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Abstra
t

So far there is no systemati
 attempt to 
onstru
t Boolean fun
tions with maxi-

mum annihilator immunity. In this paper we present a 
onstru
tion keeping in mind

the basi
 theory of annihilator immunity. This 
onstru
tion provides fun
tions with

the maximum possible annihilator immunity and the weight, nonlinearity and alge-

brai
 degree of the fun
tions 
an be properly 
al
ulated under 
ertain 
ases. The

basi
 
onstru
tion is that of symmetri
 Boolean fun
tions and applying linear trans-

formation on the input variables of these fun
tions, one 
an get a large 
lass of

non-symmetri
 fun
tions too. Moreover, we also study several other modi�
ations

on the basi
 symmetri
 fun
tions to identify interesting non symmetri
 fun
tions

with maximum annihilator immunity. In the pro
ess we also present an algorithm to


ompute the Walsh spe
tra of a symmetri
 Boolean fun
tion with O(n

2

) time and

O(n) spa
e 
omplexity.

Keywords: Algebrai
 Atta
k, Algebrai
 Degree, Algebrai
 Immunity, Annihilator, Anni-

hilator Immunity, Balan
edness, Boolean Fun
tions, Krawt
houk Polynomials, Nonlinear-

ity, Symmetri
 Boolean Fun
tions.

1 Introdu
tion

Algebrai
 atta
k (that uses overde�ned systems of multivariate equations to re
over the

se
ret key) has re
eived a lot of attention re
ently [1,2,8,9,11{13,19,23℄ in studying se
urity

of the 
ryptosystems. This adds a new 
ryptographi
 property for designing Boolean

fun
tions to be used as building blo
ks in 
ryptosystems whi
h is known as algebrai


immunity [3{5, 7, 14, 15, 23℄. Later, in Remark 1, we will dis
uss some problem about the

�

We use the term \Annihilator Immunity" instead of \Algebrai
 Immunity" referred in the re
ent

papers [3{5,7, 14, 15℄. Please see Remark 1 for the details of this notational 
hange.
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term \algebrai
 immunity" and use the term \annihilator immunity" instead of the earlier

term.

Given an n-variable Boolean fun
tion f , di�erent 
ases related to low degree multiples

of f have been studied in [12, 23℄. The main obje
tive is to �nd out minimum (or low)

degree annihilators of f and 1 + f , i.e., to �nd out minimum (or low) degree n-variable

nonzero fun
tions g

1

; g

2

su
h that f � g

1

= 0 and (1 + f) � g

2

= 0. To mount the algebrai


atta
k, one needs the low degree linearly independent annihilators [12, 23℄ of f and 1 + f .

Though there are in
reasing interest in 
onstru
tion of Boolean fun
tions with good

annihilator immunity [3{5,7,14,15℄, so far there is only one 
onstru
tion method [15℄ that


an a
hieve the maximum possible annihilator immunity d

n

2

e for an n-variable fun
tion.

The heart of the 
onstru
tion in [15℄ was a fun
tion �

2k

on even (2k) number of variables

with maximum possible annihilator immunity k. The main problem with �

2k

is that no 
lear

intuition has been provided how one 
an land into su
h a 
ompli
ated stru
ture. Further,

the other 
ryptographi
 properties, su
h as weight, nonlinearity or algebrai
 degree of the

fun
tion �

2k

are yet to be answered and only a few experimental results have been provided

in [15℄ for k = 1; : : : ; 8. Also the fun
tions �

2k

are not balan
ed.

In this paper we explain a generi
 
onstru
tion idea of fun
tions with maximum anni-

hilator immunity that 
omes from the basi
 theory. Most importantly, the 
ryptographi


properties of our 
onstru
tions, su
h as nonlinearity, algebrai
 degree et
., are theoreti
ally

proved for 
ertain sub
ases that 
ould not be done for the 
onstru
tion in [15℄. Interest-

ingly, for this sub
ase of our 
onstru
tion with even n, the weight and nonlinearity (both

2

n�1

�

�

n�1

n

2

�

, we provide exa
t proofs) mat
hes with the experimental data provided on �

2k

in [15℄ (no proof). However our fun
tions (in the sub
ase) are not linear transformation of

�

2k

as the algebrai
 degree of our 
onstru
tion (2

blog

2

n


) is di�erent from the experimental

results available in [15℄.

We also provide a large 
lass of balan
ed Boolean fun
tions with maximum possible

annihilator immunity having nonlinearity � 2

n�1

�

�

n

n

2

�

. Under experimental set up, with

a simple heuristi
, we show that a
tually one 
an a
hieve mu
h better nonlinearity than

this lower bound (in fa
t very 
lose to 2

n�1

�

�

n�1

n

2

�

). For odd n our 
onstru
tion provides

balan
ed fun
tions dire
tly with nonlinearity 2

n�1

�

�

n�1

n�1

2

�

and algebrai
 degree (2

blog

2

n


).

As our basi
 
onstru
tion starts from symmetri
 Boolean fun
tions and the Walsh

spe
tra of Boolean fun
tions are related to Krawt
houk Polynomials, we need to use the

properties of Krawt
houk Polynomials extensively. In the pro
ess we identify an interesting

inequality as explained in Lemma 5. Further, we present an algorithm for 
al
ulating the

Walsh spe
tra of symmetri
 Boolean fun
tions. This requires O(n

2

) time and O(n) spa
e


omplexity for a symmetri
 Boolean fun
tion on n variables. To the best of our knowledge,

this algorithm is novel and it is not easy to improve it further. The algorithm does not

only use the dire
t relationship between Walsh spe
tra of symmetri
 Boolean fun
tion

and Krawt
houk polynomial, but we need to integrate di�erent properties of Krawt
houk

polynomial to get the optimized algorithm.

It is well known that the annihilator immunity (also algebrai
 degree and nonlinearity)

of a Boolean fun
tion is invariant under linear transformation on the input variables. Thus
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one 
an easily apply linear transformation to get a wider 
lass of fun
tions (whi
h are not

symmetri
) from our 
onstru
tion a
hieving the maximum possible annihilator immunity

(with same algebrai
 degree and nonlinearity).

Note that there is mu
h s
epti
ism towards using symmetri
 Boolean fun
tions in 
ryp-

tosystems. Moreover, the other 
ryptographi
 properties of the Boolean fun
tions (whether

symmetri
 or not) that we 
onsider here are not very good (these fun
tions may be 
omposed

with other fun
tions with di�erent 
ryptographi
 properties to get a se
ondary 
onstru
tion

and those fun
tions may be used in a 
ryptosystem). Thus, in no way, we are proposing

these fun
tions for dire
t use in 
ryptosystems. The motivation of this paper is systemati


theoreti
al study of Boolean fun
tions with maximum possible annihilator immunity (see

also Remark 1).

The organization of the paper is as follows. In the following se
tion we present the

basi
 theory behind the 
onstru
tion of Boolean fun
tions with maximum possible annihi-

lator immunity and present a spe
i�
 
onstru
tion. In Se
tion 3, we 
onsider symmetri


fun
tions with maximum possible annihilator immunity and 
al
ulate the algebrai
 degree

and nonlinearity of the fun
tions. Some extensions and 
omparison of the parameters with

a very re
ent 
onstru
tion method [15℄ is presented in Se
tion 4. In Se
tion 5, we dis
uss

the algorithm for 
al
ulating Walsh spe
tra of a symmetri
 Boolean fun
tion. Se
tion 6


on
ludes the paper.

