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Abstrat

So far there is no systemati attempt to onstrut Boolean funtions with maxi-

mum annihilator immunity. In this paper we present a onstrution keeping in mind

the basi theory of annihilator immunity. This onstrution provides funtions with

the maximum possible annihilator immunity and the weight, nonlinearity and alge-

brai degree of the funtions an be properly alulated under ertain ases. The

basi onstrution is that of symmetri Boolean funtions and applying linear trans-

formation on the input variables of these funtions, one an get a large lass of

non-symmetri funtions too. Moreover, we also study several other modi�ations

on the basi symmetri funtions to identify interesting non symmetri funtions

with maximum annihilator immunity. In the proess we also present an algorithm to

ompute the Walsh spetra of a symmetri Boolean funtion with O(n

2

) time and

O(n) spae omplexity.

Keywords: Algebrai Attak, Algebrai Degree, Algebrai Immunity, Annihilator, Anni-

hilator Immunity, Balanedness, Boolean Funtions, Krawthouk Polynomials, Nonlinear-

ity, Symmetri Boolean Funtions.

1 Introdution

Algebrai attak (that uses overde�ned systems of multivariate equations to reover the

seret key) has reeived a lot of attention reently [1,2,8,9,11{13,19,23℄ in studying seurity

of the ryptosystems. This adds a new ryptographi property for designing Boolean

funtions to be used as building bloks in ryptosystems whih is known as algebrai

immunity [3{5, 7, 14, 15, 23℄. Later, in Remark 1, we will disuss some problem about the

�

We use the term \Annihilator Immunity" instead of \Algebrai Immunity" referred in the reent

papers [3{5,7, 14, 15℄. Please see Remark 1 for the details of this notational hange.
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term \algebrai immunity" and use the term \annihilator immunity" instead of the earlier

term.

Given an n-variable Boolean funtion f , di�erent ases related to low degree multiples

of f have been studied in [12, 23℄. The main objetive is to �nd out minimum (or low)

degree annihilators of f and 1 + f , i.e., to �nd out minimum (or low) degree n-variable

nonzero funtions g

1

; g

2

suh that f � g

1

= 0 and (1 + f) � g

2

= 0. To mount the algebrai

attak, one needs the low degree linearly independent annihilators [12, 23℄ of f and 1 + f .

Though there are inreasing interest in onstrution of Boolean funtions with good

annihilator immunity [3{5,7,14,15℄, so far there is only one onstrution method [15℄ that

an ahieve the maximum possible annihilator immunity d

n

2

e for an n-variable funtion.

The heart of the onstrution in [15℄ was a funtion �

2k

on even (2k) number of variables

with maximum possible annihilator immunity k. The main problem with �

2k

is that no lear

intuition has been provided how one an land into suh a ompliated struture. Further,

the other ryptographi properties, suh as weight, nonlinearity or algebrai degree of the

funtion �

2k

are yet to be answered and only a few experimental results have been provided

in [15℄ for k = 1; : : : ; 8. Also the funtions �

2k

are not balaned.

In this paper we explain a generi onstrution idea of funtions with maximum anni-

hilator immunity that omes from the basi theory. Most importantly, the ryptographi

properties of our onstrutions, suh as nonlinearity, algebrai degree et., are theoretially

proved for ertain subases that ould not be done for the onstrution in [15℄. Interest-

ingly, for this subase of our onstrution with even n, the weight and nonlinearity (both

2

n�1

�

�

n�1

n

2

�

, we provide exat proofs) mathes with the experimental data provided on �

2k

in [15℄ (no proof). However our funtions (in the subase) are not linear transformation of

�

2k

as the algebrai degree of our onstrution (2

blog

2

n

) is di�erent from the experimental

results available in [15℄.

We also provide a large lass of balaned Boolean funtions with maximum possible

annihilator immunity having nonlinearity � 2

n�1

�

�

n

n

2

�

. Under experimental set up, with

a simple heuristi, we show that atually one an ahieve muh better nonlinearity than

this lower bound (in fat very lose to 2

n�1

�

�

n�1

n

2

�

). For odd n our onstrution provides

balaned funtions diretly with nonlinearity 2

n�1

�

�

n�1

n�1

2

�

and algebrai degree (2

blog

2

n

).

As our basi onstrution starts from symmetri Boolean funtions and the Walsh

spetra of Boolean funtions are related to Krawthouk Polynomials, we need to use the

properties of Krawthouk Polynomials extensively. In the proess we identify an interesting

inequality as explained in Lemma 5. Further, we present an algorithm for alulating the

Walsh spetra of symmetri Boolean funtions. This requires O(n

2

) time and O(n) spae

omplexity for a symmetri Boolean funtion on n variables. To the best of our knowledge,

this algorithm is novel and it is not easy to improve it further. The algorithm does not

only use the diret relationship between Walsh spetra of symmetri Boolean funtion

and Krawthouk polynomial, but we need to integrate di�erent properties of Krawthouk

polynomial to get the optimized algorithm.

It is well known that the annihilator immunity (also algebrai degree and nonlinearity)

of a Boolean funtion is invariant under linear transformation on the input variables. Thus
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one an easily apply linear transformation to get a wider lass of funtions (whih are not

symmetri) from our onstrution ahieving the maximum possible annihilator immunity

(with same algebrai degree and nonlinearity).

Note that there is muh septiism towards using symmetri Boolean funtions in ryp-

tosystems. Moreover, the other ryptographi properties of the Boolean funtions (whether

symmetri or not) that we onsider here are not very good (these funtions may be omposed

with other funtions with di�erent ryptographi properties to get a seondary onstrution

and those funtions may be used in a ryptosystem). Thus, in no way, we are proposing

these funtions for diret use in ryptosystems. The motivation of this paper is systemati

theoretial study of Boolean funtions with maximum possible annihilator immunity (see

also Remark 1).

The organization of the paper is as follows. In the following setion we present the

basi theory behind the onstrution of Boolean funtions with maximum possible annihi-

lator immunity and present a spei� onstrution. In Setion 3, we onsider symmetri

funtions with maximum possible annihilator immunity and alulate the algebrai degree

and nonlinearity of the funtions. Some extensions and omparison of the parameters with

a very reent onstrution method [15℄ is presented in Setion 4. In Setion 5, we disuss

the algorithm for alulating Walsh spetra of a symmetri Boolean funtion. Setion 6

onludes the paper.

2 Constrution using the Basi Theory

Let us denote the set of n-variable Boolean funtions by B

n

. The support of a Boolean

funtion f 2 B

n

is de�ned as supp(f) = f(x

1

; : : : ; x

n

)jf(x

1

; : : : ; x

n

) = 1g. The weight of a

funtion f 2 B

n

is wt(f) = jsupp(f)j. A funtion f 2 B

n

is balaned if wt(f) = 2

n�1

.

