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.ukAbstra
t. Often an atta
ker tries to dis
onne
t a network by destroying nodes or edges, whilethe defender 
ounters using various resilien
e me
hanisms. Examples in
lude a musi
 industry bodyattempting to 
lose down a peer-to-peer �le-sharing network; medi
s attempting to halt the spreadof an infe
tious disease by sele
tive va

ination; and a poli
e agen
y trying to de
apitate a terror-ist organisation. Albert, Jeong and Barab�asi famously analysed the stati
 
ase, and showed thatvertex-order atta
ks are e�e
tive against s
ale-free networks. We extend this work to the dynami

ase by developing a framework based on evolutionary game theory to explore the intera
tion ofatta
k and defen
e strategies. We show, �rst, that naive defen
es don't work against vertex-orderatta
k; se
ond, that defen
es based on simple redundan
y don't work mu
h better, but that de-fen
es based on 
liques work well; third, that atta
ks based on 
entrality work better against 
liquedefen
es than vertex-order atta
ks do; and fourth, that defen
es based on 
omplex strategies su
h asdelegation plus 
lique resist 
entrality atta
ks better than simple 
lique defen
es. Our models thusbuild a bridge between network analysis and evolutionary game theory, and provide a frameworkfor analysing defen
e and atta
k in networks where topology matters. They suggest de�nitions ofeÆ
ien
y of atta
k and defen
e, and may even explain the evolution of insurgent organisations fromnetworks of 
ells to a more virtual leadership that fa
ilitates operations rather than dire
ting them.Finally, we draw some 
on
lusions and present possible dire
tions for future resear
h.1 Introdu
tionMany modern 
on
i
ts turn on 
onne
tivity. In 
onventional war, mu
h e�ort is expendedon disrupting the other side's 
ommand, 
ontrol and 
ommuni
ations by jamming or de-stroying his fa
ilities. Counterterrorism operations involve a similar e�ort but with di�er-ent tools: traÆ
 analysis to tra
e 
ommuni
ations, 
oupled with surveillan
e of the 
ows ofmoney, material and re
ruits, followed by the arrest and interrogation of individuals whoappear to be signi�
ant nodes. Terrorists are aware of this, and take measures to preventtheir networks being tra
ed. Usama bin Laden des
ribed his strategy on the videotape
aptured in Afghanistan as `Those who were trained to 
y didn't know the others. Onegroup of people didn't know the other group' (see [14℄, whi
h des
ribes the hija
kers'networks).Conne
tivity matters for so
ial dominan
e too, as a handful of leading individualsdo mu
h of the work of holding a so
iety together. Subverting or killing these leaders islikely to be the 
heapest way to make an invaded 
ountry submit. When the NormanFren
h invaded England in the eleventh 
entury, they killed or impoverished most of theindigenous landowners; when the Turks, and then the Mongols, invaded India, they killedboth landowners and priests; when England suppressed the S
ottish highlands after the1745 uprising, landowners were indu
ed to move to Edinburgh or London; and in manyof the dreadful events of the last 
entury, rulers targeted the elite (Russian kulaks, PolishoÆ
ers, Tutsi s
hooltea
hers, . . . ).Moving from politi
s to 
ommer
e, the musi
 industry spends a lot of money attempt-ing to disrupt peer-to-peer �le-sharing networks. Te
hniques range from te
hni
al atta
ksto aggressive litigation against individuals believed to have been running major nodes.



Networks of personal 
onta
ts are important in other appli
ations too. In publi
 health,for example, it often happens that a small number of individuals a

