
Provable Efficient Certificateless Public Key
Encryption

Yijuan Shi and Jianhua Li

Department of Electronic and Engineering,
Shanghai Jiao Tong University,

Room 408, Building 1, No. 33, Leshan RD, Shanghai, China
cbzsyj130@sohu.com, lijh888@sjtu.edu.cn

Abstract. Certificateless public key cryptography was introduced to
overcome the key escrow limitation of the identity-based cryptography.
It combines the advantages of the identity-based cryptography and the
traditional PKI. Recently, Dae Hyun Yum1 and Pil Joong Lee have pro-
posed a generic series construction model of certificateless public key en-
cryption (CL-PKE) which is built from generic primitives: identity-based
encryption and public key encryption. However, this model pays much
attention on the generic construction and neglects the nice properties
of the bilinear pairings. In this paper, we propose an efficient CL-PKE
scheme which is based on the nice algebraic properties of Weil pairing.
The scheme works in a kind of parallel model and it is more efficient
on computation or published public key information than the existing
schemes.

1 Introduction

Traditionally, a Public Key infrastructure (PKI) is used to provide an assurance
to the user about the relationship between a public key and the identity of
the holder of the corresponding private key by certificates. However, a PKI faces
may challenges in the practice, especially the scalability of the infrastructure and
the management of the certificates. To simplify the management of certificates,
Shamir [1] proposed identity-based public key cryptography (ID-PKC) in which
the public key of each party is derived directly from certain aspects of its identity,
for example, an IP address belonging to a network host, or an e-mail address
associated with a user. Private keys are generated for entities by a trusted third
party called Key Generation Center (KGC). For a long while it was an open
problem to obtain a secure and efficient identity based encryption (IBE) scheme.
Until 2001, Boneh and Franklin [2] presented an efficient and provably secure
identity-based encryption scheme (BF-IBE) using the bilinear pairings on elliptic
curves.

The direct derivation of public keys in ID-PKC eliminates the need for certifi-
cates and some of the problems associated with them. However, the dependence
on a KGC who can generate private keys inevitably introduces key escrow to
the identity-based cryptography. Then in [3] Al-Riyami and Patersion introduced

2

the notion of Certificateless Public Key Cryptography (CL-PKC). CL-PKC can
overcome the key escrow limitation of ID-PKC without introducing certificates
and the management overheads that this entails. It combines the advantages of
the ID-PKC and the PKI.

In this paper, we concentrate on the certificateless public key encryption (CL-
PKE) schemes. So far almost all the CL-PKE schemes [3,4,5,6] are based on the
BF-IBE scheme. Recently, Dae Hyun Yum and Pil Joong Lee [9] have proposed
a generic series construction of CL-PKE which is built from generic primitives:
identity-based encryption and public key encryption. The CL-PKE scheme in [4]
is an instance of such model. However, this model pays much attention on the
generic construction and neglects the nice properties of the bilinear pairings. In
this paper, we propose an efficient CL-PKE scheme which is based on the nice
algebraic properties of Weil pairing. The scheme works in a kind of parallel model
and it is more efficient on computation or published public key information than
the existing schemes.

The paper is organized as follows: First we review the concepts of CL-PKE
and its security model. In section 3, we introduce some mathematic basis of
bilinear maps. Then we present our new efficient CL-PKE scheme in section 4
and prove its security. In section 5, we compare our scheme with the existing
CL-PKE schemes on performance. Finally, section 6 gives conclusions.

2 Certificateless Public Key Encryption

In this section, we review the definition and security model for CL-PKE from
[3].

Definition 1. [3] A CL-PKE scheme is specified by seven algorithm (Setup,
Partial-Private-Key-Extract, Set-Secret-Value, Set-Private-Key, Set-Public-Key,
Encrypt, Decrypt) such that:

– Setup is a probabilistic algorithm that takes security parameter κ as input
and returns the system parameters params and the masterkey. The system
parameters include a description of the message space M and ciphertext
space C.

– Partial-Private-Key-Extract is a deterministic algorithm which takes
params, masterkey and an identifier for entity A, IDA ∈ {0, 1}n, as inputs.
It returns a partial private key DA .

– Set-Secret-Value is a probabilistic algorithm that takes as input params
and outputs a secret value xA.

– Set-Private-Key is a deterministic algorithm that takes params, DA and
xA as inputs. The algorithm returns SA, a (full) private key.

– Set-Public-Key is a deterministic algorithm that takes params and xA as
inputs and outputs a public key PA.

– Encrypt is a probabilistic algorithm that takes params, M ∈ M, xA and
IDA as inputs and returns either a ciphertext C ∈ C or the null symbol ⊥
indicating an encryption failure.

3

– Decrypt is a deterministic algorithm that takes as inputs params, C ∈ C
and SA. It returns a message M ∈M or a message ⊥ indicating a decryption
failure.

Algorithms Set-Private-Key and Set-Public-Key are normally run by
an entity A for himself, after running Set-Secret-Value. Usually, A is the only
entity in possession SA and xA. Algorithms Setup and Partial-Private-Key-
Extract are usually run by a trusted third party, called Key Generation Center
(KGC) [3].

