Lightweight Key Exchange and Stream Cipher
based solely on Tree Parity Machines

Markus Volkmer and Sebastian Wallner

Hamburg University of Technology
Department of Computer Engineering VI
D-21073 Hamburg, Germany

{markus.volkmer,wallner}@tu-harburg.de

Abstract. Alternative security solutions are considered in science and
industry, motivated by the strong restrictions as they are often present in
embedded security scenarios — especially in a RFID setting. We investi-
gate a low hardware-complexity cryptosystem for lightweight symmetric
key exchange and stream cipher based on Tree Parity Machines. The
speed of a key exchange is basically only limited by the channel capacity
as is the stream cipher throughput. This work significantly improves and
extends previously published results on TPMRAs. Again, characteris-
tics of standard-cell ASIC design realizations as IP-core in 0.18-CMOS
technology are evaluated.

Keywords: Embedded Security, Lightweight Symmetric Key Exchange,
Lightweight Stream Cipher, Tree Parity Machine

1 Key Exchange, Stream Ciphers and RFID

The investigation of alternative security primitives and technologies is stimu-
lated by the strong restrictions present in resource-limited devices. In sensor
networks, RFID-systems or Near Field Communication (NFC), the devices in
use (as nodes of a network) can impose severe size limitations and power con-
sumption constraints. The available size for additional cryptographic hardware
components is often limited if not available at all [1, 2, 3]. The RFID-industry
should have a particular interest in security, because the commercial prosperity
of their products is directly linked to the secrecy of data via customer accep-
tance [2, 4]. To optimize a cost-performance-ratio regarding chip-area, channel
bandwidth, power consumption and code-size with respect to a given platform
(Microcontroller, FPGA, ASIC) represents a challenge in general [5].

Secure key exchange is considered most critical and complex in this context
and of major importance with regard to security. Regarding applications in em-
bedded systems, asymmetric (public-key) group-based cryptosystems based on
Elliptic Curve Cryptography (ECC), the generalization to Hyper-Elliptic Curves
(see e.g. [6]) and hardware-specific extensions for efficient arithmetic [7] are state-
of-the-art. Without a reduction of the security, these representations allow to
reduce the size of the numbers to calculate with. Yet, more complex expressions

need to be calculated. Also, the ring-based asymmetric cryptosystem NTRU
[8, 9] calculates on rather small numbers.

According to Paar [5] implementations of ECC on 16-bit microprocessors
(clock-frequency < 50 MHz) are feasible, while RSA and Diffie-Hellman are still
hard. On an 8-bit microprocessor (clock-frequency < 10 MHz) only symmetric
algorithms are considered applicable given low data rates. Asymmetric algo-
rithms here require an additional crypt-coprocessor. As ECC requires more than
10000 gates and DES alone already demands a few 1000 gates, only lightweight
stream ciphers are considered applicable for the extreme case of an RFID-tag
with around 1000 gates and no microprocessor available (cf. [5]). Symmetric al-
gorithms for this class are sought and stream ciphers are again considered for
such niche applications [10]. Stream ciphers are regarded competitive with block
ciphers when a small footprint in hardware implementations is required. Though
the security aspects of RFID have not been standardized so far, the use of stream
ciphers here seems forseeable due to the present constraints. Next to higher
bandwidth, second generation RFID tags are planned to have improved security
(encryption, password functions, authentication) and read/write capability. Key
exchange requires read /write RFID devices for bidirectional communication and
first tags with challenge and response authentication are developed [11, 12].

After all, a key exchange still remains of prohibitive cost and only stream ci-
phers seem to be applicable for encryption in strongly restricted domains. Seek-
ing and investigating alternative approaches beyond efficient implementations
of established primitives thus remains a challenge for research. In practice, a
necessary tradeoff between the level of security and the available resources or
computation time often has to be faced.