Any f 2 B

n

an be uniquely represented as a multivariate polynomial over GF (2),

alled the algebrai normal form (ANF), as

f(x

1

; : : : ; x

n

) = a

0

+

X

1�i�n

a

i

x

i

+

X

1�i<j�n

a

i;j

x

i

x

j

+ : : :+ a

1;2;:::;n

x

1

x

2

: : : x

n

;

where the oeÆients a

0

; a

i;j

; : : : ; a

1;2;:::;n

2 f0; 1g. The algebrai degree, deg(f), is the

number of variables in the highest order term with non zero oeÆient. A Boolean funtion

is aÆne if there exists no term of degree > 1 in the ANF and the set of all aÆne funtions

is denoted by A

n

. An aÆne funtion with onstant term equal to zero is alled a linear

funtion.

A Boolean funtion should be of high algebrai degree to be ryptographially se-

ure [17℄. Further, to resist algebrai attak, the funtion should not have a low degree

multiple [12,23℄. It is shown [12℄ that given any n-variable Boolean funtion f , it is always

possible to get a Boolean funtion g with degree at most d

n

2

e suh that f � g is of degree

at most d

n

2

e. Here the funtions are onsidered to be multivariate polynomials over GF (2)

and f � g is the polynomial multipliation over GF (2). Thus while hoosing an f , the

ryptosystem designer should be areful that it should not happen that degree of f � g

3



falls muh below d

n

2

e. Towards de�ning annihilator immunity [12,14,15,23℄, it is now lear

that one needs to onsider the annihilators of both f; 1 + f . In that line we present the

following de�nition.

De�nition 1

1. Given f 2 B

n

, a nonzero funtion g 2 B

n

is alled an annihilator of f if f � g = 0.

By AN(f) we mean the set of annihilators of f .

2. Given f 2 B

n

, the annihilator immunity of f , denoted by AI

n

(f) = deg(g), where

g 2 B

n

is the minimum degree nonzero funtion suh that either f � g = 0 or (1 +

f) � g = 0.

It is known [12,23℄ that for f 2 B

n

, AI

n

(f) � d

n

2

e and in this paper we present onstru-

tions ahieving the maximum value.

Remark 1 At this point we like to disuss on the term \algebrai immunity" of a Boolean

funtion. Reently there are many works in the area of algebrai attaks and some of the

initial and important papers are [11{13℄. It is now lear that a Boolean funtion or its

omplement, used in a ryptosystem, should not have a low degree annihilator. However,

the algebrai normal form (ANF) of the annihilators are also important. It may very well

happen that an annihilator with higher degree may have a few terms and on the other hand

an annihilator with lower degree may have many more terms in the ANF and in ertain

ases, it may be better to use the high degree annihilator with fewer terms than the low

degree annihilator with more terms for the algebrai attak. Thus inrease in the degree of

annihilator (of the Boolean funtion) may not be the only measure in terms of resistane

of a ryptosystem (that uses the Boolean funtion) against algebrai attak. Based on the

existing researh so far, it is diÆult to formalize or quantify the measure of resistane of

a Boolean funtion used in a ryptosystem against algebrai attak. It learly depends on

how the Boolean funtion is used in the onstrution of ryptosystem and how the algebrai

attak is designed against the omplete sheme. These arguments go against using the term

\algebrai immunity".

On the other hand, if one just onentrates on a Boolean funtion, then it is meaningful

to onsider the annihilators of f; 1 + f to study its resistane against algebrai attak and

one would always like to get a Boolean funtion f , suh that both f and 1 + f do not have

any annihilator with degree < d

n

2

e. Further, if one onsiders the algebrai degree of an n-

variable Boolean funtion, then it may very well happen that the funtion f(x

1

; x

2

; : : : ; x

n

)

is of very good algebrai degree, but if one onditions one variable, say f(x

1

= 0; x

2

; : : : ; x

n

),

the degree falls drastially. However, this is not true in terms of algebrai immunity. It

an be heked that if f has algebrai immunity t, then after onditioning any k variables,

the algebrai immunity of the subfuntion on n � k variables will be � t � k. This is

learly a stronger property than the algebrai degree of a Boolean funtion. Based on these

arguments and as the term has already been appeared in many papers [3{5, 7, 14, 15℄, one

may be tempted to use the term \algebrai immunity".
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To get out of this onfusion, in this paper we use the term \annihilator immunity" as

this learly quanti�es the measure how good a Boolean funtion is in terms of not having

low degree annihilators, and we feel this is also a properly de�nable neessary (may not be

suÆient) ondition for a Boolean funtion with respet to the resistane against algebrai

attak. As long as no better (and properly quanti�able) de�nition related to Boolean fun-

tion is proposed in terms of resistane against algebrai attak, \annihilator immunity"

of De�nition 1(2) remains an important topi to study in the �eld of ryptographially

signi�ant Boolean funtions.

The idea of our onstrution omes from the following.

Constrution 1 Let f; f

1

; f

2

2 B

n

with the following onditions.

1. There is no annihilator of f

1

; f

2

having degree < d

n

2

e.

2. supp(f) � supp(f

2

) and supp(1 + f) � supp(f

1

).

Then we have the following important result.

Lemma 1 Let f 2 B

n

be a funtion as desribed in Constrution 1. Then AI

n

(f) = d

n

2

e.

Proof: As supp(1 + f) � supp(f

1

), AN(1 + f) � AN(f

1

) and as supp(f) � supp(f

2

),

AN(f) � AN(f

2

). Sine there is no annihilator of f

1

; f

2

having degree < d

n

2

e, neither f

nor 1 + f an have any annihilator of degree < d

n

2

e. Thus AI

n

(f) = d

n

2

e.

Now we present the other diretion.

Lemma 2 Let f 2 B

n

and AI

n

(f) = d

n

2

e. Then there exist f

1

; f

2

2 B

n

with supp(f

1

) �

supp(1 + f) and supp(f

2

) � supp(f) suh that wt(f

1

) = wt(f

2

) =

P

d

n

2

e�1

i=0

�

n

i

�

and f

1

; f

2

have no annihilator of degree < d

n

2

e.

Proof: Sine AI

n

(f) = d

n

2

e, f has no annihilator of degree < d

n

2

e. That is, there annot

be any g(x

1

; : : : ; x

n

) = a

0

+

P

n

i=0

a

i

x

i

+ � � �+

P

1�i

1

:::�i

d

n

2

e�1

�n

a

i

1

:::i

d

n

2

e�1

x

i

1

� � �x

i

d

n

2

e�1

suh

that g(x

1

; : : : ; x

n

) = 0 where f(x

1

; : : : ; x

n

) = 1. That is there is no nonzero solution of

the system of homogeneous linear equations g(x

1

; : : : ; x

n

) = 0 for (x

1

; : : : ; x

n

) 2 supp(f)

on a

i

's, i.e., this system has full rank (

P

d

n

2

e�1

i=0

�

n

i

�

). So, there must be

P

d

n

2

e�1

i=0

�

n

i

�

many

linearly independent equations. Now we onstrut f

2

suh that supp(f

2

) is the set of input

vetors orresponding to

P

d

n

2

e�1

i=0

�

n

i

�

many linearly independent equations. So, f

2

has no

annihilator of degree < d

n

2

e. Similarly, we an onstrut f

1

onsidering (1 + f) has no

annihilator of degree < d

n

2

e.