2.1 Security Model for CL-PKE

Al-Riyami and Patersion presented the full IND-CCA security model for CL-
PKE in [3]. The following is the actions that an general adversary A against a
CL-PKE scheme may carry out and discuss how each action should be handled
by the challenger C for that adversary.

1. Extract partial private key of entity A: Challenger C responds
by running algorithm Partial-Private-Key-Extract to generate the partial
private key DA for entity A.

2. Extract private key for entity A: If A’s public key has not been
replaced then C can respond by running algorithm Set-Private-Key to generate
the private key SA for entity A. But it is unreasonable to expect C to be able to
respond to such a query if A has already replaced A’s public key.

3. Request public key of entity A: C responds by running algorithm
Set-Public-Key to generate the public key PA for entity A (first running Set-
Secret-Value for A if necessary).

4. Replace public key of entity A: The adversary A can repeatedly
replace the public key PA for any entity A with any value P0 of its choice. The
current value of an entity’s public key is used by C in any computations or
responses to the adversary’s requests.

5. Decryption query for ciphertext C and entity A: In the model of
[3], adversary can issue a decryption query for any entity and any ciphertext.
It is assumed in [3] that C should properly decrypt ciphertexts, even for those
entities whose public keys have been replaced. This is a rather strong property
for the security model (after all, the challenger may no longer know the correct
private key). However, it ensures that the model captures the fact that changing
an entity’s public key to a value of the adversary’s choosing may give that
adversary an advantage in breaking the scheme. For further discussion of this
feature, see [3].

The IND-CCA security model of [3] distinguishes two types of adversary. A
type I adversary AI is able to change public keys of entities at will, but does not
have access to the masterkey. A Type II adversary AII is equipped with the
masterkey but is not allowed to replace public keys of entities. This adversary
models security against an eavesdropping KGC.

4

CL-PKE Type I IND-CCA Adversary: Such an adversary AI does not
have access to the masterkey. However, AI may request public keys and replace
public keys with values of its choice, extract partial private and private keys and
make decryption queries, all for identities of its choice. As discussed above, we
make several natural restrictions on such a Type I adversary:

1. Adversary AI cannot extract the private key for IDch at any point.
2. Adversary AI cannot request the private key for any identifier if the cor-

responding public key has already been replaced.
3. AdversaryAI cannot both replace the public key for the challenge identifier

IDch before the challenge phase and extract the partial private key for IDch in
some phase.

4. In Phase 2, AI cannot make a decryption query on the challenge cipher-
text C∗ for the combination (IDch, Pch) that was used to encrypt Mb.

CL-PKE Type II IND-CCA Adversary: Such an adversary AII does
have access to the masterkey, but may not replace public keys of entities. AII

can compute partial private keys for himself, given the masterkey. It can also
request public keys, make private key extraction queries and decryption queries,
both for identities of its choice. The restrictions on this type of adversary are:

1. Adversary AII cannot replace public keys at any point.
2. Adversary AII cannot extract the private key for IDch at any point.
3. In Phase 2, AII cannot make a decryption query on the challenge cipher-

text C∗ for the combination (IDch, Pch) that was used to encrypt Mb.

Definition 2. A CL-PKE scheme is said to be IND-CCA secure if no polyno-
mially bounded adversary A of Type I or Type II has a non-negligible advantage
in the following game:

Setup: The challenger C takes a security parameter κ as input and runs
the Setup algorithm. It gives A the resulting system parameters params. If A
is of Type I, then C keeps the masterkey to himself, otherwise, he gives the
masterkey to A.

Phase 1: A issues a sequence of requests described above. These queries may
be asked adaptively, but are subject to the rules on adversary behavior defined
above.

Challenge Phase: Once A decides that Phase 1 is over it outputs the
challenge identifier IDch and two equal length plaintexts M0,M1 ∈ M. Again,
the adversarial constraints given above apply. C now picks a random bit b ∈ {0, 1}
and computes C∗, the encryption of Mb under the current public key Pch for
IDch. Then C∗ is delivered to A.

Phase 2: Now A issues a second sequence of requests as in Phase 1, again
subject to the rules on adversary behavior above.

Guess: Finally, A outputs a guess b′ ∈ {0, 1}. The adversary wins the game if
b = b′. We define A’s advantage in this game to be Adv(A) := 2|Pr[b = b′]−1/2|.

5

IND-CPA security is similar to IND-CCA security except that the adversary
is more limited. That is the adversary cannot issue decryption queries while
attacking the scheme.

