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Abstract. Nonclassical cryptographic technologies are considered in sci-
ence and industry to provide alternative security solutions. They are mo-
tivated by the strong restrictions as they are often present in embedded
security scenarios and in applications of pervasive computing. We investi-
gate a low hardware-complexity cryptosystem for lightweight symmetric
key exchange, based on two new Tree Parity Machine Rekeying Architec-
tures (TPMRAs). The speed of a key exchange is basically only limited
by the channel capacity. This work significantly improves and extends
previously published results on TPMRAs. We evaluate characteristics of
standard-cell ASIC design realizations as IP-core in 0.18-CMOS tech-
nology.
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1 Introduction

The investigation of alternative security primitives and nonclassical cryptographic
technologies is stimulated by the strong restrictions present in ubiquitous and
pervasive computing applications and the resource-limited devices in use. Hand-
held devices, smartcards, mobiles or other wireless communication devices re-
quire security concepts to be developed, in order have privacy and also commer-
cial prosperity [1]. In sensor networks, RFID-systems or Near Field Communi-
cation (NFC), the devices in use as nodes of a network can impose severe size
limitations and power consumption constraints. The available size for additional
cryptographic hardware components is often limited [2, 3, 4]. To optimize a cost-
performance-ratio regarding chip-area, channel bandwidth, power consumption
and code-size with respect to a given platform (Microcontroller, FPGA, ASIC)
represents a challenge [5].

Secure key exchange is considered most critical and complex in this context
and of major importance with regard to security. Regarding applications in em-
bedded systems, asymmetric (public-key) group-based cryptosystems based on
Elliptic Curve Cryptography (ECC) (see e.g. [6]) and hardware-specific exten-
sions for efficient arithmetic [7] are state-of-the-art. Without a reduction of the
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security, these representations allow to reduce the size of the numbers to calcu-
late with. Yet, more complex expressions need to be calculated. The ring-based
asymmetric cryptosystem NTRU [8, 9] also calculates on rather small numbers.

According to Paar [5] implementations of ECC on 16-bit microprocessors
(clock-frequency < 50 MHz) are feasible, while RSA and Diffie-Hellman are still
hard. On an 8-bit microprocessor (clock-frequency < 10 MHz) only symmetric al-
gorithms are considered applicable given low data rates. Asymmetric algorithms
here require an additional crypt-coprocessor. For the extreme case of an RFID-
tag with around 1000 gates and no microprocessor available, only lightweight
stream ciphers are considered applicable: ECC requires more than 10000 gates
and DES alone already demands a few 1000 gates. Symmetric algorithms for this
class are sought.

Although solutions for pervasive computing that allow to employ asymmet-
ric cryptography are sought [10], the lack of infrastructure often present in this
scenario penalizes approaches needing a central authority, like a trust center or
a third trusted party, securely providing public keys. Threshold cryptography is
still computationally intensive and a distributed certificate authority does not
address the resource limitations of devices. After all, a frequent key exchange
still remains of prohibitive cost, especially in the often changing topology of
pervasive or ad-hoc networks. Cryptographic methods with appropriate compu-
tational efficiency, that also consider a certain message or protocol overhead,
are inevitable. Seeking and investigating alternative approaches beyond efficient
implementations thus remains a challenge for research. In practice, a necessary
tradeoff between the level of security and the available resources or computation
time often has to be faced.

We suggest to discuss a hardware solution for lightweight symmetric key ex-
change based on the synchronization of so-called Tree Parity Machines [11, 12].
We define two architecture-variants, using this key exchange concept and a tra-
jectory mode, that allow fast successive key generation and exchange. It enables
short key lifetimes through the achievable speed of a key exchange. We focus on
a low hardware-complexity IP-Core solution for secure data exchange between
resource-limited devices in pervasive computing. Feasible frequent rekeying and
variable key lengths allow for flexible security levels especially in environments
with moderate security concerns.