2 Constru
tion using the Basi
 Theory

Let us denote the set of n-variable Boolean fun
tions by B

n

. The support of a Boolean

fun
tion f 2 B

n

is de�ned as supp(f) = f(x

1

; : : : ; x

n

)jf(x

1

; : : : ; x

n

) = 1g. The weight of a

fun
tion f 2 B

n

is wt(f) = jsupp(f)j. A fun
tion f 2 B

n

is balan
ed if wt(f) = 2

n�1

.

Any f 2 B

n


an be uniquely represented as a multivariate polynomial over GF (2),


alled the algebrai
 normal form (ANF), as

f(x

1

; : : : ; x

n

) = a

0

+

X

1�i�n

a

i

x

i

+

X

1�i<j�n

a

i;j

x

i

x

j

+ : : :+ a

1;2;:::;n

x

1

x

2

: : : x

n

;

where the 
oeÆ
ients a

0

; a

i;j

; : : : ; a

1;2;:::;n

2 f0; 1g. The algebrai
 degree, deg(f), is the

number of variables in the highest order term with non zero 
oeÆ
ient. A Boolean fun
tion

is aÆne if there exists no term of degree > 1 in the ANF and the set of all aÆne fun
tions

is denoted by A

n

. An aÆne fun
tion with 
onstant term equal to zero is 
alled a linear

fun
tion.

A Boolean fun
tion should be of high algebrai
 degree to be 
ryptographi
ally se-


ure [17℄. Further, to resist algebrai
 atta
k, the fun
tion should not have a low degree

multiple [12,23℄. It is shown [12℄ that given any n-variable Boolean fun
tion f , it is always

possible to get a Boolean fun
tion g with degree at most d

n

2

e su
h that f � g is of degree

at most d

n

2

e. Here the fun
tions are 
onsidered to be multivariate polynomials over GF (2)

and f � g is the polynomial multipli
ation over GF (2). Thus while 
hoosing an f , the


ryptosystem designer should be 
areful that it should not happen that degree of f � g
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falls mu
h below d

n

2

e. Towards de�ning annihilator immunity [12,14,15,23℄, it is now 
lear

that one needs to 
onsider the annihilators of both f; 1 + f . In that line we present the

following de�nition.

De�nition 1

1. Given f 2 B

n

, a nonzero fun
tion g 2 B

n

is 
alled an annihilator of f if f � g = 0.

By AN(f) we mean the set of annihilators of f .

2. Given f 2 B

n

, the annihilator immunity of f , denoted by AI

n

(f) = deg(g), where

g 2 B

n

is the minimum degree nonzero fun
tion su
h that either f � g = 0 or (1 +

f) � g = 0.

It is known [12,23℄ that for f 2 B

n

, AI

n

(f) � d

n

2

e and in this paper we present 
onstru
-

tions a
hieving the maximum value.

Remark 1 At this point we like to dis
uss on the term \algebrai
 immunity" of a Boolean

fun
tion. Re
ently there are many works in the area of algebrai
 atta
ks and some of the

initial and important papers are [11{13℄. It is now 
lear that a Boolean fun
tion or its


omplement, used in a 
ryptosystem, should not have a low degree annihilator. However,

the algebrai
 normal form (ANF) of the annihilators are also important. It may very well

happen that an annihilator with higher degree may have a few terms and on the other hand

an annihilator with lower degree may have many more terms in the ANF and in 
ertain


ases, it may be better to use the high degree annihilator with fewer terms than the low

degree annihilator with more terms for the algebrai
 atta
k. Thus in
rease in the degree of

annihilator (of the Boolean fun
tion) may not be the only measure in terms of resistan
e

of a 
ryptosystem (that uses the Boolean fun
tion) against algebrai
 atta
k. Based on the

existing resear
h so far, it is diÆ
ult to formalize or quantify the measure of resistan
e of

a Boolean fun
tion used in a 
ryptosystem against algebrai
 atta
k. It 
learly depends on

how the Boolean fun
tion is used in the 
onstru
tion of 
ryptosystem and how the algebrai


atta
k is designed against the 
omplete s
heme. These arguments go against using the term

\algebrai
 immunity".

On the other hand, if one just 
on
entrates on a Boolean fun
tion, then it is meaningful

to 
onsider the annihilators of f; 1 + f to study its resistan
e against algebrai
 atta
k and

one would always like to get a Boolean fun
tion f , su
h that both f and 1 + f do not have

any annihilator with degree < d

n

2

e. Further, if one 
onsiders the algebrai
 degree of an n-

variable Boolean fun
tion, then it may very well happen that the fun
tion f(x

1

; x

2

; : : : ; x

n

)

is of very good algebrai
 degree, but if one 
onditions one variable, say f(x

1

= 0; x

2

; : : : ; x

n

),

the degree falls drasti
ally. However, this is not true in terms of algebrai
 immunity. It


an be 
he
ked that if f has algebrai
 immunity t, then after 
onditioning any k variables,

the algebrai
 immunity of the subfun
tion on n � k variables will be � t � k. This is


learly a stronger property than the algebrai
 degree of a Boolean fun
tion. Based on these

arguments and as the term has already been appeared in many papers [3{5, 7, 14, 15℄, one

may be tempted to use the term \algebrai
 immunity".
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To get out of this 
onfusion, in this paper we use the term \annihilator immunity" as

this 
learly quanti�es the measure how good a Boolean fun
tion is in terms of not having

low degree annihilators, and we feel this is also a properly de�nable ne
essary (may not be

suÆ
ient) 
ondition for a Boolean fun
tion with respe
t to the resistan
e against algebrai


atta
k. As long as no better (and properly quanti�able) de�nition related to Boolean fun
-

tion is proposed in terms of resistan
e against algebrai
 atta
k, \annihilator immunity"

of De�nition 1(2) remains an important topi
 to study in the �eld of 
ryptographi
ally

signi�
ant Boolean fun
tions.

The idea of our 
onstru
tion 
omes from the following.

Constru
tion 1 Let f; f

1

; f

2

2 B

n

with the following 
onditions.

1. There is no annihilator of f

1

; f

2

having degree < d

n

2

e.

2. supp(f) � supp(f

2

) and supp(1 + f) � supp(f

1

).

Then we have the following important result.

Lemma 1 Let f 2 B

n

be a fun
tion as des
ribed in Constru
tion 1. Then AI

n

(f) = d

n

2

e.

Proof: As supp(1 + f) � supp(f

1

), AN(1 + f) � AN(f

1

) and as supp(f) � supp(f

2

),

AN(f) � AN(f

2

). Sin
e there is no annihilator of f

1

; f

2

having degree < d

n

2

e, neither f

nor 1 + f 
an have any annihilator of degree < d

n

2

e. Thus AI

n

(f) = d

n

2

e.

Now we present the other dire
tion.

Lemma 2 Let f 2 B

n

and AI

n

(f) = d

n

2

e. Then there exist f

1

; f

2

2 B

n

with supp(f

1

) �

supp(1 + f) and supp(f

2

) � supp(f) su
h that wt(f

1

) = wt(f

2

) =

P

d

n

2

e�1

i=0

�

n

i

�

and f

1

; f

2

have no annihilator of degree < d

n

2

e.