Based on Lemma 1 and Lemma 2, we get a lear idea of a onstrution strategy for a

funtion with maximum possible annihilator immunity.

For odd n, there is no option other than f

1

= f and f

2

= 1+ f to have maximum anni-

hilator immunity for f , sine wt(f

1

) + wt(f

2

) = 2

P

d

n

2

e�1

i=0

�

n

i

�

= 2

n

. This fat also follows

from [14, Corollary 1℄ that a funtion on odd number of variables must be balaned (weight
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2

n�1

for n-variable funtion) to ahieve the maximum possible annihilator immunity. Also

reently it has been shown [6℄ that for balaned funtions on odd number of variables, it is

enough to onsider the annihilators of f (the ase for 1+ f will automatially be dedued)

in terms of maximum annihilator immunity. The exat result is as follows.

Proposition 1 [6℄ Let  2 B

n

(n odd) be balaned funtion and it does not have any

annihilator with algebrai degree < d

n

2

e. Then 1 +  has no annihilator with algebrai

degree < d

n

2

e. Consequently, AI

n

( ) = d

n

2

e.

However, for even n, wt(f

1

)+wt(f

2

) = 2

P

d

n

2

e�1

i=0

�

n

i

�

= 2

n

�

�

n

n

2

�

. So, a part of remaining

�

n

n

2

�

output points an be hosen randomly to get di�erent funtions f without a�eting

the annihilator immunity. Hene for even n ase this restrition is not as strit as odd n

ase.

2.1 A onstrution for maximum Annihilator Immunity

Let us now present the appliation of the basi theory for a onrete onstrution of fun-

tions having optimal annihilator immunity.

Constrution 2 Let f 2 B

n

.

1. If n is odd then

f(x

1

; : : : ; x

n

) = 0 for wt(x

1

; : : : ; x

n

) � b

n

2

;

= 1 for wt(x

1

; : : : ; x

n

) � d

n

2

e:

2. If n is even then

f(x

1

; : : : ; x

n

) = 0 for wt(x

1

; : : : ; x

n

) <

n

2

;

= 1 for wt(x

1

; : : : ; x

n

) >

n

2

;

= b 2 f0; 1g for wt(x

1

; : : : ; x

n

) =

n

2

:

Lemma 3 De�ne two funtions f

1

; f

2

2 B

n

as follows.

f

1

(x

1

; : : : ; x

n

) = 1 for wt(x

1

; : : : ; x

n

) < d

n

2

e;

= 0 for wt(x

1

; : : : ; x

n

) � d

n

2

e:

f

2

(x

1

; : : : ; x

n

) = 0 for wt(x

1

; : : : ; x

n

) � d

n

2

e;

= 1 for wt(x

1

; : : : ; x

n

) > d

n

2

e:

Then f

1

; f

2

have no annihilator of degree < d

n

2

e.
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Proof: We �rst show that f

1

has no annihilator of degree < d

n

2

e. Suppose f

1

has a nonzero

annihilator g 2 B

n

having degree < d

n

2

e of the form

a

0

+

n

X

i=0

a

i

x

i

+ � � �+

X

1�i

1

<:::<i

d

n

2

e�1

�n

a

i

1

;:::;i

d

n

2

e�1

x

i

1

� � �x

i

d

n

2

e�1

;

where a's are in f0; 1g, but not all of them are zero. As g is an annihilator of f

1

,

g(x

1

; : : : ; x

n

) = 0 when f

1

(x

1

; : : : ; x

n

) = 1. Hene solving the system of homogeneous

linear equations (onsidering a's as the variables) formed by g(x

1

; : : : ; x

n

) = 0 when

f

1

(x

1

; : : : ; x

n

) = 1, we must get a nontrivial (not all zero) solution on a's.

Let us onsider an input (x

1

; : : : ; x

n

), where x

i

1

; : : : ; x

i

t

are 1 (t < d

n

2

e) and the rest

are 0 with f

1

(x

1

; x

2

; : : : ; x

n

) = 1. Then for this input, we have the homogeneous linear

equation of the form

P

I�fi

1

;:::;i

t

g

a

I

= 0, i.e., a

i

1

;:::;i

t

=

P

I�fi

1

;:::;i

t

g

a

I

.

Sine f

1

(0; : : : ; 0) = 1, we must have g(0; : : : ; 0) = 0, i.e., a

0

= 0. As f

1

(x) = 1 for

wt(x) = 1, we have a

i

= a

0

= 0. Following the same proess we have all a's in g are 0.

Thus g beomes a zero funtion, whih is a ontradition as we have started with nonzero

g. Thus f

1

has no annihilator of degree <

n

2

.

Now we show that f

2

has no annihilator of degree < d

n

2

e. Suppose f

2

has an an-

nihilator h of degree < d

n

2

e. That is, f

2

(x

1

; � � � ; x

n

) � h(x

1

; � � � ; x

n

) = 0. Note that

f

1

(x

1

; � � � ; x

n

) = f

2

(1+x

1

; � � � ; 1+x

n

), i.e., f

2

(x

1

; � � � ; x

n

) = f

1

(1+x

1

; � � � ; 1+x

n

). Thus,

f

1

(1+x

1

; � � � ; 1+x

n

)�h(x

1

; � � � ; x

n

) = 0. De�ne h

0

as h

0

(x

1

; � � � ; x

n

) = h(1+x

1

; � � � ; 1+x

n

),

i.e., h(x

1

; � � � ; x

n

) = h

0

(1 + x

1

; � � � ; 1 + x

n

). This gives deg(h

0

) = deg(h) < d

n

2

e. Hene, we

have f

1

(1+x

1

; � � � ; 1+x

n

)�h

0

(1+x

1

; � � � ; 1+x

n

) = 0, i.e., f

1

(x

1

; : : : ; x

n

)�h

0

(x

1

; : : : ; x

n

) = 0.

So, f

1

has an annihilator of degree < d

n

2

e, whih is a ontradition.

Thus we get the following theorem.

Theorem 1 Let f(x

1

; : : : ; x

n

) 2 B

n

onstruted by Constrution 2. Then AI

n

(f) = d

n

2

e.

Proof: First we prove for odd n. Here supp(1 + f) = supp(f

1

) and supp(f) = supp(f

2

),

where f

1

; f

2

are as desribed in Lemma 3. Thus from Lemma 1 we have the proof for odd

n. Now we will prove for n even. It an be heked that supp(1 + f) � supp(f

1

) and

supp(f) � supp(f

2

), where f

1

; f

2

are as desribed in Lemma 3. This, using Lemma 1, gives

the proof for n even.

3 Algebrai Degree and Nonlinearity for a subase

(Symmetri Funtions) of Constrution 2

Given the funtion f in Constrution 2, we an onsider a speial ase where f is as follows.