2 Key Exchange by Tree Parity Machines

The fast synchronization of two interacting identically structured Tree Parity
Machines (TPMs) is proposed by Kinzel and Kanter [11, 12] as a method for
symmetric key exchange. It does not involve large numbers and principles from
number theory, however, Shamir et al. conferred to this interaction over multiple
rounds as a gradual type of Diffie-Hellman [13]. Even more related, secret key
agreement based on interaction over a public insecure channel is discussed under
information theoretic aspects by Maurer and others [14, 15, 16, 17, 18, 19].
The exchange protocol is realized by an interactive adaptation (error-correction)
process between the two interacting parties A and B. The TPM (see Figure 1a)
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consists of K independent summation units (1 < k < K) with non-overlapping
inputs in a tree structure and a single parity unit at the output. Each summation
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Fig.1. (a) The Tree Parity Machine. A single output is calculated from the parity
of the outputs of the summation units. (b) Outputs on commonly given inputs are
exchanged between parties A and B for adaptation of their preliminary key.

unit receives different N inputs (1 < j < N), leading to an input field of size
K - N. The vector-components are random variables with zero mean and unit
variance. The output O*/?(t) € {—1,1} (A/B denotes equivalent operations
for A and B), given bounded coefficients (weights) wQJ(B (t) € [-L,L] C Z (from
input unit j to summation unit k) and common random inputs z;(t) € {—1,1},
is calculated by a parity function of the signs of summations:

0"y =T[w"t)=T] o
k=1 =

k=1

( wel P (t) xi; (t)) : (1)

o () denotes the sign-function. The so-called bit package variant (cf. [11]) reduces
transmissions of outputs by an order of magnitude down to a few packages. Par-
ties A and B start with an individual randomly generated secret initial vector

wfj/ ?(t,). These initially uncorrelated random variables become correlated (iden-

tical) over time through the influence of the common inputs and the interactive
adaptation as follows. After a set of b > 1 presented inputs, where b denotes
the size of the bit package, the corresponding b TPM outputs (bits) O*/Z ()
are exchanged over the public channel in one package (see Figure 1b). The b
sequences of signs of the summation units y;/”(t) € {—1,1} are stored for the
subsequent adaptation process. A hebbian learning rule adapts the coefficients
(the preliminary key), using the b outputs and b sequences of signs. They are
changed only on equal output bits O“(t) = O (t) at both parties. Furthermore,
only coefficients of those summation units are changed, that agree with this
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output:
OVE() =y (1) wi)P () := wii] " (t = 1) + O () s (t) - (2)

Coefficients are always bound to remain in the maximum range [-L,L] C Z
by reflection onto the boundary values. Iterating the above procedure in as an
interactive (error-correction) protocol, each component of the preliminary key
performs a random walk with reflecting boundaries. The resulting key space is of
size (2L 4 1)*¥. Two corresponding components in wy;;(¢) and wy;(¢) receive the
same random component of the common input vector z;(t). After each bound-
ing operation, the distance between the two components is successively reduced
to zero. When both parties adapted to produce each others outputs, they remain
synchronous without further communication (see Eq. (2)) and continue to pro-
duce the same outputs on every commonly given input. Common coefficients are
now present in both TPMs in each of the following iterations. This preliminary
key has never been communicated between the two parties and can be used to
derive a common time-dependent final key by privacy amplification [18] or can
be used directly. Furthermore, synchrony is achieved only for common inputs.
Thus, keeping the common inputs secret between A and B can be used to have
an (entity) authenticated key exchange. There are 2¥~ —1 possible inputs in each
iteration, yielding as many possible initializations for a pseudo random number
generator.

A practical test for an accomplished key exchange is to test on successive
equal outputs in a sufficiently large number of iterations, such that equal outputs
by chance are excluded. Our investigations confirmed that the average synchro-
nization time is distributed and peaked around 400 (i.e. thirteen 32-bit packages)
for the parameters given in [11].

2.1 Trajectory Mode, Security and Attacks

Again consider that when the two parties are synchronous they also have the
same outputs in each iteration. Communication can thus be stopped and each
party then simply applies the adaptation (eq. 2) with its own output in order to
have a next key from the trajectory in key-space. Using the Trajectory Mode this
way avoids the security weakness as stated in [20], which assumes an ongoing
communication. As soon as a new key is present, it is used for encryption. It
can then be used block-wise or be used on a per-packet basis, depending on
the concrete application. In any case, the key is only used to encrypt a certain
small subset of the plaintext. This especially allows to realize short key lifetimes,
enabling a certain security level by many smaller keys instead of one large key.

For the key exchange protocol without entity authentication, eavesdropping
attacks have concurrently been proposed by Shamir et al. [13] and Kanter,
Kinzel et al. [21, 22, 23]. The prevalent definition of a successful attack is having a
98 percent average overlap with the coefficients of one party, when parties A and
B are already synchronous and thus successfully finished the key exchange and
the communication. The overlap |w”(t)-w*/”(t)| is averaged over all summation
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units. The authors chose this definition, because of the strong fluctuations ob-
served in the success probability. The attacks in [13, 21, 22, 23] can all be made
arbitrarily costly and thus can practically be defeated by simply increasing the
parameter L. The security increases proportional to L? while the probability of
a successful attack decreases exponentially with L [21]. The approach is thus
regarded computationally secure with respect to these attacks for sufficiently
large L [24, 23].

