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Abstract. The internal state of the Klimov-Shamir number gen-
erator TF-1 consists of four words of size w bits each, whereas its
intended strength is 22w. We exploit an asymmetry in its out-
put function to show that the internal state can be recovered after
having 2w outputs, using 21.5w operations. For w = 32 the at-
tack is practical, but for their recommended w = 64 it is only of
theoretical interest.

The Klimov-Shamir number generator TF-1 was introduced in [2]
and is based on the methods developed in [1] and references therein.
This is an iterative pseudorandom number generator. Its internal state
consists of 4 words a, b, c, d, of size w bits each. Fix constants C1, C2, C.
The update function is defined as follows.
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a ⊕ s ⊕ 2c(b ∨ C1)
b ⊕ s ∧ a ⊕ 2c(d ∨ C3)
c ⊕ s ∧ a ∧ b ⊕ 2a(d ∨ C3)
d ⊕ s ∧ a ∧ b ∧ c ⊕ 2a(b ∨ C1)









where

s = (C + (a ∧ b ∧ c ∧ d)) ⊕ (a ∧ b ∧ c ∧ d).

After each update, an output value

S(a + c) · (S(b + d) ∨ 1)

is extracted, where S is the function swapping the upper and lower
halves of its input, i.e., S(x) = x/2w/2+x·2w/2 for each x = 0, . . . , 2w−1.
(In this description, “/” denotes integer division, and addition and
multiplication are always carried modulo 2w.)

Definition 1 ([1]). T : {0, 1}m×w → {0, 1}n×w is a T-function if, for
each k = 1, . . . , w, the first k columns of T (X) depend only on the first
k columns of X.

Note that, using the convention that words from {0, 1}w are writ-
ten such that the leftmost bit is the least significant one, the update
function of a TF-1 generator is a T-function.
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Following is a generalization of the family of TF-1 generators. The
fact that we pose no restriction on its function F (and still are able to
cryptanalyze it as shown below) seems to be of special interest.

Definition 2. A generalized TF-1 generator consists of an update
function T1 : {0, 1}4×w → {0, 1}4×w and output functions T2, F :
{0, 1}4×w → {0, 1}w. T1 and T2 are T-functions, but F can be any
efficiently computable function. Its internal state is a matrix A ∈
{0, 1}4×w, The update function is

A 7→ T1(A).

After each update, an output value

S(T2(A)) · (F (A) ∨ 1)

is extracted.

Generators with poor statistical properties are not suitable for cryp-
tographic usage. We therefore restrict attention to the nondegenerate
cases.

Lemma 3. Assume that T : {0, 1}4×w → {0, 1}w is a (mildly) random-
looking T-function, k, l ∈ {1, . . . , w}, and l ≤ k. If the first l − 1
columns of X are known and T (X) = 0, then the list of all possibil-
ities for columns l, . . . , k of X can be enumerated in (roughly) 23(k−l)

operations.

Proof. First check all 24 possibilities for the lth column of X. Only
about 23 should give 0 at the lth bit of T (A). For each of them, check
all 24 possibilities for the l + 1th bit. Again about 23 of which will
survive. Continue in this manner. The total number of operations is
roughly

24 + 23 · 24 + (23)2 · 24 + · · · + (23)k−l−1 · 24 ≈ 2 · 23(k−l).

Note that there is no need to store the resulting tree in memory, since
the search in the tree could be of “depth first” type, i.e., follow each
branch upto its end before moving to the next branch. �

Remark 4. For the function T ((a, b, c, d)t) = a + c used in TF-1, the
enumeration as in Lemma 3 is trivial: Just enumerate (a, b,−a, d)t

where a, b, d ∈ {0, 1}k. Note further that 0 plays no special role in the
proof of Lemma 3 and it can be replaced by any constant.

Theorem 5. Assume that G is a generalized TF-1 generator which is
(mildly) random-looking. Then the internal state of G can be recovered
from roughly 2w output words, using roughly 21.5w operations.
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Proof. Scan the output sequence until an output word 0 is found (this
requires roughly 2w output words). Denote the internal state at this
point by A. Then

S(T2(A)) · (F (A) ∨ 1) = 0.

As F (A)∨ 1 is relatively prime to 2w, we have that S(T2(A)) = 0, and
therefore T2(A) = 0.

Use Lemma 3 with l = 1 and k = w/2 + 1 to enumerate the 23k

possibilities for the first k columns of A. During the enumeration,
compute for each possibility the first k columns of A′ = T1(A) and of
T2(A

′). The kth bit of T2(A
′) should be equal to the least significant

bit of the next output word. This rules out about half of the suggested
solutions. Checking about one more step will rule out about half of
the remaining solutions, etc. Algorithmically, continue updating and
checking until a contradiction is found (or until a solution survives
more than 3k steps) and then move to the next suggested solution. On
average this requires 2 steps per suggested solution.

Having completed the above 23k+1 operations, the first k columns
of A are known. Use Lemma 3 again to go over all possibilities for
columns k + 1, . . . , w of A. Now there are only 23k−6 possibilities, and
each of them gives a complete knowledge of the internal state and can
thus be checked by computation of one or two output words. The total
amount of operations is roughly

23k+1 + 23k−6 ≈ 23k+1 = 21.5w+4 = 16 · 21.5w. �

We conclude the paper with two examples.

Example 6. Any generalized TF-1 generator for words of 32 bits has an
internal state of size 128 bits, and by Theorem 5 can be recovered from
232 output words (i.e., 16 Giga bytes) using 16 ·21.5·32 = 252 operations.
These parameters are practical.

Example 7. Any generalized TF-1 generator for words of 64 bits has an
internal state of size 256 bits, and by Theorem 5 can be recovered from
264 output words using 16 ·21.5·64 = 2100 operations. In this setting, our
attack is only of theoretical interest.
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