Proof: Sin
e AI

n

(f) = d

n

2

e, f has no annihilator of degree < d

n

2

e. That is, there 
annot

be any g(x

1

; : : : ; x

n

) = a

0

+

P

n

i=0

a

i

x

i

+ � � �+

P

1�i

1

:::�i

d

n

2

e�1

�n

a

i

1

:::i

d

n

2

e�1

x

i

1

� � �x

i

d

n

2

e�1

su
h

that g(x

1

; : : : ; x

n

) = 0 where f(x

1

; : : : ; x

n

) = 1. That is there is no nonzero solution of

the system of homogeneous linear equations g(x

1

; : : : ; x

n

) = 0 for (x

1

; : : : ; x

n

) 2 supp(f)

on a

i

's, i.e., this system has full rank (

P

d

n

2

e�1

i=0

�

n

i

�

). So, there must be

P

d

n

2

e�1

i=0

�

n

i

�

many

linearly independent equations. Now we 
onstru
t f

2

su
h that supp(f

2

) is the set of input

ve
tors 
orresponding to

P

d

n

2

e�1

i=0

�

n

i

�

many linearly independent equations. So, f

2

has no

annihilator of degree < d

n

2

e. Similarly, we 
an 
onstru
t f

1


onsidering (1 + f) has no

annihilator of degree < d

n

2

e.

Based on Lemma 1 and Lemma 2, we get a 
lear idea of a 
onstru
tion strategy for a

fun
tion with maximum possible annihilator immunity.

For odd n, there is no option other than f

1

= f and f

2

= 1+ f to have maximum anni-

hilator immunity for f , sin
e wt(f

1

) + wt(f

2

) = 2

P

d

n

2

e�1

i=0

�

n

i

�

= 2

n

. This fa
t also follows

from [14, Corollary 1℄ that a fun
tion on odd number of variables must be balan
ed (weight

5



2

n�1

for n-variable fun
tion) to a
hieve the maximum possible annihilator immunity. Also

re
ently it has been shown [6℄ that for balan
ed fun
tions on odd number of variables, it is

enough to 
onsider the annihilators of f (the 
ase for 1+ f will automati
ally be dedu
ed)

in terms of maximum annihilator immunity. The exa
t result is as follows.

Proposition 1 [6℄ Let  2 B

n

(n odd) be balan
ed fun
tion and it does not have any

annihilator with algebrai
 degree < d

n

2

e. Then 1 +  has no annihilator with algebrai


degree < d

n

2

e. Consequently, AI

n

( ) = d

n

2

e.

However, for even n, wt(f

1

)+wt(f

2

) = 2

P

d

n

2

e�1

i=0

�

n

i

�

= 2

n

�

�

n

n

2

�

. So, a part of remaining

�

n

n

2

�

output points 
an be 
hosen randomly to get di�erent fun
tions f without a�e
ting

the annihilator immunity. Hen
e for even n 
ase this restri
tion is not as stri
t as odd n


ase.

2.1 A 
onstru
tion for maximum Annihilator Immunity

Let us now present the appli
ation of the basi
 theory for a 
on
rete 
onstru
tion of fun
-

tions having optimal annihilator immunity.

Constru
tion 2 Let f 2 B

n

.

1. If n is odd then

f(x

1

; : : : ; x

n

) = 0 for wt(x

1

; : : : ; x

n

) � b

n

2


;

= 1 for wt(x

1

; : : : ; x

n

) � d

n

2

e:

2. If n is even then

f(x

1

; : : : ; x

n

) = 0 for wt(x

1

; : : : ; x

n

) <

n

2

;

= 1 for wt(x

1

; : : : ; x

n

) >

n

2

;

= b 2 f0; 1g for wt(x

1

; : : : ; x

n

) =

n

2

:

Lemma 3 De�ne two fun
tions f

1

; f

2

2 B

n

as follows.

f

1

(x

1

; : : : ; x

n

) = 1 for wt(x

1

; : : : ; x

n

) < d

n

2

e;

= 0 for wt(x

1

; : : : ; x

n

) � d

n

2

e:

f

2

(x

1

; : : : ; x

n

) = 0 for wt(x

1

; : : : ; x

n

) � d

n

2

e;

= 1 for wt(x

1

; : : : ; x

n

) > d

n

2

e:

Then f

1

; f

2

have no annihilator of degree < d

n

2

e.

6



Proof: We �rst show that f

1

has no annihilator of degree < d

n

2

e. Suppose f

1

has a nonzero

annihilator g 2 B

n

having degree < d

n

2

e of the form

a

0

+

n

X

i=0

a

i

x

i

+ � � �+

X

1�i

1

<:::<i

d

n

2

e�1

�n

a

i

1

;:::;i

d

n

2

e�1

x

i

1

� � �x

i

d

n

2

e�1

;

where a's are in f0; 1g, but not all of them are zero. As g is an annihilator of f

1

,

g(x

1

; : : : ; x

n

) = 0 when f

1

(x

1

; : : : ; x

n

) = 1. Hen
e solving the system of homogeneous

linear equations (
onsidering a's as the variables) formed by g(x

1

; : : : ; x

n

) = 0 when

f

1

(x

1

; : : : ; x

n

) = 1, we must get a nontrivial (not all zero) solution on a's.

Let us 
onsider an input (x

1

; : : : ; x

n

), where x

i

1

; : : : ; x

i

t

are 1 (t < d

n

2

e) and the rest

are 0 with f

1

(x

1

; x

2

; : : : ; x

n

) = 1. Then for this input, we have the homogeneous linear

equation of the form

P

I�fi

1

;:::;i

t

g

a

I

= 0, i.e., a

i

1

;:::;i

t

=

P

I�fi

1

;:::;i

t

g

a

I

.

Sin
e f

1

(0; : : : ; 0) = 1, we must have g(0; : : : ; 0) = 0, i.e., a

0

= 0. As f

1

(x) = 1 for

wt(x) = 1, we have a

i

= a

0

= 0. Following the same pro
ess we have all a's in g are 0.

Thus g be
omes a zero fun
tion, whi
h is a 
ontradi
tion as we have started with nonzero

g. Thus f

1

has no annihilator of degree <

n

2

.

Now we show that f

2

has no annihilator of degree < d

n

2

e. Suppose f

2

has an an-

nihilator h of degree < d

n

2

e. That is, f

2

(x

1

; � � � ; x

n

) � h(x

1

; � � � ; x

n

) = 0. Note that

f

1

(x

1

; � � � ; x

n

) = f

2

(1+x

1

; � � � ; 1+x

n

), i.e., f

2

(x

1

; � � � ; x

n

) = f

1

(1+x

1

; � � � ; 1+x

n

). Thus,

f

1

(1+x

1

; � � � ; 1+x

n

)�h(x

1

; � � � ; x

n

) = 0. De�ne h

0

as h

0

(x

1

; � � � ; x

n

) = h(1+x

1

; � � � ; 1+x

n

),

i.e., h(x

1

; � � � ; x

n

) = h

0

(1 + x

1

; � � � ; 1 + x

n

). This gives deg(h

0

) = deg(h) < d

n

2

e. Hen
e, we

have f

1

(1+x

1

; � � � ; 1+x

n

)�h

0

(1+x

1

; � � � ; 1+x

n

) = 0, i.e., f

1

(x

1

; : : : ; x

n

)�h

0

(x

1

; : : : ; x

n

) = 0.

So, f

1

has an annihilator of degree < d

n

2

e, whi
h is a 
ontradi
tion.

Thus we get the following theorem.

Theorem 1 Let f(x

1

; : : : ; x

n

) 2 B

n


onstru
ted by Constru
tion 2. Then AI

n

(f) = d

n

2

e.