We suggest to discuss a hardware solution for lightweight symmetric key
exchange and stream cipher based on so-called Tree Parity Machines [13]. We
present a fully serial architecture-variant based on [14] using this key exchange
concept and a trajectory mode, that allow for fast successive key generation
and exchange, as well as for a synchronous stream chipher. It enables short key
lifetimes through the achievable speed of a key exchange and consequently fast
resynchronisation for the stream cipher. We focus on a low hardware-complexity
IP-Core solution for resource-limited devices. Feasible frequent rekeying and vari-
able key lengths allow for flexible security levels especially in environments with
moderate security concerns.

2 Key Exchange by Tree Parity Machines

The fast synchronization of two interacting identically structured Tree Parity
Machines (TPMs) is proposed by Kinzel and Kanter [13] as a method for sym-
metric key exchange. It does not involve large numbers and principles from num-
ber theory and is related to secret key agreement based on interaction over a
public insecure channel as it is discussed under information theoretic aspects by
Maurer and others [15, 16, 17, 18]. The exchange protocol is realized by an inter-
active adaptation (error-correction) process between the two interacting parties
A and B. The TPM (see Figure 1a) consists of K independent summation units

(1 < k < K) with non-overlapping inputs in a tree structure and a single parity
unit at the output. Each summation unit receives different N inputs (1 < j < N),

X1 AN X Xon X XN X

Fig.1. (a) The Tree Parity Machine. A single output is calculated from the parity
of the outputs of the summation units. (b) Outputs on commonly given inputs are
exchanged between parties A and B for adaptation of their preliminary key.

leading to an input field of size K - N. The vector-components are random vari-
ables with zero mean and unit variance. The output O4/?(t) € {-1,1} (A/B
denotes equivalent operations for A and B), given bounded coefficients (weights)
w;‘j/B(t) € [-L,L] C Z (from input unit j to summation unit k) and common
random inputs x;(t) € {—1,1}, is calculated by a parity function of the signs
of summations:

K N

oY) =1]w'"(t) = Ha(wef " (t) a:kj(t)> - (1)
1 k=1 j=1

k=

o(-) denotes the sign-function. The so-called bit package variant (cf. [13]) reduces
transmissions of outputs by an order of magnitude down to a few packages. Par-
ties A and B start with an individual randomly generated secret initial vector

wfj/ ?(t,). These initially uncorrelated random variables become correlated (iden-

tical) over time through the influence of the common inputs and the interactive
adaptation as follows. After a set of b > 1 presented inputs, where b denotes
the size of the bit package, the corresponding b TPM outputs (bits) O*/Z ()
are exchanged over the public channel in one package (see Figure 1b). The b
sequences of signs of the summation units y;/”(t) € {—1,1} are stored for the
subsequent adaptation process. A hebbian learning rule adapts the coefficients
(the preliminary key), using the b outputs and b sequences of signs. They are
changed only on equal output bits O“(t) = O (t) at both parties. Furthermore,
only coefficients of those summation units are changed, that agree with this
output:

OE(t) =y P (t) w;:j/B(t) = w;:j/B(t — 1) 4+ 07 (t) zp;(t) . (2)

Coefficients are always bound to remain in the maximum range [-L,L] C Z
by reflection onto the boundary values. Iterating the above procedure in as an
interactive protocol, each component of the preliminary key performs a random
walk with reflecting boundaries. The resulting key space is of size (2L + 1)*V.
Two corresponding components in wy;(t) and wg; () receive the same random
component of the common input vector zy;(t). Atter each bounding operation,
the distance between the two components is successively reduced to zero. When
both parties adapted to produce each others outputs, they remain synchronous
without further communication (see Equation 2) and continue to produce the
same outputs on every commonly given input. Common coefficients are now
present in both TPMs in each of the following iterations. This preliminary key
can be used to derive a common time-dependent final key by privacy amplifi-
cation [15, 16] or can be used directly. Furthermore, synchrony is achieved only
for common inputs. Thus, keeping the common inputs secret between A and B
can be used to have an (entity) authenticated key exchange. There are 2%V — 1
possible inputs in each iteration, yielding as many possible initializations for a
pseudo random number generator.