Constrution 3

f(x

1

; : : : ; x

n

) = 0 for wt(x

1

; : : : ; x

n

) � b

n

2

;

= 1 for wt(x

1

; : : : ; x

n

) > b

n

2

:

7



Note that in this ase f is a symmetri Boolean funtion. A Boolean funtion is alled

symmetri if it outputs the same value for all the inputs of same weight. Thus it is lear

that one an represent an n-variable symmetri Boolean funtion f(x

1

; : : : ; x

n

) in a redued

form by n+ 1 bits string re

f

suh that re

f

(i) = f(x

1

; : : : ; x

n

) when wt(x

1

; : : : ; x

n

) = i. It

is also lear that in the algebrai normal form, a symmetri Boolean funtion will either

ontain all the terms of the same degree monomial or none of them. Thus we an present the

algebrai normal form in a redued form by n+1 bits string ra

f

suh that ra

f

(i) = 1, when

all the i degree monomials are present and ra

f

(i) = 0, when all the i degree monomials are

absent. Thus for an n-variable symmetri Boolean funtion f , both re

f

; ra

f

an be seen

as mappings from f0; 1; : : : ; ng to f0; 1g.

Now we exatly alulate the algebrai degree, weight and nonlinearity of the funtions

in Constrution 3.

3.1 Algebrai Degree

The relationship between re

f

; ra

f

have been presented in [22, Theorem 3℄ as

re

f

(i) = (

i

X

k=0

ra

f

(k)

�

i

k

�

) mod 2; (1)

where 0 � i � n. From [10, Page 85℄, for two integer sequenes p; q,

p

i

=

i

X

k=0

q

k

�

i

k

�

i� q

i

=

i

X

k=0

p

k

(�1)

i�k

�

i

k

�

: (2)

From Equation 1 and Equation 2 we get

Proposition 2 ra

f

(i) = (

i

X

k=0

re

f

(k)

�

i

k

�

) mod 2.

Proposition 3 Suppose n and k are nonnegative integers with n � k. Let n = 2

t

+ l where

0 � l < 2

t

and t � 0. Then we have

1. Let k = 2

t

+ l

1

where l

1

� l. Then

�

n

k

�

is even i�

�

l

l

1

�

is even.

2. Let k = 2

t�1

+ l

2

where l

2

< 2

t�1

. Then

�

n

k

�

is even.

Proof: De�ne T (x) = a for any integer x = 2

a

b where b is an odd integer. It an be

heked that T ((2

m

)!) =

P

m�1

i=0

2

i

= 2

m

� 1. For 0 � j < 2

m

, T ((2

m

+ j)!) = T ((2

m

)!) +

T ((2

m

+ 1)(2

m

+ 2) � � � (2

m

+ j)) = 2

m

� 1 + T (1 � 2 � � � j) = 2

m

� 1 + T (j!).

For item 1, we have k = 2

t

+l

1

where l

1

� l. So, T (

�

n

k

�

) = T (n!)�(T (k!)+T ((n�k)!)) =

T ((2

t

+ l)!)� (T ((2

t

+ l

1

)!)+T ((l� l

1

)!)) = 2

t

� 1+T (l!)� (2

t

� 1+T (l

1

!)+T ((l� l

1

)!)) =

T (l!)� (T (l

1

!) + T ((l � l

1

)!)) = T (

�

l

l

1

�

).

8



For item 2, we have k = 2

t�1

+ l

2

where l

2

< 2

t�1

. So, T (

�

n

k

�

) = T ((2

t

+ l)!)�(T ((2

t�1

+

l

2

)!) + T ((2

t�1

+ l � l

2

)!)) = 2

t

� 1 + T (l!)� (2

t�1

� 1 + T (l

2

!) + 2

t�1

� 1 + T ((l� l

1

)!)) =

1 + T (l!)� (T (l

1

!) + T ((l � l

1

)!)) = 1 + T (

�

l

l

1

�

) � 1. So,

�

n

k

�

is even.

The following result provides the algebrai normal form and degree of f .

Theorem 2 Let f 2 B

n

a symmetri funtion as given in Constrution 3. Then,

1. ra

f

(i) = 0 for i � b

n

2

,

2. ra

f

(b

n

2

 + 1) = 1,

3. ra

f

(i) =

P

i

k=b

n

2

+1

�

i

k

�

mod 2, for i � b

n

2

 + 2,

4. deg(f) = 2

blog

2

n

.

Proof: Given the funtion f , it is lear that re

f

(i) = 0 for 0 � i � b

n

2

 and re

f

(i) = 1

for b

n

2

 + 1 � i � n. Thus from ra

f

(i) = (

P

i

k=0

re

f

(k)

�

i

k

�

) mod 2 (Proposition 2), we get

ra

f

(i) = 0 for i � b

n

2

 and ra

f

(b

n

2

+ 1) = 1. So we get the proofs of items 1 and 2.

The item 3 follows from Proposition 2 onsidering the result from item 1 and using

re

f

(k) = 1 for k � b

n

2

+ 1.

Suppose t = blog

2

n and l = n � 2

t

, i.e., n = 2

t

+ l where 0 � l < 2

t

and t � 0.

For item 4 we need to show that ra

f

(i) = 1 for i = 2

t

= 2

blog

2

n

and ra

f

(i) = 0 for

all i > 2

t

. Now ra

f

(i) =

P

i

k=b

n

2

+1

�

i

k

�

mod 2. Here n = 2

t

+ l, i.e., b

n

2

 + 1 = 2

t�1

+

b

l

2

 + 1. Suppose i = 2

t

+ l

1

where 0 � l

1

� l. So following the fat

�

i

k

�

= 0 mod 2

for 2

t�1

� k < 2

t

in Proposition 3 (item 2) we have ra

f

(i) =

P

i

k=2

t

�

i

k

�

mod 2. Then

ra

f

(i) =

P

l

1

j=0

�

2

t

+l

1

2

t

+j

�

mod 2 as i = 2

t

+ l

1

. Then following Proposition 3 (item 1) we have

ra

f

(i) =

P

l

1

j=0

�

l

1

j

�

mod 2 = 2

l

1

mod 2. Thus, ra

f

(2

t

) = 1 as l

1

= 0 and ra

f

(i) = 0 for

i > 2

t

as l

1

> 0.

3.2 Nonlinearity

In this setion we will analyse the nonlinearity of the funtion f as explained in Constru-

tion 3. Nonlinearity is one of the most important ryptographi properties of Boolean

funtions whih is used in ryptosystems to prevent linear attaks [17℄. Moreover, this

property is also very interesting from ombinatorial point of view.

The nonlinearity of an n-variable funtion f; denoted as nl(f); is the minimum distane

from the set of all n-variable aÆne funtions, i.e.,

nl(f) = min

g2A(n)

(d(f; g)):

Walsh transform is a very useful tool in analysing Boolean funtions. Let x = (x

1

; : : : ; x

n

)

and ! = (!