The latest attack, which does not seem to be affected by an increase of L (but
still by an increase of K') uses a hundred coordinated and communicating TPMs
[23]. A successful attack according to the definition given above could be achieved
with a probability of 0.5. The success probability of achieving a 99 percent
average overlap drops down to 0.25. However, an attacker does not know, which
of the K - N components of the coefficients (the key) are correct. In currently
used symmetric encryption algorithms, the flipping of a single bit only already
leads to a complete failure in decryption. Due to the only partial knowledge of
an attacker on the final key, an added or included privacy amplification through
hashing can further significantly decrease this knowledge and increase the secrecy
of the final key (compare [16, 19, 18]) and also the security of the trajectory mode.
It increases the entropy of the keys and destroys partial knowledge an attacker
might have gained on the key from the known attacks.

Finally, note that all of the existing attacks refer to a non-authenticated
key exchange, in which also man-in-the-middle attacks are possible. Given an
appropriate mechanism for entity authentication and the application of a privacy
amplification step, an appropriate level of security is provided at least for some
applications in embedded security.

3 Tree Parity Machine Rekeying Architectures

Note that, with respect to a hardware implementation, only signs and bounded
integers are processed within Tree Parity Machine key exchange. The result of
the outer product in (Eq. 1) can be realized without multiplication. The product
within the sum is only changing the sign of the coefficient. Thus, the most com-
plex structure to be implemented is an adder and parallelism can be exploited.
The branches are only based on a test for the sign or a test on equality to zero,
also easily done in hardware. Furthermore, only sign-operations and additions
are present in the adaptation (Eq. 2), well suited for a hardware implementation.
The bit package exchange can either be realized serially or via a parallel bus,
depending on the users requirements and the intended application. The amount
of registers needed for storage increases in the bit package variant, finally im-
posing a tradeoff area versus speed. Equal pseudo-random inputs are realized
by equally initialized Linear Feedback Shift Registers (LFSR). Different secret
initial weights can be provided by an additional true random number generator.
The synchronization criterion basically comprises a counter, that is increased
when outputs are identical and reset at different outputs. Software experiments
verified, that three identical bit-packages of 32 bit reliably indicate a successful
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synchronization for L = 4. The synchronization times are only determined by
the properties of the algorithm and the capacity of the communication channel,
as can be seen in Section 4.

The Tree Parity Machine Rekeying Architectures (TPMRASs) can be func-
tionally separated into two main structures. One structure comprises the Hand-
shake/Key Controller as well as the Bitpackage Unit and the Watchdog, the
other structure contains the Tree Parity Machine Unit for calculating the basic
TPM functions (Section 2). Figure 2 gives an overview of the hardware structure.
The Handshake/Key Controller Unit handles the key transmission (eventually
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Fig. 2. Basic diagram of the Handshake/Key Controller with the Watchdog and the
Bitpackage Unit. The Tree Parity Machine Unit may include a parallel or serial TPM
computation structure.

after privacy amplification) with an encryption unit and the bit package ex-
change process with the other party by using a simple request and acknowledge
handshake protocol. It approves the handling of different synchronization cy-
cles between two key exchange parties in order to permit a regulated key- and
bit package exchange process. A key is handed over when the synchronization
process is finished, indicated by an acknowledge signal.

As described in Section 2, we implemented the bit package generalization of
the protocol [11]. It reduces communication by an order of magnitude. The bit
package exchange can then be realized serially or via a parallel bus, depending
on the users requirements and the intended application environment. In both
architectures, the Bitpackage Unit partitions the parity bits (Eq. 1) from the
TPM Unit in tighter bit slices. In addition, it serializes the incoming bit packages
from other TPM for the adaptation (Eq. 2). The Bitpackage Unit handles bit
package lengths up to n bits (depending on the key length) for different parallel
data exchange buses.

