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Abstract. The most significant pairing-based cryptographic protocol
to be proposed so far is undoubtedly the Identity-Based Encryption
(IBE) protocol of Boneh and Franklin. In their paper [6] they give de-
tails of how their scheme might be implemented in practise on certain
supersingular elliptic curves of prime characteristic. They also point out
that the scheme could as easily be implemented on certain special non-
supersingular curves for the same level of security. An obvious question
to be answered is – which is most efficient? Motivated by the work of Gal-
lant, Lambert and Vanstone [12] we demonstrate that, perhaps counter
to intuition, certain ordinary curves closely related to the supersingular
curves originally recommended by Boneh and Franklin, provide better
performance. We illustrate our technique by implementing the fastest
pairing algorithm to date (on elliptic curves of prime characteristic) for
contemporary levels of security. We also point out that many of the non-
supersingular families of curves recently discovered and proposed for use
in pairing-based cryptography can also benefit (to an extent) from the
same technique.
Keywords: Tate pairing implementation, pairing-based cryptosystems.

1 Introduction

If it is to be successful in the long term, pairing-based cryptography needs ef-
ficient algorithms for the calculation of the Weil or Tate pairing. In his early
text book Menezes [15] mentions an implementation of the Weil pairing which
“reported running times of just a few minutes” on a SUN-2 SPARC-station.
However this is more than a little unfair – at the time there was no real incen-
tive to try and optimise the standard technique, based on Miller’s algorithm [16].
The development of protocols that require fast pairings has produced a series of
improvements and tricks which have drastically reduced this running time down
to just a few milliseconds.

One target might be that the pairing calculation should take as long as an
RSA decryption, for the same level of security, and as pointed out by Scott [18],
this target has already almost been reached. However more improvements may
be possible, and it is the purpose of this paper to illustrate a new method which



can either produce a further speed-up of up to 20%, or half the amount of storage
required, depending on the context in which the pairing is to be calculated.

The development of fast pairings has advanced on two fronts. The first has
concentrated on optimising algorithms for the Tate pairing on elliptic curves of
prime characteristic, both supersingular and ordinary. The second has focused
on algorithms for supersingular curves of small characteristic, typically of char-
acteristic 2 and 3. The former approach is epitomised by the work of Barreto,
Kim, Lynn and Scott [2] and Galbraith, Harris and Soldera [11]. For an easy-to-
read description of the so-called BKLS-GHS algorithm, with timings, see [18].
While the BKLS-GHS algorithm is also suitable for use over small characteristic
curves, the work of Duursma and Lee [10] made it clear that a more efficient
algorithm was possible in this context. This approach culminated in the work
of Barreto, Galbraith, O’hEigeartaigh and Scott [1], which introduced the prim-
itive ηT pairing, and showed how the Tate pairing could be calculated from it
using an iterative loop only half the size of that required by Duursma and Lee.
They also raise the possibility that pairings over characteristic 2 supersingular
hyperelliptic curves may also be competitive.

However comparing the two types of fast pairings is difficult, as it amounts
to comparing the difficulty of the discrete logarithm problem in fields of prime
characteristic, with that in fields of small characteristic. In our view this com-
parison has not been adequately experimentally investigated. However the most
authoritative comparison that we have found is due to Lenstra [14]. From this,
and using the timings from [1], it would appear that the ηT approach may in
fact be the fastest. However since there is still some concern that the discrete
logarithm problem in fields of low characteristic may be easier than we currently
think, in this paper we will concentrate exclusively on the prime characteristic
case.

It has been suggested that pairings might be speeded up by using a prime
modulus p of low Hamming weight [13]. This idea can be used with both su-
persingular and non-supersingular curves. However this also raises legitimate
concerns about a possible lowering of discrete-logarithm security. We will not
consider the use of a prime modulus of low Hamming weight here.

A critical parameter of any pairing implementation is the embedding de-
gree, or “security multiplier”, denoted k. For reasons of efficiency it is usually
recommended that k be even [2] . The security multiplier relates the size of
the base field over which points on the elliptic curve are manipulated, with the
discrete-logarithm security of the pairing. For example on a particular supersin-
gular hyperelliptic curve of characteristic 2, a value of k = 12 is possible [1], and
so a hyperelliptic curve over the field F2113 would result in a pairing with the
discrete logarithm security of a 12*113=1356 bit binary extension field, which by
reference to [14] might be considered to be adequately secure. So a large security
multiplier implies that we can work on an elliptic or hyperelliptic curves over a
smaller base field, with efficiency advantages. However the advantage of a large
security multiplier is perhaps not as great as one might think, as the major part
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of the pairing calculation involves manipulations over the extension field (of size
1356 bits in our example), rather than over the smaller base field.