2.1 Trajectory Mode, Security and Attacks

Again consider that when the two parties are synchronous they also have the
same outputs in each iteration. Communication can thus be stopped and each
party then simply applies the adaptation (Equation 2) with its own output in
order to have a next key from the trajectory in key-space. Using the Trajectory
Mode this way avoids the stated security weakness in [19], which assumes an
ongoing communication. As soon as a new key is present, it is used for encryption.
Each integer component of the the key is again XORred with an appropriate
length concatenation of L input bits to further decorrelate subsequent keys. It
can then be used block-wise or be used on a per-packet basis, depending on the
concrete application. In any case, the key is only used to encrypt a certain small
subset of the plaintext. This especially allows to realize short key lifetimes.

For the key exchange protocol without entity authentication, eavesdropping
attacks have concurrently been proposed by Shamir et al. [20] and Kanter,
Kinzel et al. [21, 22, 23]. But the prevalent definition of a successful attack is
having a 98 percent average overlap |w”(t) - w*/” (t)| (averaged over all summa-
tion units) with the coefficients of one party, when parties A and B are already
synchronous and thus successfully finished the key exchange and the communi-
cation. The authors chose this definition, because of the strong fluctuations in
the success probability using a strict definition. The attacks in [20, 21, 22, 23]
can all be made arbitrarily costly and thus can practically be defeated by sim-
ply increasing the parameter L. The security increases proportional to L? while
the probability of a successful attack decreases exponentially with L [21]. The
approach is thus regarded computationally secure with respect to these attacks
for sufficiently large L [24, 23].

The latest attack, which does not seem to be affected by an increase of L
(but still by an increase of K) uses a hundred coordinated and communicating

TPMs [23]. A successful attack according to the definition given above could
be achieved with a probability of 0.5. The success probability of achieving a
99 percent average overlap drops down to 0.25. However, an attacker here does
not know either, which of the K - N components of the coefficients (the key)
are correct. In currently used symmetric encryption algorithms, the flipping of a
single bit only already leads to a complete failure in decryption. Due to the only
partial knowledge of an attacker on the final key, an added or included privacy
amplification through hashing can further significantly decrease this knowledge
and increase the secrecy of the final key (compare [17, 18]) and also the security
of the trajectory mode. It increases the entropy of the keys and destroys partial
knowledge an attacker might have gained on the key from the known attacks.

2.2 Key Exchange between Multiple Parties

Multiple parties can exchange a common key again based on TPM interaction
and the synchronisation property. Once two parties p; and ps have synchronized
and thus exchanged a common key, they have identical internal states w*1/?2 and
can be considered a single TPM p, ,. The exchange of a common key between
G > 2 parties can thus be achieved by two basic strategies: parallel interaction
processes and sequential interaction processes. Without loss of generality an
appropriate numbering (and renumbering) of parties can be performed.

Using parallel interaction processes, an even number of parties G is ini-
tially divided into k groups of interacting pairs (p;,p,)r with k = 1,--- /G/2,
i,j = 1,--- ,G and i # j, performing a pairwise (independant) key exchange
in parallel as explained before. After each group has a common key, pairs of
synchronous groups now interact again (in a divide-and-conquer strategy) to ex-
change a common key. This is done until two remaining groups synchronize the
final common key in a final interaction process:

(p1apz)1,(p37p4)z,"' 7(pG—17pG)G/2 (3)
~ (p1‘2ap3‘4)17(p5.07p7‘8)27"' 7(p(c/2)—17pc/2)c/4 ~roer D (4)

If G is odd, the remaining party waits until all other G—1 groups have exchanged
a common key and then performs one last interaction process with the synchro-
nized group. The complexity of this multi-party key-exchange scales logarithmic
with the number of parties, i.e. O(log G). Note that the parallel variant requires
either independent parallel or multiplexed communication channels. Also note
that in practice only two TPMs in each group have to actively send and receive
output bits, whereas the others in the group only receive.