The Watchdog supervises the synchronization between the two parties, which
is determined by the chosen parameters and the random initial values of the par-
ties. The Iteration Counter in the Watchdog counts the number of exchanged
parity bits. It generates a synchronization error (Sync Error), if there is no
synchronization within a specific number of iterations. In this case, the synchro-
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nization process is triggered again. The Sync Counter is needed to determine the
synchronization of the TPMs by comparing and counting equal output bit pack-
ages. It is increased when a sent bit package and the corresponding received bit
package is identical and otherwise cleared. A synchronization is recognized when
a specified number of equal bit packages is reached. Both Sync- and Iteration-
Counter are programmable for variable average synchronization times subject
to the chosen TPM structure. In the following, we describe details of the serial
and parallel TPMRAs.

3.1 Serial Tree Parity Machine Unit

The serially realized TPM structure uses TDMA to calculate a parity bit and is
a fully parameterizable hardware structure. The parameters K, N and L as well
as the bit package length can be set arbitrarily in order to adopt this architecture
variant for different system environments.

The serial TPM Unit consists of a TPM control state machine, a LFSR, a
Weight Accumulator, a Parity Bit Computation and Weight Adjustment Unit
and a memory (Figure 3).

Linear Feedback Shift Register
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Fig. 3. The serial TPMRA structure. The TPM controller state machine is omitted
for clarity.

The TPM controller is realized as simple finite state machine. It handles
the initialization of the TPM, the adaptation with the parity bits of the bit
package from the other party and controls the parity calculation and weight ad-
justment. The LFSR generates the pseudo random bits for the inputs zy;(t) of
the TPM. The Parity Bit Computation computes the output parity (Eq. 1) and
the Weight Adjustment Unit accomplishes the adaptation (Eq. 2). The Weight
Accumulator computes each sum of the summation units. Each partial result
must be temporarily stored in the memory, due to the serial processing of the
summation units. The memory, implemented as a simple asynchronous S-RAM,
stores the weights and the output bits from the summation units in order to
process the bit packaging. It could also be implemented as a register file com-
posed of several flip-flops. The memory size depends on the length of the key,
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which is equal to K - N - L. The number of cycles for calculating a n-bit package
istgrp=2n—-1)-(K-N + K) + 3.

3.2 Parallel Tree Parity Machine Unit

The parallel realization of the TPM Unit (Figure 4) has the same overall struc-
ture, but three parallel summation units are implemented and a register bank
for each summation unit holds the weights as well as the parity bits of each unit.

Linear Feedback Shift Register
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o] o] o]

= B =

dg:) Adder Tree 58; Adder Tree dg:) Adder Tree
{ Parity Bit Computation / Weight Adjustment ‘

Fig. 4. The parallel TPMRA structure. The TPM controller state machine is omitted
for clarity.

A summation unit consists of a pipelined adder tree designed to add N =
11 inputs. Each summation unit includes a 11-L-bit register bank due to the
need for parallel availability of data. In contrast to the serial TPM realization,
the computation of parity and weight adjustment of each summation unit is
also performed in parallel. The pipelined adder tree needs four clock cycles to
calculate the summation with eleven inputs. In total, the whole architecture
needs tzp» = n+4 cycles to compute an n-bit package including 4 pipeline cycles.
It needs four clock cycles to compute a new key when using the trajectory mode
explained in Section 2.1. The parallel TPM unit confines the parameterization
due to the usage of the fixed adder tree. This results in a fixed number of
summation units and a fixed number of inputs for each summation unit. The
key length can only be varied via the parameter L, which does not influence
the number of clock cycles. The parallel architecture has a fixed key length of
3-11-4=132bit at L =4.

4 TImplementation and Results

For the implementation of the TPMRAs in hardware, the choice of the key
length as well as the choice for a serial or a parallel realization must be done
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with respect to the target environment, including the available silicon area, the
available channel capacity and the timing.

We designed and simulated a parameterizable serial TPMRAs and a fixed
parallel TPMRA by using VHDL. While the FPGA-realization was used for easy
prototyping, standard cell ASIC-realization prototypes were build to verify the
suitability in typical embedded system components. The underlying process is
a 0.18u six-layer CMOS process with 1.8V supply voltage based on the UMC
library [25]. The linear complexity of the protocol scales with the size K - N of
the TPM structure, which defines the size K - N - L of the key. We chose K = 3,
a maximal N = 88 and L = 4 for the serial architecture. This leads to a key
size of up to 1056 bit. The parallel TPM realization (with X' = 3 and N = 11
fixed) has a key length of 132 bit with L = 4. The cell-area (Figure 5a) of the
serial TPMRA scales approximately linear due to the linear increase in required
memory and ranges around 0.11 square-millimeter for the investigated key sizes.
The number in braces denotes used standard cells. Note, that most of the area is
consumed by the memory, because of the necessary storage of the partial results
(cf. Section 3). Yet, this influence is minor for an ASIC-realization, because here
registers can be mapped more efficiently than on current FPGA architectures.
The cell-area of the parallel TPMRA is 0.14 mm? (4559 cells).