3 Mathematic Basic

Before presenting the new CL-PKE scheme, we first review a few concepts related
to bilinear maps. Let E/Fq be an elliptic curve and m = #E(Fq) be the group
order of the curve. Let n be a prime such that n | m and n - q . Then the group of
n-torsion points has the structure E[n] ∼= Zn⊕Zn and is thus generated by two
elements, say P1 and P2 (< P1 >6=< P2 >) . We can denote the elements in the
set of E[n] using the formaP1+bP2, a, b ∈ Z∗n . Denote the group generated by P1

by G1 and the group generated by P2 by G2, i.e. G1 =< P1 > and G2 =< P2 >.
ψ is an isomorphism from G2 to G1 with ψ(P2) = P1. The Weil pairing is a
function [13]:

en : E[n]× E[n] → µn.
en maps to the group µn of nth roots of unity, which is a cyclic group of order

n as well. Denote this group by GT . The following are some useful properties of
the Weil Pairing:

1. Identity: For all P ∈ E[n], en(P, P) = 1.
2. Alternation: For all P, Q ∈ E[n], en(P, Q) = en(Q,P)−1.
3. Bilinearity: For all P, Q, R ∈ E[n], en(P, +Q,R) = en(P, R) + en(Q,R),

and en(P, Q + R) = en(P, Q) + en(P, R).
4. Non-degeneracy: For all P ∈ G1 and Q ∈ G2, en(P, Q) 6= 1.
5. Computable: For all P, Q ∈ E[n], en(P, Q) is computable in polynomial

time.
Note that from [11], we can either assume that ψ is efficiently computable or

make our security proof relative to some oracle which computes ψ.
In the following, we consider some problems.
co-BIDH Assumption: For a, b, c ∈R Z∗q , P2 ∈ G∗2, P1 = ψ(P2) ∈ G∗1, en,

given (P1, P2, aP2, bP2), to compute en(P1, P2)a−1b is hard.

k-BCAA1 Assumption: [8] For an integer k, and x ∈R Z∗n, P2 ∈ G∗2, P1 =
ψ(P2) ∈ G∗1, en, given (P1, P2, xP2, h0, (h1,

1
h1+xP2),, (hk, 1

hk+xP2)) where hi ∈R

Z∗q and different from each other for 0 ≤ i ≤ k, to compute en(P1, P2)1/(x+h0) is
hard.

k-BDHI Assumption: [8,12] For an integer k, and x ∈R Z∗n, P2 ∈ G∗2, P1 =
ψ(P2) ∈ G∗1, en, given (P1, P2, xP2,x2P2,...xkP2), to compute en(P1,P2)1/x is
hard.

In [8] Chen and Cheng have proved that the following relationship between
the k-BCAA1 problem and the k-BDHI problem.

Theorem 1. [8] If there exists a polynomial time algorithm to solve (k-
1)-BDHI, then there exists a polynomial time algorithm for k-BCAA1. If there

6

exists a polynomial time algorithm to solve (k-1)-BCAA1, then there exists a
polynomial time algorithm for k-BDHI.

4 A New CL-PKE Scheme

Inspired by the provable secure SK-IBE scheme [7, 8], we propose a new CL-PKE
scheme. We describe our new scheme in a similar method of [2]. First, we give a
basic CL-PKE scheme which is only IND-CPA secure. Then in the next section,
we will extend the basic scheme to the full scheme which is secure against an
IND-CCA attack using a technique due to Fujisaki-Okamoto [10].

4.1 BasicCL-PKE

Our basic scheme is consisted of the following algorithms.
Setup: Given a security parameter κ, the generator takes the following steps.
1. Generate a Weil pairing e : E[q] × E[q] → GT with E[q] = G1 ⊕ G2 and

an isomorphism ψ from G2 to G1. Pick a random generator P2 ∈ G∗2 and set
P1 = ψ(P2).

2. Pick a random s ∈ Z∗q and compute Ppub = sP1.
3. Compute g = e(P1, P2).
4. Pick five cryptographic hash functions H1 : {0, 1}∗ → Z∗q and H2 : GT →

{0, 1}n,for some n.
The message space is M = {0, 1}n. The ciphertext space is C = En×{0, 1}n.

The system parameters are params =< q, G1, G2, GT , e, n, P1, P2, g, Ppub, H1,H2 >.
The masterkey is s.

Partial-Private-Key-Extract: The algorithm takes as input an identifier
ID ∈ {0, 1}∗, params and the masterkey s and returns the partial private key
DID = 1

H1(ID)+sP2.
Set-Secret-Value: The algorithm takes as inputs params and identifier ID,

selects a random xID ∈ Z∗q and outputs xID as the entity’s secret value.
Set-Private-Key: The algorithm takes an inputs params, entity ID’s par-

tial private key DID and secret value xID. The output of the algorithm is the
pair SID =< DID, xID > .

Set-Public-Key: The algorithm takes params and entity ID’s secret value
xID as inputs and constructs ID’s public key as PID = xIDP2.

Encrypt: To encrypt M ∈M for entity ID with the public key PID, perform
the following steps:

1. Check that PID is in G∗2, if not output ⊥. This checks the validity of the
public key.

2. Compute QID = H1(ID)P1 + Ppub.
3. Choose random values r1 and r2 and compute the ciphertext:

C =< r1QID + r2PID,M ⊕H2(g(r1+r2)) >

7

Decrypt: Suppose C =< U, V >. To decrypt this ciphertext using the pri-
vate key SID =< DID, xID > compute:

M = V ⊕H2(e(U,DID − 1
xID

P1)).