In the case of prime characteristic fields, the use of a security multiplier of
k = 2 has proven to be surprisingly efficient for contemporary levels of security
[18]. Note that for supersingular elliptic curves of prime characteristic, k = 2
is the maximum possible. The issue of how to scale security in pairing based
protocols has been considered by both Koblitz and Menezes [13], and by Scott
[19]. The consenus is that the appropriate way to scale security is to increase the
security multiplier rather than increase the size of the prime modulus.

Note that by “contemporary levels of security”, we mean a 1024-bit prime
extension field size, and a group size of 160-bits. This implies roughly the same
security as 1024-bit RSA [19].

Here we are concerned with the calculation of the Tate pairing, denoted
e(P, Q), which evaluates as an element of order r in Fpk where P is a point of
order r on E(Fp) and Q is a point on E(Fpk).

2 Supersingular Curves

In their original paper [6], Boneh and Franklin recommend the use of either of
these supersingular curves over Fp

y2 = x3 + Ax, where p ≡ 3 mod 4 (1)

y2 = x3 + B, where p ≡ 2 mod 3 (2)

On supersingular curves the modified pairing is calculated as ê(P,Q) =
e(P, ψ(Q)), where e(P, Q) denotes the Tate pairing, and ψ(.) denotes the distor-
tion map. For the first curve an appropriate distortion map is defined as ψ1 :
(x, y) → (−x, αy) where α =

√−1, and for second curve the distortion map is
ψ2 : (x, y) → (βx, y) where β is a non-trivial cube root of unity. Note that both
α and β are elements of the extension field Fp2 , corresponding to the security
multiplier value of k = 2.

In the Boneh and Franklin IBE scheme there is a necessity to hash identities
to curve points. For the second curve this can be done by hashing the identity
string to the y coordinate, and then solving the modular cubic equation for x.
Since p ≡ 2 mod 3, this will always be possible. For the first curve one could
hash the identity to x and test if x3 + ax is a quadratic residue. If it is not then
negate x. Then solve the modular quadratic for y, and choose one of the two
solutions according to some convention. This will always work as p ≡ 3 mod 4
implies that -1 is a quadratic non-residue.

3 Not Supersingular Curves

Consider now these non-supersingular curves over Fp
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y2 = x3 + Ax, where p ≡ 1 mod 4 (3)

y2 = x3 + B, where p ≡ 1 mod 3 (4)

Recall that IBE can equally well be implemented on these curves, using the
Tate pairing e(P, Q) directly. Suitable curves can be found with k = 2, but of
course we are no longer restricted to this value alone – larger values of k are also
possible (see below).

Note that all that has been changed is the congruence conditions applying to
p. For our convenience here we will describe these curves as the not-supersingular
(NSS) curves to distinguish them from the generality of ordinary curves. Under
these circumstances what becomes of the distortion maps? Well of course they
are no longer distortion maps, as now α, β ∈ Fp. However these mappings con-
tinue to be useful, as we will see, not as distortion maps, but rather as efficient
endomorphisms.

What about hashing identities to curve points on these curves? One interest-
ing feature of k = 2 curves is that both the curve and its quadratic twist have
the same embedding degree of k = 2. This arises from the condition [2] that the
group order r divides both p + 1 and p + 1 − t (the number of points on the
curve), where t is the trace of the Frobenius for the particular curve. Therefore
it follows that r also divides p + 1 + t, the number of points on the quadratic
twist of the curve, and either curve is a suitable vehicle for IBE.

To be concrete we will from this point on concentrate our attention to the
curve of equation (4), although all our results apply equally to the other curve.
For simplicity choose p = 7 mod 12, so that -1 is a quadratic non-residue, and a
quadratic twist of the original curve is given by y2 = x3−B. Then if an identity
is hashed to a value x, if x3 + B is not a quadratic residue, then (−x)3 − B
will be. So the trick is to hash to either the original curve or to the twisted
curve, depending on the identity. IBE public parameters for both the curve and
its twist must be maintained, but other than that the IBE implementation will
proceed smoothly with negligible additional overhead.