1

; : : : ; !

n

) both belonging to f0; 1g

n

and x � ! = x

1

!

1

+ : : :+ x

n

!

n

: Let f(x) be

9



a Boolean funtion on n variables. Then the Walsh transform of f(x) is an integer valued

funtion over f0; 1g

n

whih is de�ned as

W

f

(!) =

X

x2f0;1g

n

(�1)

f(x)+x�!

:

A Boolean funtion f is balaned i� W

f

(0) = 0. The nonlinearity of f is given by

nl(f) = 2

n�1

�

1

2

max

!2f0;1g

n

jW

f

(!)j:

As the funtion f explained in Theorem 2 is a symmetri Boolean funtion, we here

onentrate on the Walsh spetra of this lass. The Walsh spetra of symmetri Boolean

funtions have very nie ombinatorial properties related to Krawthouk polynomial [24℄.

Krawthouk polynomial [20, Page 151, Part I℄ of degree i is given by

K

i

(x; n) =

i

X

j=0

(�1)

j

�

x

j

��

n� x

i� j

�

; i = 0; 1; : : : ; n: (3)

It is known that for a �xed !, suh that wt(!) = k,

X

wt(x)=i

(�1)

!�x

= K

i

(k; n):

Thus it an be heked that if f 2 B

n

is symmetri, then for wt(!) = k,

W

f

(!) =

n

X

i=0

(�1)

re

f

(i)

K

i

(k; n):

It is also known that for a symmetri funtion f 2 B

n

and �; � 2 f0; 1g

n

, W

f

(�) = W

f

(�),

if wt(�) = wt(�). Thus it is enough to alulate the Walsh spetra for the inputs of n+ 1

di�erent weights. Keeping this in mind, given a symmetri Boolean funtion f 2 B

n

, we

denote rw

f

(i) = W

f

(!), suh that wt(!) = i. Thus rw

f

an be seen as a mapping from

f0; : : : ; ng to Z.

Let us now list some known results in this area [18, 20℄.

Proposition 4

1. K

0

(k; n) = 1; K

1

(k; n) = n� 2k,

2. (i+ 1)K

i+1

(k; n) = (n� 2k)K

i

(k; n)� (n� i+ 1)K

i�1

(k; n),

3. K

i

(k; n) = (�1)

k

K

n�i

(k; n) (for n even and k odd, K

n

2

(k; n) = 0),

4.

�

n

k

�

K

i

(k; n) =

�

n

i

�

K

k

(i; n),

10



5. K

i

(k; n) = (�1)

i

K

i

(n� k; n), (for n even and i odd, K

i

(

n

2

; n) = 0),

6. (n� k)K

i

(k + 1; n) = (n� 2i)K

i

(k; n)� kK

i

(k � 1; n),

7. (n� i+ 1)K

i

(k; n+ 1) = (3n� 2i� 2k + 1)K

i

(k; n)� 2(n� k)K

i

(k; n� 1).

Proposition 5 For n even, K

i

(

n

2

; n) =

(

0 for odd i:

(�1)

i

2

�n

2

i

2

�

for even i:

Proof: For odd i, it is proved in Proposition 4. Now we will prove for even i using indution

on i. For the base step, i.e., i = 0, we have K

0

(

n

2

; n) =

�

n

2

0

�

= 1. We will prove indutive

step. Suppose it is true for i = l, i.e., K

l

(

n

2

; n) = (�1)

l

2

�

n

2

l

2

�

. Now we will prove for i = l+2.

Following Proposition 4(item 2), we have (l + 2)K

l+2

(

n

2

; n) = �(n � l)K

l

(

n

2

; n) (in the

proposition, we put l + 1 instead of i). So, K

l+2

(

n

2

; n) = (�1)

l

2

+1

n�l

l+2

�

n

2

l

2

�

= (�1)

l

2

+1

�

n

2

l

2

+1

�

.

Hene proved.

Let us now onentrate on the Walsh spetra of the symmetri funtion f as explained

in Constrution 3.

Lemma 4 Consider the funtion f on n number of variables as given in Constrution 3.

1. For k even, rw

f

(k) =

(

K

n

2

(k; n) for even n:

0 for odd n:

2. For k odd, rw

f

(k) = 2

P

b

n�1

2



i=0

K

i

(k; n).

3. rw

f

(1) = 2

�

n�1

b

n

2



�

.

4. rw

f

(n) =

(

(�1)

n

2

�

n

n

2

�

for even n:

(�1)

n�1

2

2

�

n�1

n�1

2

�

for odd n:

5. For even n, rw

f

(

n

2

) =

(

(�1)

n

4

�

n

2

n

4

�

for even

n

2

:

2

P

n�2

4

i=0

(�1)

i

�

n

2

i

�

for odd

n

2

:

Proof: From Proposition 4(3), we have K

i

(k; n) = (�1)

k

K

n�i

(k; n), i.e., if k is even,

K

i

(k; n) = K

n�i

(k; n). Now

rw

f

(k) =

n

X

i=0

(�1)

re

f

(i)

K

i

(k; n) =

b

n

2



X

i=0

K

i

(k; n)�

n

X

i=b

n

2

+1

K

i

(k; n);

as

re

f

(i) = 0 for 0 � i � b

n

2

 and

= 1 for b

n

2

 < i � n.
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Moreover,

n

X

i=b

n

2

+1

K

i

(k; n) =

d

n

2

e�1

X

j=0

K

j+b

n

2

+1

(k; n) =

d

n

2

e�1

X

j=0

K

n�j

(k; n) =

d

n

2

e�1

X

i=0

K

i

(k; n) =

b

n�1

2



X

i=0

K

i

(k; n): Hene, rw

f

(k) = K

n

2

(k; n) for even n and rw

f

(k) = 0 for odd n. This

proves the �rst item.

For the seond item, note that K

i

(k; n) = �K

n�i

(k; n) as k is odd. Following the proof

of item 1, we get rw

f

(k) = 2

P

b

n�1

2



i=0

K

i

(k; n) (the even n and odd k ase is handled under

the same formula as K

n

2

(k;n)

= 0). So, we prove the seond item.

For the third item, note that,K

i

(1; n) =

�

n�1

i

�

�

�

n�1

i�1

�

. Thus, following item 2, rw

f

(1) =

2

P

d

n

2

e�1

i=0

(

�

n�1

i

�

�

�

n�1

i�1

�

) = 2

�

n�1

d

n

2

e�1

�

. So, for odd n, rw

f

(1) = 2

�

n�1

n�1

2

�

and for even n,

rw

f

(1) = 2

�

n�1

n

2

�1

�

= 2

�

n�1

n

2

�

. Therefore for any n, rw

f

(1) = 2

�

n�1

b

n

2



�

.