According to the Weil Pairing’s properties, we know e(P1, P1) = 1, e(P2, P2) =
1, and e(P2,−P1) = e(P1, P2). Hence the consistency of the scheme can be veri-
fied by

e(U,DID − 1
xID

P1)=e(r1QID + r2PID, DID − 1
xID

P1)

=e(r1(H1(ID) + s)P1 + r2xIDP2,
1

H1(ID)+sP2 − 1
xID

P1)

=e(r1(H1(ID) + s)P1,
1

H1(ID)+sP2)e(r2xIDP2,− 1
xID

P1)

=e(P1, P2)r1e(P1, P2)r2

=g(r1+r2)

4.2 Security of BasicCL-PKE

In this section, we study the security of the BasicCL-PKE scheme. The following
theorems show that Basic-PKE scheme is a CPA secure certificateless encryption
scheme.

Theorem 2. If there exists a Type-I IND-CPA adversary AI against BasicCL-
PKE with advantage, then there exists an adversary B which can solve the k-
BCAA1 problem with non-negligible advantage in the random oracle model.

Theorem 3. If there exists a Type-II IND-CPA adversary AII against
BasicCL-PKE with advantage, then there exists an adversary B which can solve
the co-BIDH problem with non-negligible advantage in the random oracle model.

To prove the theorem 2, we define the following public key encryption scheme
called BasicPub-I.

BasicPub-I The scheme includes the following algorithms:
Key-generation: Given a security parameter κ, the generator takes the

following steps.
1. Generate the parameters < q, G1, G2, GT , e, P1, P2, g > which are identical

to the ones of the BasicCL-PKE.
2. Pick a random s ∈ Z∗q and compute Ppub = sP1. Randomly choose different

elements hi ∈ Z∗q and compute 1
hi+sP2 for for 0 ≤ i < q1.

3. Pick a random x ∈ Z∗q and compute PID = xP2.
4. Pick a hash function H2 : GT → {0, 1}n for some n.
The public parameters are Kpub−I =< q, G1, G2, GT , e, n, P1, P2, g, Ppub, x, PID,

h0, (h1,
1

h1+sP2), (h2,
1

h2+sP2), ..., (hq1−1,
1

hq1−1+sP2),H2 > and the private key is

Kpri−I = 1
h0+sP2.

8

Encrypt: To encrypt M ∈M, perform the following steps:
1. Check that PID is in G∗1, if not output ⊥. This checks the validity of the

public key.
2. Choose two random r1, r2 ∈ Z∗q and compute the ciphertext:

C =< r1(h0P1 + Ppub) + r2PID,M ⊕H2(g(r1+r2))

Decrypt: Suppose C =< U, V >. To decrypt this ciphertext using the pri-
vate key Kpri−I compute:

M = V ⊕H2(e(U,Kpri−I − x−1P1)).

Proof of Theorem 2 This theorem straightforwardly follows from the follow-
ing lemma 1 and lemma 2.

Lemma 1: Let H1 is a random oracle. Suppose AI is an IND-CPA adver-
sary that has advantage ε against BasicCL-PKE. Suppose AI makes at most q1

queries to H1. Then there is an IND-CPA adversary B that at lest ε/q1 against
BasicPub-I.

Proof: Let AI be a Type I advesary against the new BasicCL-PKE. Suppose
AI has advantage ε and makes q1 queries to random oracle H1. We show how to
construct from AI an IND-CPA adversary B against the BasicPub-I. Let C de-
note the challenger against B for BasicPub-I. The challenger C begins by supply-
ing B with a public key: Kpub−I =< q, G1, G2, GT , e, n, P1, P2, g, Ppub, x, PID, h0,
(h1,

1
h1+sP2), (h2,

1
h2+sP2), ..., (hq1−1,

1
hq1−1+sP2),H2 >

Algorithm B works by interacting with AI in an IND-CPA game as follows:
Setup: B chooses an index I with 1 ≤ I ≤ q1. Then B gives AI the BasicCL-

PKE public parameters params =< q, G1, G2, GT , e, n, P1, P2, g, Ppub, H1,H2 >.
Here < q, G1, G2, GT , e, n, P1, P2, g, Ppub,H2 > are taken from Kpub−I and H1

is a random oracle controlled by B as described below.
H1-queries: At any time algorithm AI can query the random oracle H1. To

response to these queries B maintains a list of tuples < IDi, hi, xi >. We refer
to this list as the H list

1 . When A queries the oracle H1 at a point IDi algorithm
B responds as follows:

1. If the query IDi already appears on the H list
1 in a tuple < IDi, hi, xi >,

then algorithm B responds with H1(IDi) = hi.
2. Otherwise, if the query is on the Ith distinct ID, then B return H1(IDI) =

h0 and add the tuple < IDI , h0,⊥ > into the H list
1 .