ount for mu
h of thetransmission of a disease. Thus Senegal has been more e�e
tive at ta
kling the spread ofHIV/AIDS than other Afri
an 
ountries, as they targeted prostitutes [19℄. In fa
t, interestin so
ial networks has grown greatly over the last 15 years in the humanities and so
ials
ien
es [20, 9℄.Re
ent advan
es in the theory of networks have provided us with the mathemati
aland 
omputational tools to understand su
h phenomena better. One striking result is thata network mu
h of whose 
onne
tivity 
omes from a small number of highly-
onne
tednodes 
an be very eÆ
ient, but at the 
ost of extreme vulnerability. As a simple example,if everyone in the 
ounty 
ommuni
ates using one telephone ex
hange, and that burnsdown, then everyone is isolated.This paper starts to explore the ta
ti
al and strategi
 options open to 
ombatants insu
h 
on
i
ts. What strategies 
an one adopt, when building a network, to provide goodtrade-o�s between eÆ
ien
y and resilien
e? We are parti
ularly interested in 
omplexnetworks, involving thousands or millions of nodes, whi
h are so 
ompli
ated (or undersu
h dispersed 
ontrol) that the resilien
e rules 
an only be implemented lo
ally, ratherthan by a 
entral planner who deliberately designs a network with multiple redundantba
kbones.Is it possible, for example, to 
reate a virtual high-degree node, by 
ombining a num-ber of nodes whi
h appear on external inspe
tion to have lower degree? For example, anumber of individuals might join together in a ring, and use some 
overt 
ommuni
ations
hannel to route sensitive information round the ring in a manner shielded from 
asualexternal inspe
tion. There is a loose pre
edent in Chaum's `dining 
ryptographers' 
on-stru
tion [10℄, in whi
h a number of 
ryptographers pass messages round a ring in su
ha way as to mask, from insiders, the sour
e and destination of en
rypted traÆ
. Can webuild a similar 
onstru
tion, but in whi
h the fa
t of systemati
 message routing is 
on-
ealed from outsiders, with the result that the parti
ipants appear to be `ordinary' nodesmaking a modest 
ontribution in the network, rather than important nodes that shouldbe targeted for 
lose inspe
tion and/or destru
tion?2 Previous WorkThere has been rapid progress in re
ent years in understanding how networks 
an developorgani
ally, how their growth in
uen
es their topology, and how the topology in turna�e
ts both their 
apa
ity and their robustness. There is now a substantial literature: fora book-length introdu
tion, see Watts [21℄, while literature surveys are [1, 17℄Early work by Erd�os and Renyi modelled networks as random graphs [11, 7℄; this ismathemati
ally interesting but does not model most real-world networks a

urately. Inreal networks, path lengths are generally shorter; it is well known that any two people arelinked by a 
hain of maybe half a dozen others who are pairwise a
quainted { known asthe `small-world' phenomenon. This idea was popularised by Milgram in the 60s [16℄. Anexplanation started to emerge in 1998 when Watts and Strogatz produ
ed the alpha model.Alpha is a parameter that expresses the tenden
y of nodes to introdu
e their neighboursto ea
h other; with � = 0, ea
h node is 
onne
ted to its neighbours' neighbours, so thenetwork is a set of dis
onne
ted 
liques, while with � = 1, we have a random graph.4



They dis
overed that, for 
riti
al values of �, a small-world network resulted. The alphamodel is rather 
omplex to analyse, so they next introdu
ed the beta network: this is
onstru
ted by arranging nodes in a ring, ea
h node being 
onne
ted to its r neighbourson either side, then repla
ing existing links with random links a

ording to a parameter�; for � = 0 no links are repla
ed, and for � = 1 all links have been repla
ed, so that thenetwork has again be
ome a random graph [22℄. The e�e
t is to provide a mix of lo
aland long-distan
e links that models observed phenomena in so
ial and other networks.How do networks with short path lengths 
ome about in the real world? The simplestexplanation involves preferential atta
hment. Barab�asi and Albert showed in 1999 how,if new nodes in a network prefer to atta
h to nodes that already have many edges, thisleads to a power-law distribution of vertex order whi
h in turn gives rise to a s
ale-freenetwork [6℄, whi
h turns out to be a more 
ommon type of network than the alpha or betatypes. In a so
ial network, for example, people who already have many friends are usefulto know, so their friendship is parti
ularly sought by new
omers. In friendship terms, theri
h get ri
her. There are many e
onomi
 
ontexts in whi
h su
h dynami
s are also ofinterest [13℄.The key paper for our purposes was written by Albert, Jeong, and Barab�asi in 2000.They observed that the 
onne
tivity of s
ale-free networks, whi
h depends on the highly-
onne
ted nodes, 
omes at a pri
e: the destru
tion of these nodes will dis
onne
t thenetwork. If an atta
ker removes the best-
onne
ted nodes one after another, then pastsome threshold point the size of the largest 
omponent of the graph 
ollapses [2℄.Later work by Holme, Kim, Yoon and Han in 2002 extended this from atta
ks on ver-ti
es to atta
ks on edges; here, the atta
ker removes edges 
onne
ting high-degree nodes,and again, past some 
riti
al point, the network be
omes dis
onne
ted [15℄. They also sug-gested using 
entrality { te
hni
ally, this is the `betweenness 
entrality' of Freeman [12℄{ as an alternative to degree for atta
k targeting. (A node's 
entrality is, roughly speak-ing, the proportion of paths on whi
h it lies.) Computing 
entrality is harder work forthe atta
ker than observing vertex degree, but it enables him to atta
k networks (su
has beta networks) where there is little or no variability in vertex order. Finally, in 2004,Zhao, Park and Lai modelled the 
ir
umstan
es in whi
h a s
ale-free network 
an su�er
as
ading breakdown from the su