Proof: First we prove for odd n. Here supp(1 + f) = supp(f

1

) and supp(f) = supp(f

2

),

where f

1

; f

2

are as des
ribed in Lemma 3. Thus from Lemma 1 we have the proof for odd

n. Now we will prove for n even. It 
an be 
he
ked that supp(1 + f) � supp(f

1

) and

supp(f) � supp(f

2

), where f

1

; f

2

are as des
ribed in Lemma 3. This, using Lemma 1, gives

the proof for n even.

3 Algebrai
 Degree and Nonlinearity for a sub
ase

(Symmetri
 Fun
tions) of Constru
tion 2

Given the fun
tion f in Constru
tion 2, we 
an 
onsider a spe
ial 
ase where f is as follows.

Constru
tion 3

f(x

1

; : : : ; x

n

) = 0 for wt(x

1

; : : : ; x

n

) � b

n

2


;

= 1 for wt(x

1

; : : : ; x

n

) > b

n

2


:

7



Note that in this 
ase f is a symmetri
 Boolean fun
tion. A Boolean fun
tion is 
alled

symmetri
 if it outputs the same value for all the inputs of same weight. Thus it is 
lear

that one 
an represent an n-variable symmetri
 Boolean fun
tion f(x

1

; : : : ; x

n

) in a redu
ed

form by n+ 1 bits string re

f

su
h that re

f

(i) = f(x

1

; : : : ; x

n

) when wt(x

1

; : : : ; x

n

) = i. It

is also 
lear that in the algebrai
 normal form, a symmetri
 Boolean fun
tion will either


ontain all the terms of the same degree monomial or none of them. Thus we 
an present the

algebrai
 normal form in a redu
ed form by n+1 bits string ra

f

su
h that ra

f

(i) = 1, when

all the i degree monomials are present and ra

f

(i) = 0, when all the i degree monomials are

absent. Thus for an n-variable symmetri
 Boolean fun
tion f , both re

f

; ra

f


an be seen

as mappings from f0; 1; : : : ; ng to f0; 1g.

Now we exa
tly 
al
ulate the algebrai
 degree, weight and nonlinearity of the fun
tions

in Constru
tion 3.

3.1 Algebrai
 Degree

The relationship between re

f

; ra

f

have been presented in [22, Theorem 3℄ as

re

f

(i) = (

i

X

k=0

ra

f

(k)

�

i

k

�

) mod 2; (1)

where 0 � i � n. From [10, Page 85℄, for two integer sequen
es p; q,

p

i

=

i

X

k=0

q

k

�

i

k

�

i� q

i

=

i

X

k=0

p

k

(�1)

i�k

�

i

k

�

: (2)

From Equation 1 and Equation 2 we get

Proposition 2 ra

f

(i) = (

i

X

k=0

re

f

(k)

�

i

k

�

) mod 2.

Proposition 3 Suppose n and k are nonnegative integers with n � k. Let n = 2

t

+ l where

0 � l < 2

t

and t � 0. Then we have

1. Let k = 2

t

+ l

1

where l

1

� l. Then

�

n

k

�

is even i�

�

l

l

1

�

is even.

2. Let k = 2

t�1

+ l

2

where l

2

< 2

t�1

. Then

�

n

k

�

is even.

Proof: De�ne T (x) = a for any integer x = 2

a

b where b is an odd integer. It 
an be


he
ked that T ((2

m

)!) =

P

m�1

i=0

2

i

= 2

m

� 1. For 0 � j < 2

m

, T ((2

m

+ j)!) = T ((2

m

)!) +

T ((2

m

+ 1)(2

m

+ 2) � � � (2

m

+ j)) = 2

m

� 1 + T (1 � 2 � � � j) = 2

m

� 1 + T (j!).

For item 1, we have k = 2

t

+l

1

where l

1

� l. So, T (

�

n

k

�

) = T (n!)�(T (k!)+T ((n�k)!)) =

T ((2

t

+ l)!)� (T ((2

t

+ l

1

)!)+T ((l� l

1

)!)) = 2

t

� 1+T (l!)� (2

t

� 1+T (l

1

!)+T ((l� l

1

)!)) =

T (l!)� (T (l

1

!) + T ((l � l

1

)!)) = T (

�

l

l

1

�

).

8



For item 2, we have k = 2

t�1

+ l

2

where l

2

< 2

t�1

. So, T (

�

n

k

�

) = T ((2

t

+ l)!)�(T ((2

t�1

+

l

2

)!) + T ((2

t�1

+ l � l

2

)!)) = 2

t

� 1 + T (l!)� (2

t�1

� 1 + T (l

2

!) + 2

t�1

� 1 + T ((l� l

1

)!)) =

1 + T (l!)� (T (l

1

!) + T ((l � l

1

)!)) = 1 + T (

�

l

l

1

�

) � 1. So,

�

n

k

�

is even.

The following result provides the algebrai
 normal form and degree of f .

Theorem 2 Let f 2 B

n

a symmetri
 fun
tion as given in Constru
tion 3. Then,

1. ra

f

(i) = 0 for i � b

n

2


,

2. ra

f

(b

n

2


 + 1) = 1,

3. ra

f

(i) =

P

i

k=b

n

2


+1

�

i

k

�

mod 2, for i � b

n

2


 + 2,

4. deg(f) = 2

blog

2

n


.

Proof: Given the fun
tion f , it is 
lear that re

f

(i) = 0 for 0 � i � b

n

2


 and re

f

(i) = 1

for b

n

2


 + 1 � i � n. Thus from ra

f

(i) = (

P

i

k=0

re

f

(k)

�

i

k

�

) mod 2 (Proposition 2), we get

ra

f

(i) = 0 for i � b

n

2


 and ra

f

(b

n

2


+ 1) = 1. So we get the proofs of items 1 and 2.

The item 3 follows from Proposition 2 
onsidering the result from item 1 and using

re

f

(k) = 1 for k � b

n

2


+ 1.

Suppose t = blog

2

n
 and l = n � 2

t

, i.e., n = 2

t

+ l where 0 � l < 2

t

and t � 0.

For item 4 we need to show that ra

f

(i) = 1 for i = 2

t

= 2

blog

2

n


and ra

f

(i) = 0 for

all i > 2

t

. Now ra

f

(i) =

P

i

k=b

n

2


+1

�

i

k

�

mod 2. Here n = 2

t

+ l, i.e., b

n

2


 + 1 = 2

t�1

+

b

l

2


 + 1. Suppose i = 2

t

+ l

1

where 0 � l

1

� l. So following the fa
t

�

i

k

�

= 0 mod 2

for 2

t�1

� k < 2

t

in Proposition 3 (item 2) we have ra

f

(i) =

P

i

k=2

t

�

i

k

�

mod 2. Then

ra

f

(i) =

P

l

1

j=0

�

2

t

+l

1

2

t

+j

�

mod 2 as i = 2

t

+ l

1

. Then following Proposition 3 (item 1) we have

ra

f

(i) =

P

l

1

j=0

�

l

1

j

�

mod 2 = 2

l

1

mod 2. Thus, ra

f

(2

t

) = 1 as l

1

= 0 and ra

f

(i) = 0 for

i > 2

t

as l

1

> 0.