3. Otherwise, B selects a random integer hi(i > 0) from Kpub−I which has
not been chosen by B and returns H1(IDi) = hi. Then B chooses a random
xi ∈ Z∗q and adds the tuple < IDi, hi, xi > to the H list

1 .
Phase 1: Now AI launches Phase 1 of its attack by making a series of

queries. B replies to these queries as follows:
Partial Private Key Extraction: Suppose the query is on IDi. There are

two cases:

9

If i = I, B aborts (Event 1).
If i 6= I, then B replies with 1

hi+sP2.
Private Key Extraction: Suppose the query is on IDi. There are two

cases:
If i = I, B aborts (Event 2).
If i 6= I, then B replies with < 1

hi+sP2, xi >.
Request for Public Key: If the query is on IDI then B returns PID.

Otherwise, if the request is on IDi with i 6= I, then B outputs xiP2.
Replace Public Key: Suppose the query is to replace the public key for

IDi with value P ′i . B responds as follows.
1. If no tuple corresponding to IDi exists on the H list

1 , B follows the H1 −
queries algorithm to create the tuple with xi =⊥ and sets PIDi = P ′i .

2. Otherwise, B updates PIDi
with P ′i and sets xi =⊥.

Challenge Phase: At some point, AI decides to end Phase 1 and picks
IDch and two messages M0,M1 on which it wants to be challenged. B responds
as follows.

1. If IDch 6= IDI then B aborts (Event 3).
2. Otherwise, IDch = IDI and B gives C the pair M0,M1 as the messages on

which it wishes to be challenged. C responds with the challenge ciphertext C =<
U, V,W > which is the BasicPub-I encryption of Mb for a random b ∈ {0, 1}.
Then B delivers C to AII . It is easy to see that C is the CL-PKE encrypton of
Mb for identifier IDI with public key PID.

Phase 2: B responds to queries as in Phase 1.
Guess: Eventually, AII outputs b′ for b. Algorithm B outputs b′ as its guess

for b.
If the algorithm B does not abort during the simulation then algorithm AI ’s

view is identical to its view in the real attack. To complete the proof it remains
to calculate the probability that B does not abort during the simulation. B could
abort when one of the following events happens:(1)Event 1: AI queries the Par-
tial Private key Extraction for IDI at some point; (2)Event 2: AI queries the
Private key Extraction for IDI at some point; (3) Event 3: A does not choose
IDI as IDch. Notice that the ¬event3 implies that ¬Event1 and ¬Event2 (if AI
choose IDch equal to IDI , then no partial private key extraction and private key
extraction are allowed). Hence, the probability that B does not abort during the
simulation is: Pr[¬Event1]Pr[¬Event2]Pr[¬Event3] = Pr[¬Event3] = 1/q1.
This shows that B’s advantage is at least ε/q1 as required.

Lemma 2. Let H2 is a random oracle and there exists an IND-CPA ad-
versary A against BasicPub-I which has non-negligible advantage ε. Suppose A
makes a total of q2 queries to H2. Then there exists an algorithm B to solve the
(q1 − 1)-BCAA1 problem with non-negligible advantage 2ε/q2.

Proof: Algorithm B is given as input a random (q1 − 1)-BCAA1 instance <
q, G1, G2, GT , e, ψ, P1, P2, xP2, h0, (h1,

1
h1+xP2),, (hq1−1,

1
hq1−1+xP2) > where

x ∈ Z∗q is a random element. Algorithm B finds D = e(P1, P2)1/(x+h0) by inter-
acting with A as follows:

10

Setup: Algorithm B first simulates algorithm Key-generation of BasicPub-I
to create the public parameters as belew.

1.Computes Ppub = ψ(xP2) ∈ G1.
2. Pick a random r ∈ Z∗q and set PID = rP2.
2. Now B pasees A the public parameters Kpub−I =< q, G1, G2, GT , e, ψ, P1,

P2, Ppub, r, PID, h0, (h1,
1

h1+xP2),, (hq1−1,
1

hq1−1+xP2) >. The private key is

Kpri−I = 1
h0+xP2.

H2-queries:At any time algorithm A can query the random oracle H2. To
response to these queries B maintains a list of tuples < Xi,Hi >. We refer to
this list as the H list

2 . When A queries the oracle H2 at a point Xi algorithm B
responds as follows:

1. If the query Xi already appears on the H list
2 in a tuple < Xi,Hi >, then

algorithm B responds with H2(Xi) = Hi.
2. Otherwise, B chooses a random Hi ∈ {0, 1}n, return H2(Xi) = Hi, and

adds the tuple < Xi,Hi > to the H list
2 .

Challenge: Algorithm A outputs two message M0 and M1 on which it
wants to be challenged. B chooses a random string R ∈ {0, 1}n and two ran-
dom integers r1, r2 ∈ Z∗q , and then defines the challenged ciphertext to be
C =< U, V >=< r1P1 + r2PID, R >. Observe that the decryption of C is
R⊕H2(r1P1 + r2rP2,

1
h0+xP2 − r−1P1) = R⊕H2(Dr1 ∗ e(P1, P2)c).