In a sequential interaction processes, two parties p; and p, exchange a com-
mon key as described before. Having a common key they become a group p; 2
that now interacts with a third party ps, and so on. This way, a linear chain

(' o ((p17p2)ap3)7 ' ")7pG) ~ (o ((p1.27p3)ap4) o ')apc) Al P (5)

of interaction processes is performed. Note that for the group only one sequence
of outputs has to be communicated, as it is identical to all parties (TPMs)

in the group. Again, in practice only one TPMs in the group has to actively
send and receive output bits, whereas the others in the group only receive. The
complexity of this multi-party key-exchange scales linear with the number of
parties, i.e. O(G).

As each key exchange process (parallel or sequential) can independantly be
attacked, the security in the presented multi-party scenario scales inversly pro-
portional to the number of parties.

3 Stream Cipher by Tree Parity Machines

A TPM stream cipher can be constructed as follows. Remember that once two
parties are synchronous and successfully exchanged a key, they remain syn-
chronous in each further iteration (trajectory mode) and produce equal outputs.
The synchronous TPM stream cipher is based on the iteration of K coupled
non-linear dynamic functions y(#). The keystream generator can so be viewed
as being composed of K dynamic filter generators and a final (static) combiner
stage that acts similar to a threshold generator (see Figure 2). The initial state of
the keystream generator depends on the key ng(B(to) and the initialization vec-
tor x;(t,). Each dynamic filter generator consists of an N-bit LESR (counter
variables zy;(t)) and of N L-bit up/down counters (U/D-CTRs) with a non-
linear dynamic filtering stage. The filter depends on the key or current state
(state variables wy;(t)). The pseudo-random states of the LFSRs are expanded
and mixed with the key state, pseudo-randomly modifiying signs of the key
state. The subsequent integer addition (Equation 1) and reduction ¢ to a single
sign (bit) yg(t) extracts the output of the dynamic filter generator. The final
keystream output is an Exclusive-Or of K sign bits o: O(t) = 0, D0, &+ B ok
The Exclusive-Or is also used as the statically balanced combiner to generate
the ciphertext ¢(t) from the keystream and the plaintext, i.e. ¢(t) = O(t) @ p(t).
The number of cycles to calculate one output bit (with the serial TPMRA) is
to = (K N+ K) +3.
The next-state function

6, BXxLxBxB—L B={-11}, L=[-L,L]CZ (6)

0. (0, wij, Trj, yr) = Wy (7)

defined via Equation 2, adapts and bounds the filter coefficients (the state) and
represents a nonlinear state update, i.e. the keystream depends on a non-linear
state-machine. As explained in Section 2, the state variables wy;(t) perform a
random walk with reflecting boundaries in a state space of size (2L + 1)*V. The
TPM stream cipher has (2°¥ —1) - (2L + 1)~ possible internal states divided
into K - N state variables wy;(t) € [-L, L] and the same number of counter
variables z;(t) € {—1,1}.

Unlike other stream ciphers in output feedback mode (OFB), the keystream
O(t) is fed back to the next-state function and not to the LESR (see Figure 2).
As an alternative, the ciphertext bits can be fed back (CFB) instead of the

N-bit LFSR - N-bit LFSR Vi N-bit LFSR

|4 14 1 AN /4 4 1 10k 4 1 L
[0 N L-bit U/D-CTRs N L-bit UID-CTRs| : :—~| N L=bit U/D-CTRs|
T . T T . | I] "

|
I

T

|

|

Fig. 2. The synchronous TPM stream cipher for K = 3. OFB and CFB modes are
indicated. Alternatively, the LFSRs can also have an internal feedback from the sum-
mation and thresholding units (dotted lines) resulting in the socalled Confused Tree
Parity Machine [25] with a simple shift register (with non-linear feedback) per hidden
unit replacing the LFSR.

output bits (see Figure 2), making the internal state change also depend on the
plaintext and yielding ¢, (¢, wy;, x5, Yx) in Expression 7. An integrity mechansim
is present in the TPM stream cipher in CFB mode. Due to the feedback to the
next-state function, a manipulation of the ciphertext leads to a change of the
state update at the receiving side. A manipulated keystream thus leads to a
decryption failure.