3.2 Nonlinearity

In this se
tion we will analyse the nonlinearity of the fun
tion f as explained in Constru
-

tion 3. Nonlinearity is one of the most important 
ryptographi
 properties of Boolean

fun
tions whi
h is used in 
ryptosystems to prevent linear atta
ks [17℄. Moreover, this

property is also very interesting from 
ombinatorial point of view.

The nonlinearity of an n-variable fun
tion f; denoted as nl(f); is the minimum distan
e

from the set of all n-variable aÆne fun
tions, i.e.,

nl(f) = min

g2A(n)

(d(f; g)):

Walsh transform is a very useful tool in analysing Boolean fun
tions. Let x = (x

1

; : : : ; x

n

)

and ! = (!

1

; : : : ; !

n

) both belonging to f0; 1g

n

and x � ! = x

1

!

1

+ : : :+ x

n

!

n

: Let f(x) be

9



a Boolean fun
tion on n variables. Then the Walsh transform of f(x) is an integer valued

fun
tion over f0; 1g

n

whi
h is de�ned as

W

f

(!) =

X

x2f0;1g

n

(�1)

f(x)+x�!

:

A Boolean fun
tion f is balan
ed i� W

f

(0) = 0. The nonlinearity of f is given by

nl(f) = 2

n�1

�

1

2

max

!2f0;1g

n

jW

f

(!)j:

As the fun
tion f explained in Theorem 2 is a symmetri
 Boolean fun
tion, we here


on
entrate on the Walsh spe
tra of this 
lass. The Walsh spe
tra of symmetri
 Boolean

fun
tions have very ni
e 
ombinatorial properties related to Krawt
houk polynomial [24℄.

Krawt
houk polynomial [20, Page 151, Part I℄ of degree i is given by

K

i

(x; n) =

i

X

j=0

(�1)

j

�

x

j

��

n� x

i� j

�

; i = 0; 1; : : : ; n: (3)

It is known that for a �xed !, su
h that wt(!) = k,

X

wt(x)=i

(�1)

!�x

= K

i

(k; n):

Thus it 
an be 
he
ked that if f 2 B

n

is symmetri
, then for wt(!) = k,

W

f

(!) =

n

X

i=0

(�1)

re

f

(i)

K

i

(k; n):

It is also known that for a symmetri
 fun
tion f 2 B

n

and �; � 2 f0; 1g

n

, W

f

(�) = W

f

(�),

if wt(�) = wt(�). Thus it is enough to 
al
ulate the Walsh spe
tra for the inputs of n+ 1

di�erent weights. Keeping this in mind, given a symmetri
 Boolean fun
tion f 2 B

n

, we

denote rw

f

(i) = W

f

(!), su
h that wt(!) = i. Thus rw

f


an be seen as a mapping from

f0; : : : ; ng to Z.

Let us now list some known results in this area [18, 20℄.

Proposition 4

1. K

0

(k; n) = 1; K

1

(k; n) = n� 2k,

2. (i+ 1)K

i+1

(k; n) = (n� 2k)K

i

(k; n)� (n� i+ 1)K

i�1

(k; n),

3. K

i

(k; n) = (�1)

k

K

n�i

(k; n) (for n even and k odd, K

n

2

(k; n) = 0),

4.

�

n

k

�

K

i

(k; n) =

�

n

i

�

K

k

(i; n),

10



5. K

i

(k; n) = (�1)

i

K

i

(n� k; n), (for n even and i odd, K

i

(

n

2

; n) = 0),

6. (n� k)K

i

(k + 1; n) = (n� 2i)K

i

(k; n)� kK

i

(k � 1; n),

7. (n� i+ 1)K

i

(k; n+ 1) = (3n� 2i� 2k + 1)K

i

(k; n)� 2(n� k)K

i

(k; n� 1).

Proposition 5 For n even, K

i

(

n

2

; n) =

(

0 for odd i:

(�1)

i

2

�n

2

i

2

�

for even i:

Proof: For odd i, it is proved in Proposition 4. Now we will prove for even i using indu
tion

on i. For the base step, i.e., i = 0, we have K

0

(

n

2

; n) =

�

n

2

0

�

= 1. We will prove indu
tive

step. Suppose it is true for i = l, i.e., K

l

(

n

2

; n) = (�1)

l

2

�

n

2

l

2

�

. Now we will prove for i = l+2.

Following Proposition 4(item 2), we have (l + 2)K

l+2

(

n

2

; n) = �(n � l)K

l

(

n

2

; n) (in the

proposition, we put l + 1 instead of i). So, K

l+2

(

n

2

; n) = (�1)

l

2

+1

n�l

l+2

�

n

2

l

2

�

= (�1)

l

2

+1

�

n

2

l

2

+1

�

.

Hen
e proved.

Let us now 
on
entrate on the Walsh spe
tra of the symmetri
 fun
tion f as explained

in Constru
tion 3.

Lemma 4 Consider the fun
tion f on n number of variables as given in Constru
tion 3.

1. For k even, rw

f

(k) =

(

K

n

2

(k; n) for even n:

0 for odd n:

2. For k odd, rw

f

(k) = 2

P

b

n�1

2




i=0

K

i

(k; n).

3. rw

f

(1) = 2

�

n�1

b

n

2




�

.

4. rw

f

(n) =

(

(�1)

n

2

�

n

n

2

�

for even n:

(�1)

n�1

2

2

�

n�1

n�1

2

�

for odd n:

5. For even n, rw

f

(

n

2

) =

(

(�1)

n

4

�

n

2

n

4

�

for even

n

2

:

2

P

n�2

4

i=0

(�1)

i

�

n

2

i

�

for odd

n

2

:

Proof: From Proposition 4(3), we have K

i

(k; n) = (�1)

k

K

n�i

(k; n), i.e., if k is even,

K

i

(k; n) = K

n�i

(k; n). Now

rw

f

(k) =

n

X

i=0

(�1)

re

f

(i)

K

i

(k; n) =

b

n

2




X

i=0

K

i

(k; n)�

n

X

i=b

n

2


+1

K

i

(k; n);

as

re

f

(i) = 0 for 0 � i � b

n

2


 and

= 1 for b

n

2


 < i � n.
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Moreover,

n

X

i=b

n

2


+1

K

i

(k; n) =

d

n

2

e�1

X

j=0

K

j+b

n

2


+1

(k; n) =

d

n

2

e�1

X

j=0

K

n�j

(k; n) =

d

n

2

e�1

X

i=0

K

i

(k; n) =

b

n�1

2




X

i=0

K

i

(k; n): Hen
e, rw

f

(k) = K

n

2

(k; n) for even n and rw

f

(k) = 0 for odd n. This

proves the �rst item.

For the se
ond item, note that K

i

(k; n) = �K

n�i

(k; n) as k is odd. Following the proof

of item 1, we get rw

f

(k) = 2

P

b

n�1

2




i=0

K

i

(k; n) (the even n and odd k 
ase is handled under

the same formula as K

n

2

(k;n)

= 0). So, we prove the se
ond item.

For the third item, note that,K

i

(1; n) =

�

n�1

i

�

�

�

n�1

i�1

�

. Thus, following item 2, rw

f

(1) =

2

P

d

n

2

e�1

i=0

(

�

n�1

i

�

�

�

n�1

i�1

�

) = 2

�

n�1

d

n

2

e�1

�

. So, for odd n, rw

f

(1) = 2

�

n�1

n�1

2

�

and for even n,

rw

f

(1) = 2

�

n�1

n

2

�1

�

= 2

�

n�1

n

2

�

. Therefore for any n, rw

f

(1) = 2

�

n�1

b

n

2




�

.