Guess: Algorithm A outputs it guess b ∈ {0, 1}. At this point B pick a
random tuple < Xi,Hi > from the H list

2 and outputs (Xi/e(P1, P2)c)−r1 as the
solution to the given instance of (q1 − 1)-BCAA1 problem.

LetH be the event that algorithm A issues a query for H2(Dr1 ∗e(P1, P2)c) at
some point during the simulation. From Claim 1 of [2], we know that Pr[H] ≥ 2ε.
Hence, at the end of the simulation, Dr1 ∗e(P1, P2)c appear in some tuple on the
H list

2 with probability at least 2ε. Assume that A has queries q2 distinct value
to H2. Hence, we know that B produces the correct answer with probability at
least 2ε/q2.

To prove the theorem 3, we define the following public key encryption scheme
called BasicPub-II.

BasicPub-II This scheme includes the following algorithms:
Key-generation: Given a security parameter κ, the generator takes the

following steps.
1. Generate the parameters < q, G1, G2, GT , e, P1, P2, g > which are identical

to the ones of the BasicCL-PKE.
2. Pick a random s ∈ Z∗q and compute Ppub = sP1. Randomly choose element

h0 ∈ Z∗q .
3. Pick a random x ∈ Z∗q and compute PID = xP2.
4. Pick a hash function H2 : GT → {0, 1}n for some n.
The public Kpub−II =< q,G1, G2, GT , e, n, P1, P2, g, s, Ppub, PID, h0,H2 >

and the private key is Kpri−II = x.
Encrypt:To encrypt M ∈M, perform the following steps:

11

1. Check that PID is in G∗1, if not output ⊥. This checks the validity of the
public key.

2. Choose two random r1, r2 ∈ Z∗q and compute the ciphertext:

C =< r1(h0P1 + Ppub) + r2PID,M ⊕H2(g(r1+r2))

Decrypt:Suppose C =< U, V >. To decrypt this ciphertext using the pri-
vate key Kpri−II compute:

M = V ⊕H2(e(U, 1
h0+sP2 − 1

Kpri−II
P1)).

Proof of Theorem 3 This theorem straightforwardly follows from the follow-
ing lemma 3 and lemma 4.

Lemma 3. Let H1 is a random oracle. Suppose AII is an IND-CPA adver-
sary that has advantage ε against BasicCL-PKE. Suppose AII makes at most
q1 queries to H1 and qE Private Key Extraction queries. Then there is an IND-
CPA adversary B that at lest ε

q1
(1− 1

q1
)qE against BasicPub-II.

Proof: Let AII be a Type II advesary against the new CL-PKE. Suppose
AII has advantage ε and makes q1 queries to random oracle H1. We show how
to construct from AII an IND-CPA adversary B against the BasicPub-II. Let
C denote the challenger against B for BasicPub-II. The challenger C begins by
supplying B with a public key:

Kpub−II =< q, G1, G2, GT , e, n, P1, P2, g, s, Ppub, PID, h0,H2 >.
Algorithm B works by interacting with A in an IND-CPA game as follows:
Setup: B chooses an index I with 1 ≤ I ≤ qH1 . Then B gives AII the CL-

PKE public parameters params =< q, G1, G2, GT , e, n, P1, P2, g, Ppub, H1,H2 >
and the value of s. Here < q, G1, G2, GT , e, n, P1, P2, Ppub, g, H2 > and s are
taken from Kpub−II . H1 is a random oracle controlled by B as described below.

H1-queries: At any time algorithm AII can query the random oracle H1.
To response to these queries B maintains a list of tuples < IDi, hi, xi >. We
refer to this list as the H list

1 . When AII queries the oracle H1 at a point IDi

algorithm B responds as follows:
1. If the query IDi already appears on the H list

1 in a tuple < IDi, hi, xi >,
then algorithm B responds with H1(IDi) = hi.

2. Otherwise, if the query is on the Ith distinct ID, then B return H1(IDI) =
h0 and add < IDID, h0,⊥> into the H list

1 .
3. Otherwise, B chooses a random hi ∈ Z∗q and return H1(IDi) = hi. Then

B chooses a random xi ∈ Z∗q and adds the tuple < IDi, hi, xi > to the H list
1 .

Phase 1: Now AII launches Phase 1 of its attack by making a series of
queries. B replies to these queries as follows:

Private Key Extraction: If the query is on IDI then B aborts (Event 1).
Otherwise, if the request in on IDi with i 6= I, then B outputs < 1

hi+sP2, xi >.

12

Request for Public Key: If the query is on IDI then B returns PID.
Otherwise, if the request is on IDi with i 6= I, then B outputs xiP2.

Challenge Phase: At some point, AII decides to end Phase 1 and picks
IDch and two messages M0,M1 on which it wants to be challenged. B responds
as follows.

1. If IDch 6= IDI then B aborts (Event 2).
2. Otherwise, IDch = IDI and B gives C the pair M0,M1 as the messages

on which it wishes to be challenged. C responds with the challenge ciphertext
C =< U, V, W > which is the BasicPub-II encryption of Mb for a random
b ∈ {0, 1}. Then B delivers C to AII . It is easy to see that C is the CL-PKE
encrypton of Mb for identifier IDI with public key PID.