essive failure of high-
onne
tivity nodes [23℄. Theseideas �nd some resonan
e in the �eld of strategi
 studies: for example, Soviet do
trine
alled for destroying a third of the enemy's network, jamming a further third, and hopingthat the remaining third would 
ollapse under the in
reased weight of traÆ
.3 Naive Defen
es Don't WorkGiven the obvious importan
e of the subje
t, and the fa
t that the Albert-Jeong-Barab�asipaper appeared in 2000, one obvious question is why there has been no published worksin
e on how a network 
an defend itself against a de
apitation atta
k. Here is one possibleexplanation: the two obvious defen
es don't work.One of these is simply to replenish destroyed nodes with new nodes, and furnish themwith edges a

ording to the same s
ale-free rule that was used to generate the networkinitially. One might hope that some equilibrium would be found between atta
k anddefen
e. 5



The other obvious defen
e is to replenish destroyed nodes, but to wire their edgesa

ording to a random graph model. In this way, we might hope that, under atta
k, anetwork would evolve from an eÆ
ient s
ale-free stru
ture into a less eÆ
ient but moreresilient random stru
ture. In a real appli
ation, this might happen either as a resultof nodes learning new behaviour, or by sele
tive pressure on a node population withheterogeneous 
onne
tivity preferen
es: in pea
etime the nodes with higher degree wouldbe
ome hubs, while in wartime they would be early 
asualties.Ni
e as these ideas may seem in theory, they do not work at all well in pra
ti
e. Figure 1shows �rst (solid line) how the vertex-order atta
k of Albert, Jeong and Barab�asi worksagainst a simulated network with no replenishment, then with random replenishment,then with s
alefree replenishment. In the vanilla 
ase the atta
k takes two rounds todis
onne
t the network; with random replenishment it takes three, and with s
ale-freereplenishment it takes four.
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es against vertex-order de
apitation atta
kIt seems that, to defend against these kinds of de
apitation atta
ks on networks, wewill need smarter defen
e strategies. But how should these be evolved, and what sort offramework should we use to evaluate them?4 A Model from Evolutionary Game TheoryPrevious resear
hers 
onsidered disruptive atta
ks on networks to be a single-round game.Su
h a model is suitable for appli
ations su
h as a 
onventional war, in whi
h the atta
kerhas to expend a 
ertain amount of e�ort to destroy the defender's 
ommand, 
ontrol and
ommuni
ations, and one wishes to estimate how mu
h; or a single epidemi
 in whi
h a
ertain amount of resour
e must be spent to bring the disease under 
ontrol.However, there are many appli
ations in whi
h atta
k and defense evolve throughmultiple rounds: terrorism and musi
-sharing are only two examples. We now develop6



a framework for 
onsidering this more general 
ase. We apply ideas from evolutionarygame theory developed by Axelrod and others [3, 4℄. This theory studies how games ofmultiple rounds di�er from single-round games, and it has turned out to have signi�
antexplanatory power in appli
ations from ethology to e
onomi
s.We now formalise a model in whi
h a game is played with a number of rounds. Ea
hround 
onsists of atta
k followed by re
overy. Re
overy in turn 
onsists of two phases:replenishment and adaptation.In the atta
k phase, the atta
ker destroys a number of nodes (or, in a variant, ofedges); this number is his budget. He sele
ts nodes for destru
tion a

ording to some rule,whi
h is his strategy. For example, he might at ea
h round destroy the ten nodes withthe largest number of edges 
onne
ted to them. He exe
utes this strategy on the basis ofinformation about the network topology.In the replenishment phase, the defending nodes re
ruit a number of new nodes,and go through a phase of establishing 
onne
tions { again, a

ording to given strategiesand information.In the adaptation phase, the defending nodes may rewire links within ea
h 
onne
ted
omponent of the network, in a