For the fourth item, note that, K

i

(n; n) = (�1)

i

K

i

(0; n) = (�1)

i

�

n

i

�

. For n even,

following item 1, rw

f

(n) = K

n

2

(n; n) = (�1)

n

2

K

n

2

(0; n) = (�1)

n

2

�

n

n

2

�

. For odd n, following

item 2, rw

f

(n) = 2

P

n�1

2

i=0

(�1)

i

�

n

i

�

= 2

P

n�1

2

i=0

(�1)

i

(

�

n�1

i

�

+

�

n�1

i�1

�

) = �2

�

n�1

n�1

2

�

(positive when

n = 1 mod 4, negative when n = 3 mod 4).

For �fth item, following item 1 of this lemma and Proposition 5 the 
ase

n

2

even is

proved. Similarly, following item 2 of this lemma and Proposition 5 the 
ase

n

2

odd is

proved.

Lemma 5 For 1 � k � b

n�1

2


 and 0 � i � b

n�1

2


, K

i

(1; n) � jK

i

(k; n)j.

Proof: Note that, K

i

(1; n) =

�

n�1

i

�

�

�

n�1

i�1

�

� 0 for 0 � i � b

n�1

2


 and that implies

jK

i

(1; n)j = K

i

(1; n) in 0 � i � b

n�1

2


.

First, we will prove it for i � k using indu
tion on k. In this dire
tion for the base step

we need to show K

i

(1; n) � jK

i

(1; n)j (whi
h is obvious) and K

i

(1; n) � jK

i

(2; n)j. Now

K

i

(2; n) =

�

n�2

i

�

� 2

�

n�2

i�1

�

+

�

n�2

i�2

�

and K

i

(1; n) =

�

n�1

i

�

�

�

n�1

i�1

�

=

�

n�2

i

�

+

�

n�2

i�1

�

�

�

n�2

i�1

�

�

�

n�2

i�2

�

=

�

n�2

i

�

�

�

n�2

i�2

�

. If K

i

(2; n) � 0 then K

i

(1; n) � K

i

(2; n) = 2(

�

n�2

i�1

�

�

�

n�2

i�2

�

) � 0

as (i � 1) � b

n�2

2


. If K

i

(2; n) � 0 then K

i

(1; n) + K

i

(2; n) = 2(

�

n�2

i

�

�

�

n�2

i�1

�

) � 0 for

i � b

n�2

2


. Note that, b

n�1

2


 = b

n�2

2


 when n is even and

�

n�2

i

�

�

�

n�2

i�1

�

= 0 for i = b

n�1

2




when n is odd. Therefore, jK

i

(1; n)j � jK

i

(2; n)j, i.e., K

i

(1; n) � jK

i

(2; n)j. Thus the base

steps are proved.

Suppose for some 1 � k < b

n�1

2


, K

i

(1; n) � jK

i

(j; n)j for all j, 1 � j � k. Now we

will prove K

i

(1; n) � jK

i

(k + 1; n)j. From Proposition 4(6), we have

(n� k)K

i

(k + 1; n) = (n� 2i)K

i

(k; n)� kK

i

(k � 1; n),

i.e., (n� k)jK

i

(k + 1; n)j � (n� 2i)jK

i

(k; n)j+ kjK

i

(k � 1; n)j,

i.e., (n� k)jK

i

(k + 1; n)j � (n� 2i)K

i

(1; n) + kK

i

(1; n),

i.e., jK

i

(k + 1; n)j �

n�2i+k

n�k

K

i

(1; n),

i.e., jK

i

(k + 1; n)j � K

i

(1; n), sin
e

n�2i+k

n�k

� 1 for i � k. So, the proof is 
ompleted for

j = k + 1. Hen
e, K

i

(1; n) � jK

i

(k; n)j for 0 � i � b

n�1

2


, 1 � k � b

n�1

2


 and i � k.
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Now we will prove for 0 � i < k � b

n�1

2


. Sin
e k > i, following the above proof,

we have K

k

(1; n) � jK

k

(i; n)j by inter
hanging the role of k and i. Thus,

�

n

i

�

K

k

(1; n) �

�

n

i

�

jK

k

(i; n)j. Now following Proposition 4(4), we have

�

n

i

�

K

k

(1; n) �

�

n

k

�

jK

i

(k; n)j, i.e.,

�

n

i

�

�

n

k

�

K

k

(1; n) � jK

i

(k; n)j: (4)

Further, following Proposition 4(4), we have K

k

(1; n) =

(

n

k

)

(

n

1

)

K

1

(k; n) =

(

n

k

)

n

(n � 2k) and

K

i

(1; n) =

(

n

i

)

n

(n � 2i). So,

K

k

(1;n)

K

i

(1;n)

=

(

n

k

)

(n�2k)

(

n

i

)

(n�2i)

, i.e., K

k

(1; n) =

(

n

k

)

(n�2k)

(

n

i

)

(n�2i)

K

i

(1; n). Now

putting the value of K

k

(1; n) in Equation 4, we have

n�2k

n�2i

K

i

(1; n) � jK

i

(k; n)j, i.e.,

K

i

(1; n) � jK

i

(k; n)j, sin
e

n�2k

n�2i

< 1 as i < k. Hen
e the proof.

In the next 
orollary we extend the range of i and k.

Corollary 1

1. For odd n, jK

i

(1; n)j � jK

i

(k; n)j where 0 � i � n and 1 � k � n� 1:

2. For even n, jK

i

(1; n)j � jK

i

(k; n)j where 0 � i � n and 1 � k � n� 1 ex
ept i =

n

2

or k =

n

2

.

Proof: The proof for 0 � i � b

n�1

2


 and 1 � k � b

n�1

2


 is done in Lemma 5. The

remaining part 
an be proved using the symmetry relations K

i

(k; n) = (�1)

k

K

n�i

(k; n)

and K

i

(k; n) = (�1)

i

K

i

(n� k; n) in Proposition 4(item 3 and item 5).

When n is even the relation proved above is not true for i =

n

2

and even k, sin
e

K

n

2

(1; n) = 0 and K

n

2

(k; n) is a non zero number for even k.

Theorem 3 Consider the fun
tions f 2 B

n

, as explained in Constru
tion 3. Then nl(f) =

2

n�1

�

�

n�1

b

n

2




�

.

Proof: First we prove that rw

f

(1) is maximum among all rw

f

(k) in 0 � k � n.

Case 1. Let n be odd. First we show that jrw

f

(k)j � rw

f

(1) for all k in the range

1 � k � n � 1. We know, jrw

f

(k)j = j2

P

b

n�1

2




i=0

K

i

(k; n)j � 2

P

b

n�1

2




i=0

jK

i

(k; n)j. From

Lemma 5 we have, K

i

(1; n) � jK

i

(k; n)j for 1 � k � n� 1, and 0 � i � b

n�1

2


. This gives,

jrw

f

(k)j � 2

P

b

n�1

2




i=0

K

i

(1; n) = rw

f

(1). Again from Lemma 4 we have, rw

f

(1) = jrw

f

(n)j.

Finally rw

f

(0) = 0. Hen
e rw

f

(1) � jrw

f

(k)j for 0 � k � n.