4 Curve generation

While generating suitable parameters for supersingular curves is easy, it is much
more challenging to generate suitable non-supersingular curves. However a lot of
progress has been made. Just as pairing-based cryptography was getting started,
Miyaji, Nakabayashi and Takano [17] described a method for generating non-
supersingular curves with embedding degrees of 3, 4 and 6. Barreto, Lynn and
Scott [3] were the first to provide simple formulae for generating whole families
of curves with useful embedding degrees. Their results were extended by Brezing
and Weng [7], and later by Barreto and Naehrig [4] who came up with formulae
which allow the generation of ideal k = 12 curves with many useful properties.
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We will return to these curves later, but for now will just make the observation
that the majority of such curves are of the not-supersingular form.

By far the most general method for generating pairing-friendly non-
supersingular curves in that due to Cocks and Pinch [5], and this is the method
that we shall use to generate k = 2 not-supersingular curves suitable as re-
placements for the standard supersingular curves described above, for use with
Boneh and Franklin IBE. Crucially (for us) the Cocks-Pinch algorithm allows a
free choice of the group order r. It is well known that a choice of a low Hamming
weight r speeds up the Tate pairing calculation [2], [11], [18]. Alternatively it
suffices if a small multiple of r has a low Hamming weight.

While these methods provide formulae for determining the prime modulus p
and the trace of the Frobenius t of the desired curve, they do not generate the
curve parameters directly. For this the method of Complex Multiplication must
be used [9]. Note that the not-supersingular curves are associated with a CM
discriminant of D = −4 and D = −3 respectively. In these cases determining
the curve parameters is particularly simple, as for example demonstrated in [4].

For our NSS curve (4), the Cocks-Pinch algorithm can be described very
simply: Select a suitable r of low Hamming weight (or a small multiple of which
has low hamming weight). Calculate v =

√
−4/3 mod r. Set t = ωr. Keep adding

r to v until p = (3v2 + t2)/4 is prime. (Choose ω so that p is 512 bits). Note
that r | p + 1 − t. Finally use the CM method to find the curve parameter B
associated with the curve of order p + 1− t. (There are 6 possible group orders
generated by the CM method in this case [9], so care must be taken to choose
the right one).

5 Efficient pairings on NSS curves

In their paper Gallant, Lambert and Vanstone [12] describe an efficient method
for point multiplication, that applies to NSS curves, and indeed this paper is
the main source of inspiration for the current work, although we exploit the
endomorphism in a completely different way. Another motivation comes from
consideration of the ηT pairing as described in [1].

In the course of calculating the Tate pairing e(P, Q) the first parameter, the
point P , is multiplied by its order. Of course this results in the point-at-infinity.
In the course of this process the intermediate values of this point, as it typically
follows a simple double-and-add trajectory to its pre-ordained destination, along
with the second parameter Q, are used to accumulate the pairing value. In some
contexts the value of P may be fixed and known in advance (for example it may
be a public parameter, or a private key). In this case these intermediate values
can be precalculated and stored, with some performance benefit [18].

Choosing as a parameter a group order r of low Hamming weight drastically
reduces the number of expensive add steps, and hence speeds the algorithm.
However does this process take full advantage of our ability to choose r? The
intuition that led to the discovery of the ηT pairing was that the multiplication
by the group order could perhaps be divided into two parts. At the “half-way”
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stage, the point P might be “close” to where it started. Therefore the second
half of the iteration would hopefully be a simple function of the first part, and
so only half the number of iterations might be required. Here we demonstrate
that something similar can be achieved for NSS curves.

Gallant, Lambert and Vanstone [12] have pointed out the following useful
facts about NSS curves, and the efficient endomorphisms that they support.

For the curve (3) let P be a point of prime order r, with coordinates (x, y),
such that λ2 +1 = 0 mod r. Then the point λP has coordinates (−x, αy), where
α is a square root of -1 mod p. Note that there are two possibilities for α,
depending on the two possible solutions of the quadratic equation for λ. The
endomorphism is defined as φ1 : (x, y) → (−x, αy)

For the curve (4) let P be a point of prime order r, with coordinates (x, y),
such that λ2+λ+1 = 0 mod r. Then the point λP has coordinates (βx, y), where
β is a non-trivial cube root of unity mod p. Note that there are two possibilities
for β, depending on the two possible solutions of the quadratic equation for λ.
The endomorphism is this case is defined as φ2 : (x, y) → (βx, y)

This imples that given a point P on one of these curves, one can immediately
determine a fixed multiple of the point, with a single field multiplication. In [12]
this is exploited to develope a fast point multiplication algorithm.