ordan
e with some defensive strategy. The adaptationphase is applied on
e at the start of the game, before the �rst round of atta
k; thereafterthe game pro
eeds atta
k { replenish { adapt.An atta
k strategy is more eÆ
ient, for a given defense strategy, if an atta
ker usingit requires a smaller budget to disrupt the network. Similarly, a defense strategy is moreeÆ
ient if, for a given atta
k strategy, it 
ompels the atta
ker to expend a higher budgetto a
hieve network disruption. (We will 
larify this later on
e we have presented anddis
ussed a few simulations.)We assume initially that the atta
ker has perfe
t information about the network topol-ogy, and that her goal is simply to partition the network { that is, divide it into two ormore nontrivial disjoint 
omponents. We assume that the defender has only lo
al infor-mation, that it, ea
h node shares the information available to those nodes with whi
h itis 
onne
ted. Thus, for example, if the atta
ker manages to split the network into two
omponents, there is no way for them to re
onne
t. We also start o� by assuming that thedefen
e strategy a�e
ts only the adaptation phase, as only on
e nodes have 
onne
ted toa network 
an they be programmed to follow it; so the replenishment phase is exogenous.A further initial assumption is that the atta
k and defen
e budgets are roughly equal.By this we will mean that for ea
h node destroyed in the atta
k phase, one node will berepla
ed in the resour
e addition phase. Thus the network will neither grow or shrink inabsolute size and we 
an 
on
entrate on 
onne
tivity e�e
ts. We will dis
uss other possibleassumptions later, but the stati
 budgets and global atta
k / lo
al defen
e assumptionswill get us started.5 Defen
e Evolution { First RoundTo analyse the vulnerability of a network, the sele
tion of network elements (nodes oredges) destroyed in ea
h round is the atta
ker's 
hoi
e and 
onstitutes her strategy. Theatta
ker wishes to maximize the network damage 
aused per unit of work.We will start o� by 
onsidering a stati
 atta
ker, using what we know to be a reasonableatta
k (vertex-order), and examine how the defen
e strategy 
an adapt. Then we will see7



what better atta
ks 
an be found against the best defen
e we found. Then we will lookfor a defen
e against the best atta
k we found in the last round, and so on. There is noguarantee that the pro
ess 
onverges { there may be a spe
ialised atta
k that works wellagainst ea
h defen
e, and vi
e versa { but if evolutionary games on networks behave likemore traditional evolutionary games, we may expe
t to �nd some strategies that do welloverall, as `tit for tat' does in multi-round prisoners' dilemma. We may also expe
t togain useful insights in the pro
ess.5.1 Defense strategy 1 { random replenishmentOur �rst defensive strategy is the simplest of all, and is one of the naive defen
es introdu
edin the above se
tion. New nodes are joined to the graph at random. We assume that ea
hatta
k round removes r nodes, and the replenishment round adds exa
tly r nodes, ea
hof whi
h is joined to the surviving verti
es with probability p. r remains 
onstant for ea
hrun of the simulation, while p in
reases from k=(N�r) to k=(N �1) as the replenishmentpro
eeds. In this strategy, the defender does nothing in the adaptation phase.This models the 
ase where new re
ruits to a subversive network simply 
onta
t anyother subversives they 
an �nd; no attempt is made to reshape the network in responseto the 
apture of leaders but the network is simply allowed to be
ome more amorphous.5.2 Defense strategy 2 { dining steganographersOur se
ond defensive strategy is more sophisti
ated, and is inspired by the theory of anony-mous 
ommuni
ation as developed by 
omputer s
ientists, most notably Chaum [10℄. Anode that a
quires a high vertex order, and thus 
ould be threatened by a vertex-orderatta
k, splits itself into n nodes, arranged in a ring. The rings have two fun
tions. First,they provide resilien
e: a ring broken at one point still supports 
ommuni
ations betweenall its surviving nodes, and it is the simplest su
h stru
ture. Se
ond, nodes 
an route
overt traÆ
 between appropriate input and output links, and use en
ryption and otherinformation-hiding me
hanisms to 
on
eal the traÆ
. This model was originally presentedin Chaum's seminal `dining 
ryptographers' paper 
ited above, so we might refer to it asthe `dining steganographers'. The 
ollaborating nodes in ea
h ring 
annot 
on
eal theexisten
e of 
ommuni
ation between them, as the 
over traÆ
 is visible to the atta
ker.However, from the atta
ker's viewpoint it is not obvious that these n nodes are a
ting asa virtual supernode.Our fo
us here is on the e�e
ts of network topology, rather than on the higher-layerme
hanisms that a
tually implement the 
overtness property and that provide any 
on-�dentiality of 
ontent or of routing data. We assume a world in whi
h there is suÆ
ienten
rypted traÆ
 (SSL, SSH, DRM, . . . ) that en
rypted traÆ
 is not of itself suspi
ious solong as it is wrapped in a 
ommon 
iphertext type. The atta
ker's input 
onsists of traÆ
data 
olle
ted from the ba
kbone or from ISPs, and her output 
onsists of de
isions tosend poli
e oÆ
ers to raid the premises asso
iated with parti
ular IP addresses. Her prob-lem is this: given an observed pattern of 
ommuni
ations, whom should she investigate�rst?The pre
ise me
hanism of ring formation in our simulation is as follows. A vulnerablenode de
ides to 
reate a ring and re
ruits for the purpose a further n� 1 nodes from thenew nodes introdu
ed in the most re
ent replenishment round, or, if they are inadequate,8