Phase 2: B responds to queries as in Phase 1.
Guess: Eventually, AII outputs b′ for b. Algorithm B outputs b′ as its guess

for b.
If the algorithm B does not abort during the simulation then algorithm AII ’s

view is identical to its view in the real attack. To complete the proof it remains
to calculate the probability that B does not abort during the simulation. B could
abort when one of the following events happens:(1)Event 1:A queries the Private
key Extraction for IDI at some point; (2) Event 2: A does not choose IDI as
IDch. Hence, the probability that B does not abort during the simulation is:
Pr[¬Event1]Pr[¬Event2] = (1 − 1

q1
)qE (1

q1
). This shows that B’s advantage is

at least ε
q1

(1− 1
q1

)qE as required.

Lemma 4. Let H2 is a random oracle and there exists an IND-CPA ad-
versary A against BasicPub-II which has non-negligible advantage ε. Suppose A
makes a total of q2 queries to H2. Then there exists an algorithm B to solve the
co-BIDH problem with non-negligible advantage 2ε/q2.

Proof: Algorithm B is given as input a random co-BIDH problem instance
< P1, P2, aP2, bP2 >. Let D = e(P1, P2)a−1b be the solution to the co-BIDH
problem. Algorithm B finds D by interacting with A as follows:

Setup: Algorithm B simulate algorithm Key-generation of the BasicPub-II to
create the public Kpub−II =< q, G1, G2, GT , e, n, P1, P2, g, s, Ppub, PID, h0,H2 >
by randomly selecting s, h0 ∈ Z∗q and setting Ppub = sP, PID = aP2. H2 is a
random oracle controlled by B. The private key Kpri−II equals to a which B does
not know. Then algorithm B passes the public key Kpub−II to A and responds
queries as follows.

H2-queries: At any time algorithm A can query the random oracle H2. To
response to these queries B maintains a list of tuples < Xi,Hi >. We refer to
this list as the H list

2 . When A queries the oracle H2 at a point Xi algorithm B
responds as follows:

1. If the query Xi already appears on the H list
2 in a tuple < Xi,Hi >, then

algorithm B responds with H2(Xi) = Hi.
2. Otherwise, B chooses a random Hi ∈ {0, 1}n, return H2(Xi) = Hi, and

adds the tuple < Xi,Hi > to the H list
2 .

13

Challenge: Algorithm A outputs two message M0 and M1 on which it wants
to be challenged. B chooses a random string R ∈ {0, 1}n and a random integer
c ∈ Z∗q , and then defines the challenged ciphertext to be C =< U, V >=<
(h0 + s)cP1 + bP2, R >. Observe that the decryption of C is R ⊕ H2(e((h0 +
s)cP1 + bP2,

1
h0+sP2 − a−1P1) = R⊕H2(D ∗ e(P1, P2)c).

Guess: Algorithm A outputs it guess b ∈ {0, 1}. At this point B pick a
random tuple < Xi,Hi > from the H list

2 and outputs Xi/e(P1, P2)c as the
solution to the given instance of co-BIDH problem.

Let H be the event that algorithm A issues a query for H2(D ∗ e(P1, P2)c) at
some point during the simulation. From Claim 1 of [2], we know that Pr[H] ≥ 2ε.
Hence, at the end of the simulation, D ∗ e(P1, P2)c appear in some tuple on the
H list

2 with probability at least 2ε. Assume that A has queries q2 distinct value
to H2. Hence, we know that B produces the correct answer with probability at
least 2ε/q2.

4.3 FullCL-PKE

In this section, we use a technique due to Fujisaki-Okamoto [10] to convert the
IND-CPA secure BasicCL-PKE scheme into an IND-CCA secure certificateless
encryption scheme in the random oracle. We obtain the following IND-CCA
certificateless encryption called FullCL-PKE by applying the Fujisaki-Okamoto
transformation.

Setup: As in the BasicCL-PKE scheme. In addition, we select two hash func-
tions H3 : {0, 1}n × {0, 1}n → Z∗q ,H5 : {0, 1}n × {0, 1}n → Z∗q ,H4 : {0, 1}n →
{0, 1}n.

Partial-Private-Key-Extract: As in the BasicCL-PKE scheme.
Set-Secret-Value: As in the BasicCL-PKE scheme.
Set-Private-Key: As in the BasicCL-PKE scheme.
Set-Public-Key: As in the BasicCL-PKE scheme.
Encrypt: To encrypt M ∈M for entity ID with the public key PID, perform

the following steps:
1. Check that PID is in G∗2, if not output ⊥. This checks the validity of the

public key.
2. Compute QID = H1(ID)P1 + Ppub.
3. Choose a random σ ∈ {0, 1} and set r1 = H3(σ,M), r2 = H5(σ,M).
4. Choose random values r1 and r2 and compute the ciphertext:

C =< r1QID + r2PID, σ ⊕H2(g(r1+r2)),M ⊕H4(σ) >

Decrypt: Suppose C =< U, V, W >. To decrypt this ciphertext using the
private key SID =< DID, xID > compute:

1. Compute V ⊕H2(e(U,DID − 1
xID

P1)) = σ.
2. Compute W ⊕H4(σ) = M .
3. Set r1 = H3(σ,M), r2 = H5(σ,M). Test that U = r1QID + r2PID. If not,

reject the ciphtext.