Focusing on the latter curve, our idea is that λ should be chosen in advance,
of low Hamming weight. For example we might choose λ = 2n. Then select as r a
large prime divisor of λ2 +λ+1. For example n = 87, and r = (2174 +287 +1)/73
(a 168-bit prime) would seem to be a suitable choice. Using a double and add
algorithm for the calculation of the Tate pairing would require the calculation of
2n(2nP +P )+P 1. However using the endomorphism we can immediately know
the value of 2nP + P . And this implies that we know the sequence of points
that will occur during the final 2n doublings, without having to explicitly calcu-
late them (exploiting the well-known commutativity of the endomorphism with
point multiplication: aφ(P ) = φ(aP )). This results in significant computational
savings.

Now we explain our technique in a little more detail. Given the point P with
coordinates (x, y), and using the endomorphism, it is easy to calculate 2nP +P as
the point (−(β + 1)x,−y). Clearly if the values of the initial 2n point doublings
were stored, the values of the final 2n doublings can be found at the cost of
a single field multiplication, resulting in a faster algorithm. Alternatively if the
value of P is fixed, only half the storage would be required. Either way the result
is a more efficient algorithm. However it is possible to do a little better than this.

For the first n iterations of Miller’s algorithm the contribution to the pairing
value is (yQ − yi) −mi(xQ − xi), where (xi, yi) is the point 2iP , mi is the line
slope resulting from the current point doubling, and (xQ, yQ) is the point Q.
This value can be multiplied at will by any element of Fp, as the effect of any
such multiplication will be wiped out by the final exponentiation. For the final
n iterations the contribution will be (yQ + yi) + (β2 + 1)mi(xQ + (β + 1)xi) –

1 As pointed out by Duursma and Lee [10] the final point addition can be omitted
without changing the value of the pairing.
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note the adjusted value of the slope. But since β is a non-trivial cube root of
unity, we know that β2 +β +1 = 0 mod p. Substituting and simplifying we have
(yQ +yi)+(β2 +1)mi(xQ +(β +1)xi) = (yQ +yi)+mi(βxQ−xi). Now multiply
by -1 to obtain the equivalent contribution of (−yQ − yi)−mi(βxQ − xi).

Observe therefore that we can obtain the same values by switching the point
Q to Q̄ for the final n iterations, where Q̄ = (βxQ,−yQ), and using exactly the
same sequence of (xi, yi) as we did for the first n iterations.

5.1 A basic algorithm

We are now ready to bring these ideas together and describe our modified BKLS-
GHS algorithm in detail. First we equip ourselves with a library which can add
or double points on an elliptic curves by means of a function A.add(B) which
adds B to A, and returns the line slope m.

Next we need a function g(.) to calculate the contribution of the current
iteration to the pairing value. The returned value is used for the first n iterations,
and the values for the final n iterations are calculated at the same time (at very
little extra cost) and stored for later use.

Algorithm 1 Function g(.)
Input: A, B, Q, i
1: xi, yi ← A
2: xQ, yQ ← Q
3: mi = A.add(B)
4: store −yQ − yi −mi(βxQ − xi) in an array element s[i]
5: return yQ − yi −mi(xQ − xi)

In practise the function A.add(B) will be faster if the point A is represented in
projective coordinates, which makes for a somewhat more complex g(.) function.
We omit the details, except to point out that much of the calculation is shared
between the stored point and the returned point, with further savings.

For optimal performance the point Q is deliberately placed into the trace-
zero subgroup, which means that only the variable yQ is in Fp2 . The variables
xi, yi, xQ,mi are all in Fp. See [18] for details. The returned and stored values
are in Fp2 .

Care must be taken to ensure that correct non-trival cube root of unity for
β is chosen, as there are two possibilities associated with the two solutions for
λ2 + λ + 1 = 0 mod r. The right value can easily be found by trial and error,
and the value of βxQ can then be precalculated and stored.

For the particular case n = 87 the full Tate pairing algorithm is given in
Algorithm 2. This algorithm will also work for any choice of λ = 2n which leads
to a near-prime value of r = λ2 + λ + 1. However in practise, and in the range
of useful values, good values for n are hard to find.

7



Algorithm 2 Computation of e(P, Q) on NSS curve (4), k = 2, λ = 287, r =
(λ2 + λ + 1)/73
Input: P, Q
Output: e(P, Q)
1: A ← P , f ← 1
2: for i ← 1 to 87 do
3: f ← f2.g(A, A, Q, i)
4: end for
5: f ← f.g(A, P, Q,−)
6: for i ← 1 to 87 do
7: f ← f2.s[i]
8: end for
9: return f (p−1)(p+1)/r

5.2 A better algorithm

Consider now the slightly more complicated choice of λ = 2a + 2b. In this case
we have much greater control of r, and it is much easier to find a prime value
which still has a very low Hamming weight. For example choosing λ = 280 + 216

gives a prime r = λ2 + λ + 1 of 161 bits. A slight complication arises in this
case, as the multiplication of the point P by r no longer follows a purely double-
and-add algorithm, and so Miller’s algorithm needs to be slightly modified to
accomodate this. In the following algorithm 3, the variable h is used to handle
this modification.