For the fourth item, note that, K

i

(n; n) = (�1)

i

K

i

(0; n) = (�1)

i

�

n

i

�

. For n even,

following item 1, rw

f

(n) = K

n

2

(n; n) = (�1)

n

2

K

n

2

(0; n) = (�1)

n

2

�

n

n

2

�

. For odd n, following

item 2, rw

f

(n) = 2

P

n�1

2

i=0

(�1)

i

�

n

i

�

= 2

P

n�1

2

i=0

(�1)

i

(

�

n�1

i

�

+

�

n�1

i�1

�

) = �2

�

n�1

n�1

2

�

(positive when

n = 1 mod 4, negative when n = 3 mod 4).

For �fth item, following item 1 of this lemma and Proposition 5 the ase

n

2

even is

proved. Similarly, following item 2 of this lemma and Proposition 5 the ase

n

2

odd is

proved.

Lemma 5 For 1 � k � b

n�1

2

 and 0 � i � b

n�1

2

, K

i

(1; n) � jK

i

(k; n)j.

Proof: Note that, K

i

(1; n) =

�

n�1

i

�

�

�

n�1

i�1

�

� 0 for 0 � i � b

n�1

2

 and that implies

jK

i

(1; n)j = K

i

(1; n) in 0 � i � b

n�1

2

.

First, we will prove it for i � k using indution on k. In this diretion for the base step

we need to show K

i

(1; n) � jK

i

(1; n)j (whih is obvious) and K

i

(1; n) � jK

i

(2; n)j. Now

K

i

(2; n) =

�

n�2

i

�

� 2

�

n�2

i�1

�

+

�

n�2

i�2

�

and K

i

(1; n) =

�

n�1

i

�

�

�

n�1

i�1

�

=

�

n�2

i

�

+

�

n�2

i�1

�

�

�

n�2

i�1

�

�

�

n�2

i�2

�

=

�

n�2

i

�

�

�

n�2

i�2

�

. If K

i

(2; n) � 0 then K

i

(1; n) � K

i

(2; n) = 2(

�

n�2

i�1

�

�

�

n�2

i�2

�

) � 0

as (i � 1) � b

n�2

2

. If K

i

(2; n) � 0 then K

i

(1; n) + K

i

(2; n) = 2(

�

n�2

i

�

�

�

n�2

i�1

�

) � 0 for

i � b

n�2

2

. Note that, b

n�1

2

 = b

n�2

2

 when n is even and

�

n�2

i

�

�

�

n�2

i�1

�

= 0 for i = b

n�1

2



when n is odd. Therefore, jK

i

(1; n)j � jK

i

(2; n)j, i.e., K

i

(1; n) � jK

i

(2; n)j. Thus the base

steps are proved.

Suppose for some 1 � k < b

n�1

2

, K

i

(1; n) � jK

i

(j; n)j for all j, 1 � j � k. Now we

will prove K

i

(1; n) � jK

i

(k + 1; n)j. From Proposition 4(6), we have

(n� k)K

i

(k + 1; n) = (n� 2i)K

i

(k; n)� kK

i

(k � 1; n),

i.e., (n� k)jK

i

(k + 1; n)j � (n� 2i)jK

i

(k; n)j+ kjK

i

(k � 1; n)j,

i.e., (n� k)jK

i

(k + 1; n)j � (n� 2i)K

i

(1; n) + kK

i

(1; n),

i.e., jK

i

(k + 1; n)j �

n�2i+k

n�k

K

i

(1; n),

i.e., jK

i

(k + 1; n)j � K

i

(1; n), sine

n�2i+k

n�k

� 1 for i � k. So, the proof is ompleted for

j = k + 1. Hene, K

i

(1; n) � jK

i

(k; n)j for 0 � i � b

n�1

2

, 1 � k � b

n�1

2

 and i � k.
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Now we will prove for 0 � i < k � b

n�1

2

. Sine k > i, following the above proof,

we have K

k

(1; n) � jK

k

(i; n)j by interhanging the role of k and i. Thus,

�

n

i

�

K

k

(1; n) �

�

n

i

�

jK

k

(i; n)j. Now following Proposition 4(4), we have

�

n

i

�

K

k

(1; n) �

�

n

k

�

jK

i

(k; n)j, i.e.,

�

n

i

�

�

n

k

�

K

k

(1; n) � jK

i

(k; n)j: (4)

Further, following Proposition 4(4), we have K

k

(1; n) =

(

n

k

)

(

n

1

)

K

1

(k; n) =

(

n

k

)

n

(n � 2k) and

K

i

(1; n) =

(

n

i

)

n

(n � 2i). So,

K

k

(1;n)

K

i

(1;n)

=

(

n

k

)

(n�2k)

(

n

i

)

(n�2i)

, i.e., K

k

(1; n) =

(

n

k

)

(n�2k)

(

n

i

)

(n�2i)

K

i

(1; n). Now

putting the value of K

k

(1; n) in Equation 4, we have

n�2k

n�2i

K

i

(1; n) � jK

i

(k; n)j, i.e.,

K

i

(1; n) � jK

i

(k; n)j, sine

n�2k

n�2i

< 1 as i < k. Hene the proof.

In the next orollary we extend the range of i and k.

Corollary 1

1. For odd n, jK

i

(1; n)j � jK

i

(k; n)j where 0 � i � n and 1 � k � n� 1:

2. For even n, jK

i

(1; n)j � jK

i

(k; n)j where 0 � i � n and 1 � k � n� 1 exept i =

n

2

or k =

n

2

.

Proof: The proof for 0 � i � b

n�1

2

 and 1 � k � b

n�1

2

 is done in Lemma 5. The

remaining part an be proved using the symmetry relations K

i

(k; n) = (�1)

k

K

n�i

(k; n)

and K

i

(k; n) = (�1)

i

K

i

(n� k; n) in Proposition 4(item 3 and item 5).

When n is even the relation proved above is not true for i =

n

2

and even k, sine

K

n

2

(1; n) = 0 and K

n

2

(k; n) is a non zero number for even k.

Theorem 3 Consider the funtions f 2 B

n

, as explained in Constrution 3. Then nl(f) =

2

n�1

�

�

n�1

b

n

2



�

.

Proof: First we prove that rw

f

(1) is maximum among all rw

f

(k) in 0 � k � n.

Case 1. Let n be odd. First we show that jrw

f

(k)j � rw

f

(1) for all k in the range

1 � k � n � 1. We know, jrw

f

(k)j = j2

P

b

n�1

2



i=0

K

i

(k; n)j � 2

P

b

n�1

2



i=0

jK

i

(k; n)j. From

Lemma 5 we have, K

i

(1; n) � jK

i

(k; n)j for 1 � k � n� 1, and 0 � i � b

n�1

2

. This gives,

jrw

f

(k)j � 2

P

b

n�1

2



i=0

K

i

(1; n) = rw

f

(1). Again from Lemma 4 we have, rw

f

(1) = jrw

f

(n)j.

Finally rw

f

(0) = 0. Hene rw

f

(1) � jrw

f

(k)j for 0 � k � n.

