⊕ v)))) = v

for ys.

5. Using the trap-door ss invert gs on ys to obtain the value of xs = g−1
s (ys).

6. Output the ring signature σ as a (2n + 1)-tuple

(v1, . . . , vn; v;x1, . . . , xn).

It is clear that any ring member could have produced a given ring signature σ on a message
m. Therefore, when the verifier receives a message m with a signature σ, the only thing that
he can verify is that someone from the ring signed the message. He computes yi = gi(xi) for
1 ≤ i ≤ n, obtains the key k = h(m), and verifies the ring equation

Ek(yn ⊕ Ek(yn−1 ⊕ Ek(. . . Ek(y1 ⊕ v)))) = v.

If the yi’s satisfy the ring equation, the verifier accepts the ring signature as valid. Otherwise,
the verifier rejects.
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y1 = g1(x1)

y2 = g2(x2)

y3 = g3(x3)

yn = gn(xn)

z = v

Ek
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Figure 1: The ring signature scheme proposed by Rivest et al [9]
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Figure 2: The super-ring composition paradigm when t = 3. πs is a fair partition with respect
to the three signers, and they can solve the ring equations.

2.2 Threshold ring signatures

Threshold ring signatures prove that a certain minimum number of members of a certain
group must have collaborated to produce the signature, while hiding the precise membership
of the subgroup of signers. A threshold ring signature scheme consists of two algorithms:

• T-ring-sign algorithm outputs a (t, n)-ring signature σ on the message m, given a
message m, a ring of n users and their corresponding public keys, and the secret keys
of t members. The number of signers t and the n public keys of the ring members are
part of the signature σ.

• T-ring-verify outputs true or false indicating whether a given signature σ is valid or
not valid for a given message m.

A threshold ring signature is secure if it is unforgeable and anonymous. That is, no group
of less than t members can forge a signature in collaboration with the adversary, and the
verifier cannot determine the identity of the actual signers.

Fig. 2 depicts the basic principle behind the threshold ring signature scheme proposed by
Bresson et al (see [2] for details). The ring of n users is partitioned into t disjoint subsets a
number of times. Each partition is one node in a super-ring and each subset of the partition
is one sub-ring. A group of t users can “close” the super-ring (i.e., produce a (t, n)-ring
signature) if and only if one of the partitions in the super-ring is a fair partition for the group
of t users. That is, there is a partition in the super-ring such that each subset of the partition
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contains at least one actual signer. Bresson et al [2] suggest use of perfect hash functions [1]
to construct the partitions of the super-ring. In this manner, the collection of partitions is an
(n, t)-complete partitioning system meaning there is a fair partition for any subset of t users.
Since any group of t users can produce a signature, the scheme provides perfect anonymity.

2.3 Covering designs

The following definitions will be useful in the next section.

Definition 1 (Set system) A set system is a pair (X,B) of a set X = {a1, a2, . . . , av} and
a multiset B whose elements are subsets (or blocks) of X.

Definition 2 (Covering design) The set system (X,B) is a (v, b, t)-covering design if

1. all blocks in B are b-subsets of X, i.e. ∀B∈B|B| = b, and

2. any t-subset of X is contained in at least one block.

Some efficient constructions of covering designs can be found in [6, 8].

Definition 3 (Complementary set system) The complementary set system of a set sys-
tem (X,B) is the set system (X,Bc), where Bc = {X\Bi|Bi ∈ B}.

3 Threshold ring signatures based on covering designs

Let U = {u1, . . . un} be the set of possible signers, and let Us = {us1
, . . . , ust} be the set of

actual signers. The actual signers construct a collection of rings R so that each ring Ri in
R is an r-subset of U , and it contains at least one actual signer usj

∈ Us. We refer to the
set system (U,R) as the ring set system of the scheme. Whenever the users in Us want to
anonymously leak a secret m, they use a ring signature scheme to generate a ring signature
σi on m for each ring Ri ∈ R. The threshold ring signature σ consists of the computed ring
signatures σ = (σ1, . . . , σ|R|). A simple example is depicted in Fig. 3.

It is clear that the t actual signers can generate a threshold ring signature as described
above since there is at least one actual signer in each ring Ri ∈ R. However, the verifier wants
to be sure that no t−1 users can conspire and forge a signature. The following theorem gives
an answer whether the threshold ring signatures generated as above are unforgeable.