Case 2. Let n be even. Let us �rst 
onsider that k is odd and in 1 � k � n � 1

ex
ept k =

n

2

. From Lemma 4 we get that jrw

f

(k)j = j2

P

b

n�1

2




i=0

K

i

(k; n)j. So following the

same argument used in the previous 
ase, we get jrw

f

(k)j � rw

f

(1). For k =

n

2

odd, from

Lemma 4(item 5) we have jrw

f

(

n

2

)j = j2

P

n�2

4

i=0

(�1)

i

�

n

2

i

�

j � 2

P

n�2

4

i=0

�

n

2

i

�

= 2

n

2

. By indu
tion

on n it 
an be proved that 2

n

2

� 2

�

n�1

n

2

�

= rw

f

(1). So, for k odd and 1 � k � n�1, the proof

13



is done. When k even and 2 � k � n� 2, we have from Lemma 4 that rw

f

(k) = K

n

2

(k; n).

Now K

n

2

(k; n) =

P

n

2

j=0

(�1)

j

�

k

j

��

n�k

n

2

�j

�

�

P

n

2

j=0

�

k

j

��

n�k

n

2

�j

�

=

�

n

n

2

�

= rw

f

(1). Further, sin
e

K

n

2

(0; n) =

�

n

n

2

�

= jK

n

2

(n; n)j, we get, rw

f

(1) = rw

f

(0) = jrw

f

(n)j. Thus jrw

f

(k)j �

rw

f

(1) for all k in 0 � k � n.

So for any n, nl(f) = 2

n�1

�

1

2

jrw

f

(1)j = 2

n�1

�

�

n�1

b

n

2




�

.

Now we would like to present a few observations.

1. We have 
he
ked for odd n up to n = 11, the fun
tion we have 
onstru
ted in

Constru
tion 3, is the only fun
tion with maximum possible annihilator immunity

among the symmetri
 fun
tions. There is no other symmetri
 Boolean fun
tion on

odd number of variables that are of annihilator immunity d

n

2

e as far as we have

experimented. This is an important open question to be proved or disproved.

2. For even n, we have found that there are symmetri
 fun
tions with full annihilator

immunity other than what we have presented in Constru
tion 3. In fa
t so far we

have experimented, up to n = 12, we found fun
tions with full annihilator immunity

n

2

and nonlinearity greater than that of the fun
tion 
onstru
ted in Constru
tion 3.

In Table 2, we present the maximum nonlinearity available for symmetri
 Boolean

fun
tions on even number of variables having maximum possible annihilator immu-

nity. This we found by 
omputer sear
h by writing 
omputer program. It will be

interesting to 
hara
terize the symmetri
 fun
tions on even number of variables with

maximum possible nonlinearity and maximum possible annihilator immunity

n

2

.

n 4 6 8 10 12

nonlinearity of Constru
tion 3 5 22 93 386 1586

maximum nonlinearity (by exhaustive sear
h) 6 26 94 394 1630

Table 1: Nonlinearity of symmetri
 Boolean fun
tions on even number of variables by

Constru
tion 3 and maximum nonlinearity by exhaustive sear
h.

4 Results 
omparing that of �

2k

in [15℄

We have proved that the nonlinearity of these fun
tions are same as the weight. Most

interestingly they are also same with what observed (not proved) for the fun
tion �

2k

in [15℄ for k = 1; : : : ; 8. However, our fun
tions 
an not always be linear transformation of

�

2k

as the algebrai
 degree of our fun
tions are di�erent from that of �

2k

as available in

Table 2.

Let us now 
on
entrate on 
onstru
tion of balan
ed f with maximum possible annihi-

lator immunity for even n. Refer to the general form of f as given in Constru
tion 2. If b is

so 
hosen that out of

�

n

n

2

�

inputs, half of the 
orresponding outputs are 1 and the other half

14



n = 2k 2 4 6 8 10 12 14 16

deg(�

2k

) 2 4 5 8 9 11 13 16

deg(f) 2 4 4 8 8 8 8 16

Table 2: Comparison of algebrai
 degree.

are 0, then f will be balan
ed. To formalize it, 
onsider two sets S

n

; T

n

� fxjwt(x) =

n

2

g,

S

n

\ T

n

= ;, jS

n

j = jT

n

j =

1

2

�

n

n

2

�

. Note that there are

�

(

n

n

2

)

1

2

(

n

n

2

)

�

=

�

(

n

n

2

)

(

n�1

n

2

)

�

many di�erent

options to 
hoose any S

n

and 
orrespondingly a T

n

.

Now we have the following result.

Proposition 6 Let F be an n-variable balan
ed fun
tion (n even) as follows.

F (x

1

; : : : ; x

n

) = 0 for wt(x

1

; : : : ; x

n

) <

n

2

;

= 1 for wt(x

1

; : : : ; x

n

) >

n

2

;

= 0 for (x

1

; : : : ; x

n

) 2 S

n

;

= 1 for (x

1

; : : : ; x

n

) 2 T

n

:

Then nl(F ) � 2

n�1

�

�

n

n

2

�

.

Proof: Consider the fun
tion f in Constru
tion 3. It is 
lear that

1

2

�

n

n

2

�

many output points

in the truth table of f need to be toggled to get the fun
tion F . Thus nl(F ) � nl(f)�

1

2

�

n

n

2

�

.

From Theorem 3, nl(f) = 2

n�1

�

�

n�1

n

2

�

. Thus nl(F ) � 2

n�1

�

�

n�1

n

2

�

�

1

2

�

n

n

2

�

= 2

n�1

�

1

2

�

n

n

2

�

�

1

2

�

n

n

2

�

= 2

n�1

�

�

n

n

2

�

.

However, we now show a heuristi
 
onstru
tion with whi
h we 
an really get mu
h

better value of nonlinearity of the balan
ed fun
tions. Note that we do not present any

theoreti
al proof here, but only list the experimental results.

For that we �rst refer to Maiorana-M
Farland type of bent fun
tions. The Maiorana-

M
Farland 
lass of bent fun
tion is as follows [16℄. Consider n-variable Boolean fun
tions

on (X; Y ), where X; Y 2 f0; 1g

n

2

of the form f(X; Y ) = X � �(Y ) + g(Y ) where � is a

permutation on f0; 1g

n

2

and g is any Boolean fun
tion on

n

2

variables. The fun
tion f


an be seen as 
on
atenation of 2

n

2

distin
t (up to 
omplementation) aÆne fun
tion on

n

2

variables. For our purpose we 
onsider � as an identity permutation, g as a 
onstant

zero fun
tion and refer to this fun
tion on n variables as b(x

1

; : : : ; x

n

), for n even. Now we


onstru
t an n-variable fun
tion G as follows.

G(x

1

; : : : ; x

n

) = 0 for wt(x

1

; : : : ; x

n

) <

n

2

;

= 1 for wt(x

1

; : : : ; x

n

) >

n

2

;

= b(x

1

; : : : ; x

n

) for wt(x

1

; : : : ; x

n

) =

n

2

:
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Experimentally we observe that nl(G) = nl(f), for even n up to 16, where f is the fun
tion

as des
ribed in Constru
tion 3. Note that G is mu
h 
loser to balan
edness than the

fun
tion f .

1. If wt(G) < 2

n�1

, then we 
hoose 2

n�1

� wt(G) points randomly from the inputs

having weight

n

2

and output 0 of G and toggle those outputs to 1.

2. If wt(G) > 2

n�1

, then we 
hoose wt(G) � 2

n�1

points randomly from the inputs

having weight

n

2

and output 1 of G and toggle those outputs to 0.