Often, in a real application of a stream cipher, it is required to use a single
key many times but with a different initialization vector (IV). Using public initial
values of the LFSRs, 2¥¥ — 1 IVs can be chosen. Yet, the TPMRA allows for
fast resynchronsation as a new key can efficiently be exchanged. Preliminary
statistical analysis yield the keystream to be indistinguishable from random.
Attacks on the stream cipher still have to be investigated.

4 ASIC-Implementation and Results

The Tree Parity Machine Rekeying Architectures (TPMRASs) [14] can be func-
tionally separated into two main structures. One structure comprises the Hand-
shake/Key Controller as well as the Bitpackage Unit and the Watchdog, the
other structure contains the Tree Parity Machine Unit for calculating the basic
TPM functions (Section 2). Figure 3a gives an overview of the hardware struc-
ture. The Handshake/Key Controller Unit handles the key transmission (even-
tually after privacy amplification) with an encryption unit and the bit package
exchange process with the other party by using a simple request and acknowl-
edge handshake protocol. It approves the handling of different synchronization
cycles between two key exchange parties in order to permit a regulated key- and

Bitpackage]
. O il] o)
o > Bitpackage i_g,’%: £
itpackage, | & [Unit oM] Linear Feedback Shift Regi
) X i gister
Handshake | T g o g
%o >
Sync Errofi| & 2 2 ! Parity Bit |
== g g Watchdog 3 " Weight | Computation |
Key SO [oo lemory Soooiiiiiiz:
A lat .
Handshake | T teration Coyp'qu @ coumuiator Weight |
- T = Adjustment |
< Key T J
(a) (b)

Fig. 3. (a) Basic diagram of the Handshake/Key Controller with the Watchdog and
the Bitpackage Unit. (b) The serial Tree Parity Machine Unit. The TPM controller
state machine is omitted for clarity.

bit package exchange process. A key is handed over when the synchronization
process is finished, indicated by an acknowledge signal.

As described in Section 2, we implemented the bit package generalization of
the protocol [13]. It reduces communication down to a few packages. In both
architectures, the Bitpackage Unit partitions the parity bits (Equation 1) from
the TPM Unit in tighter bit slices. In addition, it serializes the incoming bit
packages from other TPM for the adaptation (Equation 2). The Bitpackage
Unit handles bit package lengths up to n bits (depending on the key length).

The Watchdog supervises the synchronization between the two parties, which
is determined by the chosen parameters and the random initial values of the par-
ties. The Iteration Counter in the Watchdog counts the number of exchanged
parity bits. It generates a synchronization error (Sync Error), if there is no
synchronization within a specific number of iterations. In this case, the synchro-
nization process is triggered again. The Sync Counter is needed to determine the
synchronization of the TPMs by comparing and counting equal output bit pack-
ages. It is increased when a sent bit package and the corresponding received bit
package is identical and otherwise cleared. A synchronization is recognized when
a specified number of equal bit packages is reached. Both Sync- and Iteration-
Counter are programmable for variable average synchronization times subject to
the chosen TPM structure.