Theorem 1 Suppose that the underlying ring signature scheme is unforgeable. Our threshold
ring signature scheme is unforgeable if and only if the complementary set system of the ring
set system (U,R) is an (n, n − r, t − 1)-covering design.

Proof outline. We assume the the underlying ring signature scheme is unforgeable in the
following sense. The adversary has knowledge of the public keys of the r members of the
ring. However, he does not know the corresponding secret keys. The adversary can query a
signing oracle that given a message and a set of r public keys outputs a ring signature of the
message for the ring specified by the public keys. The scheme is unforgeable if the adversary
cannot produce a ring signature on a message that has not been signed previously.
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- signers

- non-signers

σ1

σn/3

σ2 σ = (σ1, . . . , σn/3)

Figure 3: A threshold ring signature scheme when t = n/3. There are n/3 disjoint rings in
R. Not any t-set of users can sign a message. However, the number of t-sets of users that
can sign messages grows exponentially with n (i.e., 3n/3) and the complexity of the scheme
is linear in the number of users (i.e., θ(n)). Furthermore, note that any of the n users is a
possible signer. If the Bresson et al [2] is used, any t-set can sign messages. However, the
complexity of the scheme is O(2n/3n log n).
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In the case of a threshold ring signature scheme, we assume that the adversary has
knowledge of the public keys of the n users and the secret keys of any t − 1 users. The
adversary can send signing queries to an oracle to get threshold ring signatures. The goal
of the adversary is to produce a threshold ring signature on a message m that was not
previously sent for signing. The scheme is unforgeable if the adversary cannot succeed (with
non-negligible probability).

Suppose that the complementary set system (U,Rc) of the ring set system (U,R) is not
an (n, n− r, t− 1)-covering design. This means that there is a (t− 1)-subset C ∈ U such that
C

⋂
Ri 6= ∅ for all Ri ∈ R. In other words, there is at least one conspirator (member of C)

in each ring of the threshold scheme. Clearly, the t−1 conspirators in C can forge signatures.
Assume now that the complementary set system (U,Rc) of the ring set system (U,R)

is an (n, n − r, t − 1)-covering design, but the threshold scheme is not unforgeable. We will
show how a successful adversary for the threshold ring signature scheme can be converted
into a successful adversary for the underlying ring signature scheme which is in contradiction
with our assumption that the underlying ring signature scheme is unforgeable. The adversary
for the ring signature scheme follows the same procedure as the adversary for the threshold
scheme, and simulates the threshold scheme oracle. We can simulate the signing oracle for
the threshold ring signature scheme using an oracle of a ring signature scheme as follows.
Whenever the threshold scheme adversary sends a signing query, we construct a threshold
ring signature by sending |R| signing queries to a ring signature scheme oracle, combining
the answers and then sending the result back to the threshold scheme adversary. At the end,
the threshold scheme adversary will output a threshold ring signature σf = (σf

1
, . . . , σf

R) of
a message that was not signed previously by the oracle. Suppose that the adversary knows
the secret keys of the users ui1 , . . . , uit−1

. Since (U,Rc) is a (n, n− r, t− 1)-covering, there is
a ring Ri ∈ R such that Ri

⋂
{ui1 , . . . , uit−1

} is empty. In other words, there is no user in Ri

whose secret key is known to the adversary. Therefore, the ring signature σf
i corresponding

the the i-th ring Ri is a forgery for the underlying ring signature scheme. �

We end this section with a concrete construction of a ring set system when the number of
possible signers is n = td, where t is the number of actual signers and d is an integer greater
than one. In this case, the n users can be arranged in a d-cube. Each user ui1,...,id , where
i1, . . . , id ∈ {0, 1, . . . , t − 1}, is a member of exactly d rings of the ring set system:

{uj1,...,jd
|j1 = i1}

{uj1,...,jd
|j2 = i2}

...
{uj1,...,jd

|jd = id}.

The cases d = 2 and d = 3 are depicted in Fig. 4.
It is not hard to verify the following properties of the construction:

• The number of t-sets of users that can produce signature is (t!)d−1, and it grows very
fast both with t and with d.

• Each user can be an actual signer. That is, for each user u, there is a t-set of users that
includes u and can produce a threshold ring signature.

• The complexity of the scheme is O(d · n) = O(n log n).
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Figure 4: d-cube ring set system construction. The cases d = 2 and d = 3.

4 Conclusion

We propose threshold ring signature schemes based on covering designs. The schemes are
efficient even for large groups of signers.
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