from among its immediate neighbours. Existing ring members 
annot be re
ruited, sorings may not overlap. Finally, re
ruits to a ring relinquish any existing links with therest of the network, and the ring-forming node shares its external links uniformly amongall the members of the ring.5.3 Defense strategy 3 { revolutionary 
ellsOur third defensive strategy is inspired by 
ells of revolutionaries, along the model favouredhistori
ally by a number of insurgent organisations. A node that a
quires a high vertexorder splits itself into n nodes, all linked with ea
h other, with the previous outside 
on-ne
tions split uniformly between them. In graph-theoreti
 language, ea
h supernode is a
lique.As in ring formation, a node that 
onsiders itself vulnerable is allowed to split itselfinto a 
lique of nodes. The new nodes are drawn either from the pool of new nodes, or,if they are insuÆ
ient, from low-vertex-order neighbours of the 
lique-forming node. Asbefore, this node's external edges are distributed uniformly among members, while othermember nodes' former external edges are deleted.Simulations { �rst set For our �rst set of simulations, we 
onsider a s
alefree networkof N = 400 nodes. We use a Barab�asi-Albert network 
reated by the following algorithm:1. Growth: Starting with m0 = 40 nodes, at ea
h round we add m = 10 new nodes, ea
hwith 3 edges.2. Preferential Atta
hment: The probability that a new node 
onne
ts to node i is �(ki)= ki=Pj kj where ki is the degree of node i.Having 
reated the s
alefree network, we then ran ea
h of the above defensive strategiesagainst a vertex-order atta
k.Results The results of the initial three simulations are given in Figure 2.The bla
k graph in Figure 2 provides a 
alibration baseline. As seen in the abovese
tion, random replenishment without adaptation is ine�e
tive: within three rounds thesize of the largest 
onne
ted 
omponent has fallen by a half, from 400 nodes to well under200.The green graph shows that rings give only a surprisingly short-term defen
e bene�t.They postpone network 
ollapse from about two rounds to about a dozen rounds. There-after, the network is almost 
ompletely dis
onne
ted. In fa
t, the out
ome is even worsethan with random replenishment.Cliques, on the other hand, work well. A few verti
es are dis
onne
ted at ea
h atta
kround, but as the 
yan graph shows, the network itself remains robustly 
onne
ted. Thismay provide some insight into why, although rings have seemed attra
tive to theoreti
ians,those real revolutionary movements that have left some tra
e in the history books haveused a 
ell stru
ture instead.6 Atta
k Evolution { First RoundHaving tried a number of defen
e strategies and found that one of them { 
liques { ise�e
tive, the next step is to try out a number of atta
k strategies to see if any of them ise�e
tive against our defen
es, and in parti
ular against 
liques.9
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Fig. 2. bla
k: Vertex order atta
k, no adaptation green: Vertex order atta
k, rings 
yan: Vertex order atta
k,
liquesOf the atta
k strategies we tried against a 
lique defen
e, the best performer is anatta
k based on 
entrality. We used the 
entrality algorithm of Brandes [8℄ to sele
t thehighest-
entrality nodes for destru
tion at ea
h round. As before, our 
alibration baselineis random replenishment. For this, the red and bla
k graphs show performan
e againstvertex-order and 
entrality atta
ks respe
tively. Both are equally e�e
tive; within two orthree rounds the size of the largest 
onne
ted 
omponent has been halved.The green and blue graphs show that the same holds for rings: the network 
ollapses
ompletely after about a dozen rounds. Centrality atta
ks are very slightly more e�e
tivebut there is not mu
h in it.
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Fig. 3. bla
k: Vertex order atta
k, no adaptation red: Centrality atta
k, no adaptation green: Vertex orderatta
k, rings blue: Centrality atta
k, rings 
yan: Vertex order atta
k, 
liques magenta: Centrality atta
k,
liques 10