4.1 Serial TPM Unit

Different from the realization in [14], the serially realized TPM Unit calculates a
parity bit serially in time and is a fully parameterizable hardware structure. The
parameters K, N and L as well as the bit package length can be set arbitrarily in
order to adopt this architecture variant for different system environments. The
serial TPM Unit consists of a TPM control state machine, a LFSR, a Weight
Accumulator, a Parity Bit Computation and Weight Adjustment Unit and a

memory (Figure 3b). The TPM controller is realized as simple finite state ma-
chine. It handles the initialization of the TPM, the adaptation with the parity
bits of the bit package from the other party and controls the parity calculation
and weight adjustment. The LESR generates the pseudo random bits for the in-
puts zy;(t) of the TPM. The Parity Bit Computation computes the output par-
ity (Equation 1) and the Weight Adjustment Unit accomplishes the adaptation
(Equation 2). The Weight Accumulator computes each sum of the summation
units. Each partial result must be temporarily stored in the memory, due to the
serial processing of the summation units. The memory, implemented as a simple
register bank, stores the weights and the output bits from the summation units
in order to process the bit packaging. It could also be implemented as a register
file composed of several flip-flops. The memory size depends on the length of the
key, which is equal to K - N - L. The number of cycles for calculating a n-bit
packageis tzp = (2n—1)- (K- N + K) + 3.

4.2 Results

Parameterizable serial TPMRAs were designed and simulated by using VHDL
(compare [14]). While a FPGA-realization was used for easy prototyping, stan-
dard cell ASIC-realization prototypes were build to verify the suitability as an
embedded system component. The underlying process is a 0.18u six-layer CMOS
process with 1.8V supply voltage based on the UMC library [26]. The linear
complexity of the key exchange protocol scales with the size K - N of the TPM
structure, which defines the size K - N - L of the key. We chose K = 3, a maxi-
mal N = 88 and L = 4 for the serial architecture. This leads to a key size of up
to 1056 bit.

The cell-area (Figure 4a) of the serial TPMRA scales approximately linear
due to the linear increase in required memory and ranges around 0.11 square-
millimeter for the investigated key sizes. The number in braces denotes used
standard cells. Note, that most of the area is consumed by the memory, because
of the necessary storage of the partial results. The achievable clock-frequency
(Figure 4b) ranges between 285 and 471 MHz for the investigated key lengths.

Additionally, we established the throughput for key exchange (i.e. keys per
second) subject to the average synchronization time of 400 iterations for different
key lengths in Figure 4c. A practically finite channel capacity is neglected here.
We assumed the maximally achievable clock frequency with regard to each key
length, which can be achieved by Digital Phase Lock Loop (DPLL), regardless of
the systems clock frequency. The serial TPMRA achieves a maximal theoretical
throughput in the kHz-range. After the initial synchronization, the trajectory
mode allows to increase the throughput by two orders of magnitude due to the
reduced number of cycles for one bit package and the missing communication
(interaction) overhead. This mode is identical to the stream cipher mode and
we also appoint the theoretical throughput (bit-rate) of the TPM stream cipher
which is in the MHz-range.

Figure 4d shows throughput regarding key exchange and stream cipher sub-
ject to a NFC and a RFID communication channel and their bandwidths. In key

am

0.18 - Serial TPMRA —+— 0.178 (3648 celis) A+ 460 469 Serial TPMRA —+—
0.16 440
0.14 420
400
0.12 \K
384

0.110 (2637 cells) 380
01 360
008 340

0.076 (2390 cells) 320 314
0.06 s 0.058 (1662 cells)
0.049 (1468 cells) 300 28
72132 264 528 1056 72132 264 528 1056

(a) Area [mm?] vs. key length [bit] (b) Speed [MHz] vs. key length [bit]

’\{9&“}7 250
i 2372
F1.2e+07 (cipher) 1286 233 Loy

—68er® 25
.4e+06 1.76+06 200 NFC, 424 kbps (cipher)

150 14,3_%_141\ 135

NFC, 424 kbps (key ex.)

1e+07

le+06

126

100000

100
*\{363
\QSSS (key ex.)