After this 
hange G will be
ome balan
ed. Experimentally we get the following result for

the fun
tion G in Table 3. We exe
ute 100 runs for ea
h n and take the best result among

the runs in terms of nonlinearity. We also observe that algebrai
 degree of the reported

fun
tions is the maximum possible, i.e., n� 1.

n = 2k 4 6 8 10 12 14 16

2

n�1

�

�

n�1

n

2

�

5 22 93 386 1586 6476 26333

nl(G) 4 22 92 384 1582 6468 26316

4(2

n�3

�

�

n�3

n�2

2

�

) 4 20 88 372 1544 6344 25904

Table 3: Comparison of nonlinearities.

We have also 
he
ked that G is always the maximum possible, i.e., n�1, for a balan
ed

fun
tion.

As by itself the fun
tion �

2k

was not balan
ed, the 
onstru
tion of balan
ed fun
tion

that has been mentioned in [15℄ with full annihilator immunity is basi
ally x

1

+ x

2

+

�

2k�2

, where �

2k�2

was on the variables x

3

; : : : ; x

2k

. The nonlinearity of this fun
tion is

4nl(�

2k�2

) = 4(2

n�3

�

�

n�3

n�2

2

�

). That is also presented in the last line of Table 3. Clearly our

heuristi
 
onstru
tion presents better nonlinearity than the balan
ed fun
tions presented

in [15℄.

5 Computing Walsh spe
tra of Symmetri
 Boolean

Fun
tions

Here we present an algorithm to 
al
ulate rw

f

from re

f

for a symmetri
 fun
tion f 2 B

n

.

Note that in [21, Page 33℄ it has been mentioned that 
al
ulating the Walsh spe
tra for

an n-variable symmetri
 fun
tion requires O(n

3

) time and O(n

2

) spa
e. In that 
ase

P

wt(x)=i

(�1)

!�x

= K

i

(k; n), has been stored in the (i; k)-th lo
ation of an (n + 1) �

(n+ 1) integer matrix (O(n

2

) spa
e) and getting the value of ea
h lo
ation required O(n)

operations. Thus O(n

3

) time is spent. Then for ea
h weight k the value of rw

f

(k) is


al
ulated in O(n) time and this is again done for (n + 1) di�erent weights [0; : : : ; n℄.

This takes additional O(n

2

) steps. However, we here show that using the properties of
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Krawt
houk polynomial [18,20℄ this 
an be done in O(n

2

) time and O(n) spa
e. The basi


idea is as follows:

1. (a) At the same step, on
e we get K

i

(k; n) we 
an 
al
ulate K

n�i

(k; n) using Propo-

sition 4(3). Thus in the 
al
ulation of rw

f

(k), we 
an add these two values at

the same time, i.e., we get (�1)

re

f

(i)

K

i

(k; n) + (�1)

re

f

(n�i)

K

n�i

(k; n). To get

the 
omplete value of rw

f

(k), we need to apply this for i = 0 to

n�1

2

for n odd.

If n is even, one more step is required where the value (�1)

re

f

(

n

2

)

K

n

2

(k; n) will

also be added.

(b) At the same step, on
e we get K

i

(k; n) we 
an 
al
ulate K

i

(n � k; n) using

Proposition 4(5) and then K

n�i

(n � k; n) using Proposition 4(3). Thus in the


al
ulation of rw

f

(n � k), we 
an add these two values at the same time, i.e.,

we get (�1)

re

f

(i)

K

i

(n� k; n) + (�1)

re

f

(n�i)

K

n�i

(n� k; n). To get the 
omplete

value of rw

f

(n � k), we need to apply this for i = 0 to

n�1

2

for n odd. If n is

even, one more step is required where the value (�1)

re

f

(

n

2

)

K

n

2

(n�k; n) will also

be added.

Thus at the same time rw

f

(k); rw

f

(n� k) are 
al
ulated for 0 � k �

n�1

2

, when n is

odd. If n is even, we need to 
al
ulate rw

f

(

n

2

) separately. Thus if K

i

(k; n) values are

available in 
onstant time (see below), then 
al
ulation of 
omplete Walsh spe
tra

requires O(n

2

) time.

2. From Proposition 4(1), we get K

0

(k; n) = 1; K

1

(k; n) = n � 2k as the initial val-

ues. Then given K

i�1

(k; n) and K

i

(k; n), it is possible to get K

i+1

(k; n) by Proposi-

tion 4(2). Thus, just by storing two old values and keeping one temporary variable,

it is possible to get K

i

(k; n) for ea
h i in 
onstant time.

Moreover, it is 
lear that apart from storing (n+1) Walsh spe
tra value, the number

of other variables to be used are 
onstant. Thus the spa
e 
omplexity is O(n).

The exa
t C program like algorithm (Algorithm 1) is presented below.

Algorithm 1 Algorithm to 
al
ulate the Walsh spe
tra of a Symmetri
 Boolean fun
tion.
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input: number of variables n, symmetri
 fun
tion re

f

;

output: Walsh spe
tra rw

f

;

for (k = 0 to b

n�1

2


)f

v

1

= (�1)

re

f

(0)

+ (�1)

re

f

(n)+k

;

v

2

= (�1)

re

f

(0)

+ (�1)

re

f

(n)+n�k

;

p = n� 2k; q = 1;

for (i = 1 to b

n�1

2


)f

v

1

= v

1

+ ((�1)

re

f

(i)

+ (�1)

re

f

(n�i)+k

)p;

v

2

= v

2

+ ((�1)

re

f

(i)+i

+ (�1)

re

f

(n�i)+i+n�k

)p;

r =

(n�2k)p�(n�i+1)q

i+1

;

q = p; p = r;

g

if n is evenf

i =

n

2

;

v

1

= v

1

+ (�1)

re

f

(i)

p;

v

2

= v

2

+ (�1)

re

f

(i)+i

p;

g

rw

f

(k) = v

1

; rw

f

(n� k) = v

2

;

g

if (n is even)f

k =

n

2

;

v

1

= (�1)

re

f

(0)

+ (�1)

re

f

(n)+k

;

p = n� 2k; q = 1;

for (i = 1 to b

n�1

2


)f

v

1

= v

1

+ ((�1)

re

f

(i)

+ (�1)

re

f

(n�i)+k

)p;

r =

(n�2k)p�(n�i+1)q

i+1

;

q = p; p = r;

g

i =

n

2

;

v

1

= v

1

+ (�1)

re

f

(i)

p;

rw

f

(k) = v

1

;

g

6 Con
lusion

In this paper we 
ould identify the basi
 theory towards the 
onstru
tion of Boolean fun
-

tions with full annihilator immunity. Based on the theory we present some 
on
rete 
on-

stru
tion ideas. Further we 
ould study the other 
ryptographi
 properties like nonlinearity

and algebrai
 degree theoreti
ally. Our work 
ompares favourably than what has been pre-

sented in a re
ent paper [15℄.

Examples are now available [14, Se
tion 4.1℄ that there exist Boolean fun
tions having

optimum parameters in terms of di�erent 
ryptographi
 properties su
h as balan
edness,

18



nonlinearity, algebrai
 degree, annihilator immunity and 
orrelation immunity. However,

there is no su
h 
onstru
tions yet in that dire
tion. The existing 
onstru
tions, that a
hieve

optimization in terms of the parameters balan
edness, nonlinearity, algebrai
 degree, and


orrelation immunity, do not provide maximum possible annihilator immunity. This is an

important open area of resear
h.
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