The most interesting results from these simulations 
ome from the magenta and 
yangraphs, whi
h show how 
liques behave. Cyan shows, as before, a vertex-order atta
k withseveritym= 10 being ine�e
tive against a 
lique defen
e. Magenta shows the e�e
t on su
ha network of a 
entrality atta
k. Here the largest 
onne
ted 
omponent retains about 400nodes until the network suddenly partitions at 14 rounds, whereafter a largest-
omponentsize of about 200 is maintained stably.
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Fig. 4. red: Centrality atta
k, no adaptation blue: Centrality atta
k, rings magenta: Centrality atta
k, 
liquesSome insight into the internal me
hani
s 
an be gleaned from Figure 4. This showsthe average inverse geodesi
 length. For ea
h node, we �nd the length of the shortest pathto ea
h other node, and take the inverse (we take the length to be in�nite, and thus theinverse to be zero, if the nodes are in disjoint 
omponents). We average this value overall n(n� 1)=2 pairs of nodes. This value falls sharply for defense without adaptation, andfalls steadily for defense with rings. These falls re
e
t in
reasing diÆ
ulty in internode
ommuni
ation. With 
liques, the vertex-order atta
k has little e�e
t, while the 
entralityatta
k makes steadily in
reasing progress on a graph of 400 verti
es, until it a
hievespartition and redu
es the largest 
omponent to about 200 verti
es. But it makes onlyslow progress thereafter.6.1 Clique sizesWe next ran a simulation 
omparing how well defense works when using di�erent sizesof rings and 
liques. Ring size appears to make little di�eren
e; rings are just not ane�e
tive defen
e other than in the very short term. However, varying the 
lique size yieldsthe results displayed in Figure 5.This shows that under a 
entrality atta
k, the performan
e of the defense in
reasessteadily with the size of the 
lique. There is still a phase transition after about 14 roundsor so after whi
h the largest 
onne
ted 
omponent be
omes signi�
antly smaller, but thesize of this equilibrium 
omponent in
reases steadily from about 150 with 
lique size 8 toalmost 300 at 
lique size 20. 11
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size 5 size 8 size 11 size 14 size 17 size 20Fig. 5. Clique re
overy with di�erent 
lique sizes under a 
entrality atta
k7 Defen
e Evolution { Se
ond RoundNow that we know 
entrality atta
ks are powerful, we have tried a number of otherpossible defen
es. The most promising at present appears to be a 
ompound defen
ebased on 
liques and delegation.The idea behind delegation is fairly simple. A node that is be
oming too well-
onne
tedsele
ts one of its neighbours as a `deputy' and 
onne
ts it to a se
ond neighbour, withwhi
h it then dis
onne
ts. This re
e
ts normal human behaviour even in pea
etime: busyleaders pass new re
ruits on to 
olleagues. In wartime, and with an enemy that mightresort to vertex-order atta
ks, the in
entive to delegate is even greater. Thus a terroristleader who gets an o�er from a wealthy businessman to �nan
e an atta
k might simplyintrodu
e him to a young militant who wants to 
arry one out. The leader need nowmaintain 
ommuni
ations with at most one of the two.Delegation on its own is rather slow; it takes dozens of rounds for delegation to `im-munise' a network against vertex-order atta
k. If a vanilla s
ale-free network is going tobe exposed to either a vertex-order or 
entrality atta
k from the next round, then drasti
a
tion (su
h as 
lique formation) is needed at on
e; else it will be dis
onne
ted within twoor three rounds. Slower defen
es like delegation 
an however play a role, provided theyare started from network formation or a reasonable time period (say 20 rounds) beforethe atta
k begins.It turns out that the delegation defen
e, on its own, is rather like the rings of diningsteganographers. Network fragmentation is postponed (about 14 rounds with the param-eters used here) though not ultimately averted.What is interesting, however, is this. If we form a network and immunise it by runningthe delegation strategy, then run a 
lique defen
e as well from the initiation of hostilities,this 
ompound strategy works rather better than ordinary 
liques. Figure 6 shows thesimulation results.Figure 7 may give some insight into the me
hanisms. Delegation results in shorterpath lengths under atta
k: it postpones and slows down the growth of path length thatotherwise results from hub elimination. As a result, equilibrium is a
hieved later, and witha larger minimum 
onne
ted 
omponent. 12
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8 Con
lusions and Future WorkIn this paper, we have built a bridge between network s
ien
e and evolutionary gametheory.For some years, people have dis
ussed what sort of 
ommuni
ations topologies mightbe ideal for 
overt 
ommuni
ation in the presen
e of powerful adversaries, and whethernetwork s
ien
e might be of pra
ti
al use in 
overt 
on
i
ts { whether to insurgents orto 
ounterinsurgen
y for
es [5, 18℄. Our work makes a start on dealing with this questionsystemati
ally.Albert, Jeong and Barab�asi showed that although a s
alefree network provides better
onne
tivity, this 
omes at a 
ost in robustness { an opponent 
an dis
onne
t a networkqui
kly by 
on
entrating its �repower on well-
onne
ted nodes. In this paper, we haveasked the logi
al next questions. What sort of defen
e should be planned by operators ofsu
h a network? And what sort of framework 
an be developed in whi
h to test su