90 50 RFID; 10 kbps (cipher)
3,31 31 31 31

10000

4539\.1_1(13

528 1056

72132 264

(¢c) Average key exchange rate and
stream cipher bit-rate [Hz] (log-
scaled) vs. key length [bit] (idealized
infinite channel bandwidth)

g RFID, 10 kbps (key ex.) g

t
72132 264 528 1056

(d) Average key exchange rate and
stream cipher bit-rate [Hz] vs. key
length [bit] (NFC and RFID chan-
nel/protocol)

Fig. 4. Serial TPMRA post-synthesis area-optimized results (key exchange and stream
cipher) vs. key length (UMC 0.18y six-layer CMOS standard cell process).

exchange mode, for every protocol the minimum available packet length was used
due to the necessary interaction through our bit packages of 32 bit: NFC (ECMA
Intl. NFC IP-1) 136 bit and RIFD (TI Taglt-Protocol), 94 bit. For the RFID
channel we appointed a 10 kbps channel for simplicity. The capacities here vary
with regard to Reader-to-Transponder (5-11 kbps) and Transponder-to-Reader
(26 kbps) communication. In stream cipher mode, for every protocol the max-
imum available packet length can be exploited (NFC 359 byte with 255 byte
payload, RFID 317 bit with 256 bit payload). A comparison among the different
communication channels indicates different slopes of the calculated throughput
characteristics (Figure 4d). They denote the rising influence of the output bit (bit

packaging) calculations at smaller key lengths for channels of higher bandwidth.
Thus, the slope of the NFC throughput characteristic is slightly higher than for
RFID. As expected, the influence of the channel bandwidth significantly deter-
mines the performance of the key exchange protocol and of the stream cipher.
Obviously, the bottleneck is the underlying communication-bus.

5 Conclusions

We suggest to discuss Tree Parity Machine Rekeying Architectures (TPMRAs)
for low hardware-complexity lightweight authenticated symmetric key exchange
and stream cipher. Efficient frequent rekeying (equivalent to a resynchronisation
of the stream cipher) and short key lifetimes can be implemented. Next to using
sophisticated encryption algorithms like Rijndal (AES), for example, performed
with the exchanged key, the TPMRA itself allows for a lightweight stream cipher
with feasible frequent rekeying. The stream cipher allows for a high throughput
and is basically limited by the communication channel.

We regard the TPMRAs as IP-cores in embedded system environments with
a particular focus on transponder-based applications such as RFID-systems, but
also on devices in ad-hoc and sensor networks, in which a small area for crypto-
graphic components is often mandatory. They are especially suited for devices of
limited resources with no or only very limited microcontrollers available — even
more in moderate security scenarios.

Acknowledgments

The authors would like to thank Sebastian Staiger (Hamburg University of Tech-
nology) for his contribution to the project, as well as University of Hamburg for
allowing us to use their industry-standard synthesis-toolchain the ASIC design.

References

[1] Stajano, F.: Security in pervasive computing. In: Proc. of the 1st International
Conference on Security in Pervasive Computing (SPC 2003). Volume 2802 of
LNCS., Springer Verlag (2003) 1

[2] Stanford, V.: Pervasive computing goes the last hundred feet with RFID systems.
Pervasive Computing, IEEE Computer Science (2003) 9-14

[3] Sarma, S.E., Weis, S.A., Engels, D.W.: RFID systems and security and privacy im-
plications. In Kaliski, B., ed.: Proc. of the Workshop on Cryptographic Hardware
and Embedded Systems 2002, CHES 2002. Volume 2523 of LNCS., Springer-Verlag
(2003) 454-469

[4] Weis, S.A., Sarma, S.E., Rivest, R.L., Engels, D.W.: Security and privacy aspects
of low-cost radio frequency identification systems. In Hutter, D., ed.: Proc. of
the 1st International Conference on Security in Pervasive Computing, SPC 2003.
Volume 2802 of LNCS., Springer-Verlag (2004) 201-212

[5] Paar, C.: Past and future of cryptographic engineering. Tutorial at HOT CHIPS
2003, Stanford University, USA (2003)

[6]

[7]
[8]

[9]

[10]

[11]
[12]
[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]
23]
[24]
[25]