The achievable clock-frequency (Figure 5b) ranges between 285 and 471 MHz
for the investigated key lengths. It is significantly lower than in the parallel
version, due to the memory access delay especially for larger key lengths. The
parallel TPMRA can be clocked with 719 MHz (132 bit key).

Additionally, we established the throughput (i.e. keys per second) subject to
the average synchronization time of 400 iterations for different key lengths in
Figure 5c. A practically finite channel capacity is neglected here. We assumed
the maximally achievable clock frequency with regard to each key length, which
can be achieved by Digital Phase Lock Loop (DPLL), regardless of the systems
clock frequency. The serial TPMRA achieves a maximal theoretical throughput
in the kHz-range. After the initial synchronization, the trajectory mode allows to
increase the throughput by two orders of magnitude due to the reduced number
of cycles for one bit package and the missing communication overhead. The
parallel TPMRA yields a theoretical throughput of 20.5 - 108 keys per second.

Figure 5d shows throughput for real communication channels and their band-
widths. The chosen log-scale allows to still see the small difference regarding the
throughput for Bluetooth, NFC and RFID in comparison to WLAN and PCI.
For every protocol, we used the minimum available packet length due to our bit
packages of 32 bit: PCI (burst mode) 32 bit, WLAN 801.11g 512 bit, Bluetooth
190 bit, NFC 64 bit and RIFD 94 bit. For the RFID channel we appointed a 10
kbps channel for simplicity.

A comparison among the different communication channels indicates different
slopes of the calculated throughput characteristics (Figure 5d). They denote
the rising influence of the bit packaging calculations at smaller key lengths for
channels of higher bandwidth such as WLAN (or PCI). Thus, the slope of the
WLAN throughput characteristic is significantly higher than for Bluetooth, NFC
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Fig. 5. Serial TPMRA post-synthesis area-optimized results vs. key length. Data refers
to a UMC 0.18y six-layer CMOS standard cell process.

and RFID. As expected, the influence of the channel bandwidth significantly
determines the performance of the key exchange protocol. In the case of an
32 bit PCI-bus in burst mode (i.e. one bit package transfer per cycle), the
theoretical maximum throughput (as in Figure 5c) can be achieved. Obviously,
the bottleneck is the underlying communication-bus, as it is also typical in other
domains (processor-bus-bottleneck).

5 Conclusions

We suggest to discuss a nonclassical cryptographic technology for low hard-
ware-complexity lightweight authenticated symmetric key exchange, based on
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two variants of Tree Parity Machine Rekeying Architectures (TPMRAs). The
silicon area ranges around 0.11 square-millimeter and the architectures allow to
exchange keys of practical size up to the kHz-range. Efficient frequent rekeying
and short key lifetimes can thus be implemented. Next to using sophisticated
encryption algorithms like Rijndal (AES) or IDEA, for example, weak encryption
algorithms (e.g. XOR. or lightweight stream ciphers) may apply in moderate
security scenarios as the security may (partly) rely on frequent rekeying.

We regard the TPMRAs as IP-cores for lightweight key exchange in embed-
ded system environments. A particular focus can be smartcards or transponder-
based applications such as RFID-systems, as well as devices in ad-hoc networks,
in which a small area for cryptographic components is mandatory. They are espe-
cially suited for devices of limited resources and even more in moderate security
scenarios.

A prototypical implementation of a TPMRA in a WLAN system was able to
provide a new key for each 1500 byte package by immediate rekeying (no trajec-
tory mode) and multiplexing the processes of rekeying and DES-encrypted com-
munication. The prototypical implementation of the presented parallel TPMRA
allows for a new 132 bit key for each block in a PCI-Bus burst mode access
employing the trajectory mode. An experimental implementation into an RFID-
system, a CAN-bus system for automotive applications and a WLAN ad-hoc-
network are currently investigated.

A lightweight stream cipher variant, using the output bits directly was sug-
gested already in [11] and its implementation in hardware is particularly suited
for streaming applications. Key exchange between multiple parties is also possi-
ble and pursued in the project. This issue is relevant to secure group communi-
cation and multicast.
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