essivere�nements of atta
k, defense, 
ounteratta
k and so on?First, we have shown that naive defen
es don't work. Simply repla
ing dead hubs withnew re
ruits does not slow down the atta
ker mu
h, regardless of whether link repla
ementfollows a random or s
ale-free pattern.Moving from a single-shot game to a repeated game provides a useful framework. Itenables 
on
epts of evolutionary game theory to be applied to network problems.Next, we used the framework to explore two more sophisti
ated defensive strategies. Inone, potentially vulnerable high-order nodes are repla
ed with rings of nodes, inspired bya standard te
hnique in anonymous 
ommuni
ations. In the other, they are repla
ed by
liques, inspired by the 
ell stru
ture often used in revolutionary warfare. To our surprisewe found that rings were all but useless, while 
liques are remarkably e�e
tive. This maybe part of the reason why 
ell stru
tures have been widely used by 
apable insurgentgroups.Next, we sear
hed for atta
ks that work better against 
lique defen
es. We found thatthe 
entrality atta
k of Holme et al does indeed appear to be more powerful, althoughit 
an be more diÆ
ult to mount as evaluating node 
entrality involves knowledge ofthe entire topology of the network. Centrality atta
ks may re
e
t the modern realityof 
ounterinsurgen
y based on pervasive 
ommuni
ations intelligen
e and, in parti
ular,traÆ
 analysis.Now we are sear
hing for defen
es that work better against 
entrality atta
ks. Apromising 
andidate appears to be the delegation defen
e, 
ombined with 
liques. This
ombination may in some ways re
e
t the reported `virtualisation' strategies of somemodern insurgent networks.Above all, this work provides a systemati
 way to evolve and test se
urity 
on
eptsrelating to the topology of networks. Clearly the 
oevolution of atta
k and defense 
an betaken mu
h further. Further work in
ludes testing:1. networks that grow or shrink, maybe with endogenous replenishment (
urrent re
ruit-ment a fun
tion of past operational su

ess)2. imperfe
tly informed atta
kers, su
h as poli
emen who have a

ess to the re
ords ofsome but not all phone 
ompanies or email servi
e providers, or who must use purelylo
al measures of 
entrality3. perfe
tly informed defenders, who 
an 
oordinate 
onne
tivity globally14



4. budget tradeo�s { for example, a defender might be able to hide spe
i�
 edges butonly at some 
ost to his replenishment budget5. heterogeneous networks, with subpopulations having di�erent robustness preferen
es6. dynami
 strategies that dete
t opponents' strategies and respond7. di�erent atta
ker goals. For example, some say that the Iraqi rebel leader Al-Zarqawiis not bin Laden's subordinate but his 
ompetitor. So an atta
k obje
tive might benot just partition, but to divide the opposition into groups of less than a 
ertain size.When atta
king an ad-ho
 sensor network, the goal might be to redu
e the e�e
tivebandwidth, and there might be intera
tion with routing algorithms.Preliminary though it is, we suggest that this work has broad potential appli
ability {from making the Internet more resilient against natural disasters and mali
ious atta
ks,to the question of how best to disrupt (or design) subversive networks.A
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