[26]

Pelzl, J., Wollinger, T., Paar, C.: Low cost security: Explicit formulae for genus-4
hyperelliptic curves. In: 10th Annual Workshop on Selected Areas in Cryptography
(SAC 2003), Springer Verlag (2003)

Bailey, D., Paar, C.: Efficient arithmetic in finite field extensions with application
in elliptic curve cryptography. Journal of Cryptology 14 (2001)

Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryp-
tosystem. In Buhler, J., ed.: Proc. of Algorithmic Number Theory (ANTS III),
Portland, Oregon. Lecture Notes in Computer Science, Springer-Verlag, Berlin
(1998) 267-288

Hoffstein, J., Silverman, J.: Optimizations for NTRU. In: Proc. of Public-Key
Cryptography and Computational Number Theory, Warsaw. (2000)

Shamir, A.: Stream ciphers: Dead or alive? In: Proceedings of the International
Conference on the Theory and Application of Cryptology and Information Security
— ASTACRYPT 2004. Volume 3329 of LNCS. (2004) 78 (see also Proceedings of
SASC — The State of the Art of Stream Ciphers, Brugge, Belgium, 2004).

Atmel Corporation: e5561 Read/Write transponder IC for contactless RF identi-
fication for highly sophisticated security applications. (2003) Datasheeet.

Atmel Corporation: TK5561A-PP Read/Write Crypto Transponder for Short
Cycle Time. (2005) Datasheet revision B.

Kanter, 1., Kinzel, W., Kanter, E.: Secure exchange of information by synchro-
nization of neural networks. Europhysics Letters 57 (2002) 141-147

Volkmer, M., Wallner, S.: Tree parity machine rekeying architectures. TEEE
Transactions on Computers 54 (2005) 421-427

Maurer, U.: Protocols for secret key agreement by public discussion based on
common information. In: Advances in Cryptology — CRYPTO ’92. Volume 740 of
LNCS., Springer Verlag (1993) 461-470

Maurer, U.: Secret key agreement by public discussion. IEEE Transactions on
Information Theory 39 (1993) 733-742

Brassard, G., Savail, L.: Secret-key reconciliation by public discussion. In: Ad-
vances in Cryptology — EUROCRYPT 1993. Volume 765 of LNCS., Springer-
Verlag (1994) 410-423

Renner, R., Wolf, S.: Unconditional authenticity and privacy from an arbitrarily
weak secret. In: Advances in Cryptology — CRYPTO 2003. Volume 2729 of LNCS.,
Springer-Verlag (2003) 78-95

Kinzel, W., Kanter, I.: Interacting neural networks and cryptography. In Kramer,
B., ed.: Advances in Solid State Physics. Volume 42. Springer Verlag (2002)
Klimov, A., Mityagin, A., Shamir, A.: Analysis of neural cryptography. In: Proc.
of AsiaCrypt 2002. Volume 2501 of LNCS., Queenstown, New Zealand, Springer
Verlag (2002) 288-298

Mislovaty, R., Perchenok, Y., Kanter, I., Kinzel, W.: Secure key-exchange protocol
with an absence of injective functions. Phys. Rev. E 66 (2002)

Kanter, 1., Kinzel, W.: Neural cryptography. In: Proc. of the 9th International
Conference on Neural Information Processing, Singapore (2002)

Kanter, I., Kinzel, W., Shacham, L., Klein, E., Mislovaty, R.: Cooperating attack-
ers in neural cryptography. Phys Rev. E 69 (2004)

Rosen-Zvi, M., Klein, E., Kanter, I., Kinzel, W.: Mutual learning in a tree parity
machine and its application to cryptography. Phys. Rev. E. 66 (2002)

Ruttor, A., Kinzel, W., Shacham, L., Kanter, I.: Neural cryptography with feed-
back. Physical Review E 69 (2004) 7

UMC: High Performance Standard Cells Design Kit Rev 2.2. (2001)