Case 2. Let n be even. Let us �rst onsider that k is odd and in 1 � k � n � 1

exept k =

n

2

. From Lemma 4 we get that jrw

f

(k)j = j2

P

b

n�1

2



i=0

K

i

(k; n)j. So following the

same argument used in the previous ase, we get jrw

f

(k)j � rw

f

(1). For k =

n

2

odd, from

Lemma 4(item 5) we have jrw

f

(

n

2

)j = j2

P

n�2

4

i=0

(�1)

i

�

n

2

i

�

j � 2

P

n�2

4

i=0

�

n

2

i

�

= 2

n

2

. By indution

on n it an be proved that 2

n

2

� 2

�

n�1

n

2

�

= rw

f

(1). So, for k odd and 1 � k � n�1, the proof

13



is done. When k even and 2 � k � n� 2, we have from Lemma 4 that rw

f

(k) = K

n

2

(k; n).

Now K

n

2

(k; n) =

P

n

2

j=0

(�1)

j

�

k

j

��

n�k

n

2

�j

�

�

P

n

2

j=0

�

k

j

��

n�k

n

2

�j

�

=

�

n

n

2

�

= rw

f

(1). Further, sine

K

n

2

(0; n) =

�

n

n

2

�

= jK

n

2

(n; n)j, we get, rw

f

(1) = rw

f

(0) = jrw

f

(n)j. Thus jrw

f

(k)j �

rw

f

(1) for all k in 0 � k � n.

So for any n, nl(f) = 2

n�1

�

1

2

jrw

f

(1)j = 2

n�1

�

�

n�1

b

n

2



�

.

Now we would like to present a few observations.

1. We have heked for odd n up to n = 11, the funtion we have onstruted in

Constrution 3, is the only funtion with maximum possible annihilator immunity

among the symmetri funtions. There is no other symmetri Boolean funtion on

odd number of variables that are of annihilator immunity d

n

2

e as far as we have

experimented. This is an important open question to be proved or disproved.

2. For even n, we have found that there are symmetri funtions with full annihilator

immunity other than what we have presented in Constrution 3. In fat so far we

have experimented, up to n = 12, we found funtions with full annihilator immunity

n

2

and nonlinearity greater than that of the funtion onstruted in Constrution 3.

In Table 2, we present the maximum nonlinearity available for symmetri Boolean

funtions on even number of variables having maximum possible annihilator immu-

nity. This we found by omputer searh by writing omputer program. It will be

interesting to haraterize the symmetri funtions on even number of variables with

maximum possible nonlinearity and maximum possible annihilator immunity

n

2

.

n 4 6 8 10 12

nonlinearity of Constrution 3 5 22 93 386 1586

maximum nonlinearity (by exhaustive searh) 6 26 94 394 1630

Table 1: Nonlinearity of symmetri Boolean funtions on even number of variables by

Constrution 3 and maximum nonlinearity by exhaustive searh.

4 Results omparing that of �

2k

in [15℄

We have proved that the nonlinearity of these funtions are same as the weight. Most

interestingly they are also same with what observed (not proved) for the funtion �

2k

in [15℄ for k = 1; : : : ; 8. However, our funtions an not always be linear transformation of

�

2k

as the algebrai degree of our funtions are di�erent from that of �

2k

as available in

Table 2.

Let us now onentrate on onstrution of balaned f with maximum possible annihi-

lator immunity for even n. Refer to the general form of f as given in Constrution 2. If b is

so hosen that out of

�

n

n

2

�

inputs, half of the orresponding outputs are 1 and the other half

14



n = 2k 2 4 6 8 10 12 14 16

deg(�

2k

) 2 4 5 8 9 11 13 16

deg(f) 2 4 4 8 8 8 8 16

Table 2: Comparison of algebrai degree.

are 0, then f will be balaned. To formalize it, onsider two sets S

n

; T

n

� fxjwt(x) =

n

2

g,

S

n

\ T

n

= ;, jS

n

j = jT

n

j =

1

2

�

n

n

2

�

. Note that there are

�

(

n

n

2

)

1

2

(

n

n

2

)

�

=

�

(

n

n

2

)

(

n�1

n

2

)

�

many di�erent

options to hoose any S

n

and orrespondingly a T

n

.

Now we have the following result.

Proposition 6 Let F be an n-variable balaned funtion (n even) as follows.

F (x

1

; : : : ; x

n

) = 0 for wt(x

1

; : : : ; x

n

) <

n

2

;

= 1 for wt(x

1

; : : : ; x

n

) >

n

2

;

= 0 for (x

1

; : : : ; x

n

) 2 S

n

;

= 1 for (x

1

; : : : ; x

n

) 2 T

n

:

Then nl(F ) � 2

n�1

�

�

n

n

2

�

.

Proof: Consider the funtion f in Constrution 3. It is lear that

1

2

�

n

n

2

�

many output points

in the truth table of f need to be toggled to get the funtion F . Thus nl(F ) � nl(f)�

1

2

�

n

n

2

�

.

From Theorem 3, nl(f) = 2

n�1

�

�

n�1

n

2

�

. Thus nl(F ) � 2

n�1

�

�

n�1

n

2

�

�

1

2

�

n

n

2

�

= 2

n�1

�

1

2

�

n

n

2

�

�

1

2

�

n

n

2

�

= 2

n�1

�

�

n

n

2

�

.

However, we now show a heuristi onstrution with whih we an really get muh

better value of nonlinearity of the balaned funtions. Note that we do not present any

theoretial proof here, but only list the experimental results.

For that we �rst refer to Maiorana-MFarland type of bent funtions. The Maiorana-

MFarland lass of bent funtion is as follows [16℄. Consider n-variable Boolean funtions

on (X; Y ), where X; Y 2 f0; 1g

n

2

of the form f(X; Y ) = X � �(Y ) + g(Y ) where � is a

permutation on f0; 1g

n

2

and g is any Boolean funtion on

n

2

variables. The funtion f

an be seen as onatenation of 2

n

2

distint (up to omplementation) aÆne funtion on

n

2

variables. For our purpose we onsider � as an identity permutation, g as a onstant

zero funtion and refer to this funtion on n variables as b(x

1

; : : : ; x

n

), for n even. Now we

onstrut an n-variable funtion G as follows.

G(x

1

; : : : ; x

n

) = 0 for wt(x

1

; : : : ; x

n

) <

n

2

;

= 1 for wt(x

1

; : : : ; x

n

) >

n

2

;

= b(x

1

; : : : ; x

n

) for wt(x

1

; : : : ; x

n

) =

n

2

:

15



Experimentally we observe that nl(G) = nl(f), for even n up to 16, where f is the funtion

as desribed in Constrution 3. Note that G is muh loser to balanedness than the

funtion f .

1. If wt(G) < 2

n�1

, then we hoose 2

n�1

� wt(G) points randomly from the inputs

having weight

n

2

and output 0 of G and toggle those outputs to 1.

2. If wt(G) > 2

n�1

, then we hoose wt(G) � 2

n�1

points randomly from the inputs

having weight

n

2

and output 1 of G and toggle those outputs to 0.