14

4. Output M as the decryption of C.

The security proof of the FullCL-PKE scheme is based on the results of
Fujisaki and Okamoto (Theorem 14 in [10]). We can prove the FullCL-PKE to
be IND-CCA secure formally in the similar method in [2]. The detail proof will
be written in the full paper version.

5 Performance Analysis

In this section, we will show that our proposed FullCL-PKE scheme has the
best performance, comparing with other existing CL-PKE schemes [3,4,5,6]. All
the schemes have three major operations, i.e., Pairing (p), Scalar(s) and Ex-
ponentiation (e). Without considering the pre-computation, the properties and
performance of the CL-PKE schemes are listed in Table 1, where we compare
the schemes on the computation complexity, public key length (Pubkey Len)
and the hardness assumption.

We know that pairing computation is more time-consuming than scalar and
exponentiation computation [14]. From Table 1 we can see that our new scheme
requires no pairing computation in Encrypt and the public key consists of only
one element of G2 rather than two required in AP’s scheme I and CC’s scheme
I. Hence, our scheme is more efficient than the existing CL-PKE schemes.

Table 1. Comparison of the CL-PKE Schemes

Schemes Encrypt Decrypt Pubkey Len

AP’s scheme I [3] 3p+1s+1e 1p+1s 2
CC’s scheme I [5] 3p+1s+1e 1p+1s 2
AP’s scheme II [4] 1p+2s+1e 1p+2s 1
CC’s scheme II [6] 1p+2s+1e 1p+2s 1
New scheme 3s+1e 1p+2s 1

6 Conclusions

In this paper, we present an efficient CL-PKE scheme which is constructed by a
kind of parallel model rather than a serial model. Based on the security of two
public key encryption schemes we prove the security of our scheme formally in
the similar method in [2]. Furthermore, our scheme is more efficient than the
existing CL-PKE schemes on computation or published public key information.

15

References

1. Shamir, A.,: Identity based Cryptosystems and Signature Schemes. Advances in
Cryptology-CRYPTO’84, Springer-verlag, LNCS 196 (1985) 47–53

2. Boneh, D. and Franklin, M.,: Identity based Encryption from the Weil Pairing.
Advances in Cryptology-CRYPTO’2001, Springer-Verlg, LNCS 2139 (2001) 213–
229

3. Al-Riyami, S.S. and Paterson, K.G.,: Certificateless Public Key Cryptography. In
Advances in Cryptology C ASIACRYPT 2003, Springer-verlag LNCS vol. 2894
(2003) 452-C473

4. Al-Riyami, S.S. and Paterson, K.G.,: CBE from CL-PKE: A Generic Construciton
and Efficient Schemes. PKC 2005, LNCS 3386 (2005) 398–415

5. Cheng, Z.H., Comley, R. and Vasiu, L.,: Remove Key Escrow from The Identity-
Based Encryption System. TCS@IFIP, Toulouse, France, August 2004. Foundations
of Information Technology in the Era of Network and Mobile Computing.

6. Cheng, Z.H. and Comley, R.,: Efficient Certificateless Public Key Encryption. Cryp-
tology ePrint Archive, Report 2005/012

7. Sakai, R. and Kasahara, M.,: ID based cryptosystems with pairing on elliptic curve.
Cryptology ePrint Archive, Report 2003/054

8. Chen, L.Q. and Cheng, Z.H.,: Security Proof of Sakai-Kasahara’s Identity-Based
Encryption Scheme. Cryptology ePrint Archive, Report 2005/226

9. Yum, D.H., Lee, P.J.,: Generic Construction of Certificateless Encryption. ACISP
2004. 200–211.

10. Fujisaki, E. and Okamotom, T.: Secure Integration of Asymmetric and Symmet-
ric Encryption Schemes. Advances in Cryptology - CRYPTO 1999 Proceedings,
Springer-Verlag (1999) 535–554

11. Smart, N. and Vercauteren, F.,: On computable isomorphisms in efficient pairing
based systems. Cryptology ePrint Archive, Report 2005/116

12. Boneh, D. and Boyen, X.,: efficient selective-ID secure identity-based encryption
without random oracles. In Proceedings of Advances in Cryptology - Eurocrypt
2004, LNCS 3027, Springer-Verlag (2004) 223–238

13. Sakai, R., Kasahara, M.,: ID based Cryptosystems with Pairing on Elliptic Curve.
Cryptology ePrint Archive, Report 2003/054

14. Barreto, P.S.L.M., Lynn, H.Y. and Scott, M.,: Efficient Algorithms for Pairing-
based cryptosystems. Advances in Cryptology-Crypto 2002, LNCS Vol. 2442 (2002)
354–368