After this hange G will beome balaned. Experimentally we get the following result for

the funtion G in Table 3. We exeute 100 runs for eah n and take the best result among

the runs in terms of nonlinearity. We also observe that algebrai degree of the reported

funtions is the maximum possible, i.e., n� 1.

n = 2k 4 6 8 10 12 14 16

2

n�1

�

�

n�1

n

2

�

5 22 93 386 1586 6476 26333

nl(G) 4 22 92 384 1582 6468 26316

4(2

n�3

�

�

n�3

n�2

2

�

) 4 20 88 372 1544 6344 25904

Table 3: Comparison of nonlinearities.

We have also heked that G is always the maximum possible, i.e., n�1, for a balaned

funtion.

As by itself the funtion �

2k

was not balaned, the onstrution of balaned funtion

that has been mentioned in [15℄ with full annihilator immunity is basially x

1

+ x

2

+

�

2k�2

, where �

2k�2

was on the variables x

3

; : : : ; x

2k

. The nonlinearity of this funtion is

4nl(�

2k�2

) = 4(2

n�3

�

�

n�3

n�2

2

�

). That is also presented in the last line of Table 3. Clearly our

heuristi onstrution presents better nonlinearity than the balaned funtions presented

in [15℄.

5 Computing Walsh spetra of Symmetri Boolean

Funtions

Here we present an algorithm to alulate rw

f

from re

f

for a symmetri funtion f 2 B

n

.

Note that in [21, Page 33℄ it has been mentioned that alulating the Walsh spetra for

an n-variable symmetri funtion requires O(n

3

) time and O(n

2

) spae. In that ase

P

wt(x)=i

(�1)

!�x

= K

i

(k; n), has been stored in the (i; k)-th loation of an (n + 1) �

(n+ 1) integer matrix (O(n

2

) spae) and getting the value of eah loation required O(n)

operations. Thus O(n

3

) time is spent. Then for eah weight k the value of rw

f

(k) is

alulated in O(n) time and this is again done for (n + 1) di�erent weights [0; : : : ; n℄.

This takes additional O(n

2

) steps. However, we here show that using the properties of

16



Krawthouk polynomial [18,20℄ this an be done in O(n

2

) time and O(n) spae. The basi

idea is as follows:

1. (a) At the same step, one we get K

i

(k; n) we an alulate K

n�i

(k; n) using Propo-

sition 4(3). Thus in the alulation of rw

f

(k), we an add these two values at

the same time, i.e., we get (�1)

re

f

(i)

K

i

(k; n) + (�1)

re

f

(n�i)

K

n�i

(k; n). To get

the omplete value of rw

f

(k), we need to apply this for i = 0 to

n�1

2

for n odd.

If n is even, one more step is required where the value (�1)

re

f

(

n

2

)

K

n

2

(k; n) will

also be added.

(b) At the same step, one we get K

i

(k; n) we an alulate K

i

(n � k; n) using

Proposition 4(5) and then K

n�i

(n � k; n) using Proposition 4(3). Thus in the

alulation of rw

f

(n � k), we an add these two values at the same time, i.e.,

we get (�1)

re

f

(i)

K

i

(n� k; n) + (�1)

re

f

(n�i)

K

n�i

(n� k; n). To get the omplete

value of rw

f

(n � k), we need to apply this for i = 0 to

n�1

2

for n odd. If n is

even, one more step is required where the value (�1)

re

f

(

n

2

)

K

n

2

(n�k; n) will also

be added.

Thus at the same time rw

f

(k); rw

f

(n� k) are alulated for 0 � k �

n�1

2

, when n is

odd. If n is even, we need to alulate rw

f

(

n

2

) separately. Thus if K

i

(k; n) values are

available in onstant time (see below), then alulation of omplete Walsh spetra

requires O(n

2

) time.

2. From Proposition 4(1), we get K

0

(k; n) = 1; K

1

(k; n) = n � 2k as the initial val-

ues. Then given K

i�1

(k; n) and K

i

(k; n), it is possible to get K

i+1

(k; n) by Proposi-

tion 4(2). Thus, just by storing two old values and keeping one temporary variable,

it is possible to get K

i

(k; n) for eah i in onstant time.

Moreover, it is lear that apart from storing (n+1) Walsh spetra value, the number

of other variables to be used are onstant. Thus the spae omplexity is O(n).

The exat C program like algorithm (Algorithm 1) is presented below.

Algorithm 1 Algorithm to alulate the Walsh spetra of a Symmetri Boolean funtion.
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input: number of variables n, symmetri funtion re

f

;

output: Walsh spetra rw

f

;

for (k = 0 to b

n�1

2

)f

v

1

= (�1)

re

f

(0)

+ (�1)

re

f

(n)+k

;

v

2

= (�1)

re

f

(0)

+ (�1)

re

f

(n)+n�k

;

p = n� 2k; q = 1;

for (i = 1 to b

n�1

2

)f

v

1

= v

1

+ ((�1)

re

f

(i)

+ (�1)

re

f

(n�i)+k

)p;

v

2

= v

2

+ ((�1)

re

f

(i)+i

+ (�1)

re

f

(n�i)+i+n�k

)p;

r =

(n�2k)p�(n�i+1)q

i+1

;

q = p; p = r;

g

if n is evenf

i =

n

2

;

v

1

= v

1

+ (�1)

re

f

(i)

p;

v

2

= v

2

+ (�1)

re

f

(i)+i

p;

g

rw

f

(k) = v

1

; rw

f

(n� k) = v

2

;

g

if (n is even)f

k =

n

2

;

v

1

= (�1)

re

f

(0)

+ (�1)

re

f

(n)+k

;

p = n� 2k; q = 1;

for (i = 1 to b

n�1

2

)f

v

1

= v

1

+ ((�1)

re

f

(i)

+ (�1)

re

f

(n�i)+k

)p;

r =

(n�2k)p�(n�i+1)q

i+1

;

q = p; p = r;

g

i =

n

2

;

v

1

= v

1

+ (�1)

re

f

(i)

p;

rw

f

(k) = v

1

;

g

6 Conlusion

In this paper we ould identify the basi theory towards the onstrution of Boolean fun-

tions with full annihilator immunity. Based on the theory we present some onrete on-

strution ideas. Further we ould study the other ryptographi properties like nonlinearity

and algebrai degree theoretially. Our work ompares favourably than what has been pre-

sented in a reent paper [15℄.

Examples are now available [14, Setion 4.1℄ that there exist Boolean funtions having

optimum parameters in terms of di�erent ryptographi properties suh as balanedness,

18



nonlinearity, algebrai degree, annihilator immunity and orrelation immunity. However,

there is no suh onstrutions yet in that diretion. The existing onstrutions, that ahieve

optimization in terms of the parameters balanedness, nonlinearity, algebrai degree, and

orrelation immunity, do not provide maximum possible annihilator immunity. This is an

important open area of researh.
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