The extra storage requirement for the array s is not very large, but in some
circumstances it may become an issue. An alternative version of the algorithm
requires no storage, for a little extra work. See algorithm 4.

6 Results

An important first step in an implementation is to use the Cocks and Pinch
algorithm to generate a suitable 512-bit, k=2 NSS elliptic curve. The curve
y2 = x3 + 5 mod p, for the 512-bit prime p, where

p = 11457475683995493806353174186205825314535461236767597441115533728505070527823

154532657656991234473986641703193940343559823628668878734326909502089393493643

was quickly found. The Tate pairing was calculated on this curve using algo-
rithms 3 and 4 with a = 80 and b = 16, and compared with the pairing calculated
on the original Boneh and Franklin supersingular curve. As anticipated, the NSS
curve pairings are significantly faster.

We provide both timings and a count of the total number of Fp modular
multiplications and squarings required. In the implementation we used a final
exponentiation based on the calculation of a Lucas sequence, which allows easy
times-two compression of the output, as described in [18] and [20].
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Algorithm 3 Computation of e(P, Q) on NSS curve (4), k = 2, λ = 2a + 2b,
a > b, r = λ2 + λ + 1. Requires an array s of length a.
Input: P, Q
Output: e(P, Q)
1: A ← P , f ← 1, j ← 1
2: for i ← 1 to a− b do
3: f ← f2.g(A, A, Q, j++)
4: end for
5: f ← f.g(A, P, Q, j++)
6: for i ← 1 to b do
7: f ← f2.g(A, A, Q, j++)
8: end for
9: f ← f.g(A, P, Q,−)

10: h ← f , j ← 1
11: for i ← 1 to a− b do
12: f ← f2.s[j++]
13: end for
14: f ← f.s[j++]
15: f ← f.h
16: for i ← 1 to b do
17: f ← f2.s[j++]
18: end for
19: return f (p−1)(p+1)/r

Algorithm 4 Computation of e(P, Q) on NSS curve (4), k = 2, λ = 2a + 2b,
a > b, r = λ2 + λ + 1. No extra storage requirement.
Input: P, Q
Output: e(P, Q)
1: A ← P , f1 ← 1, f2 ← 1, j ← 1
2: for i ← 1 to a− b do
3: f1 ← f2

1 .g(A, A, Q, 0)
4: f2 ← f2

2 .s[0]
5: end for
6: f1 ← f1.g(A, P, Q, 0)
7: f2 ← f2.s[0]
8: for i ← 1 to b do
9: f1 ← f2

1 .g(A, A, Q, 0)
10: f2 ← f2

2 .s[0]
11: end for
12: f1 ← f1.g(A, P, Q,−)
13: f ← fλ

1 .f2

14: return f (p−1)(p+1)/r
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Table 1. NSS vs Supersingular Tate Pairing – 3GHz Intel PIV.

Curve type Fp muls Time (ms)

512-bit, k = 2 Supersingular curve 4070 8.9

512-bit, k = 2 NSS curve, with storage 3163 7.2

512-bit, k = 2 NSS curve, no storage 3329 7.5

7 Extensions

The basic idea can be extended in a few directions. Firstly the same basic
technique will also work for the “other” NSS curve of equation (3). The idea
could also be applied to the non-supersingular curves with CM discriminants of
D = −7 and D = −8, as described in [12], although in these cases the savings
would be much less significant as the endomorphisms are much more complex
to calculate. In fact it would be more correct to refer to the class of exploitable
curves as “small discriminant CM curves”.

If the first parameter P is fixed, then no savings will be realised in terms of
computation using this method as all the multiples of P can be precalculated
and stored. However using NSS curves only half the storage will be required,
which leads to greater efficiency, and which might be significant in a constrained
environment.

The method has been described in the context of a security multiplier of
k = 2, but it also applies immediately to higher values of k. In these cases the
computational time savings will be smaller, as the implicit point multiplication
of P by r becomes a less significant part of the overall calculation [19].

We note in passing that the method of Gallant, Lambert and Vanstone [12]
also has direct application to pairing-based protocols which require point mul-
tiplication, such as the Boneh and Franklin IBE, if they are implemented on
NSS curves. With our choice of group order the deployment of this scheme be-
comes particularly simple: Calculate kP as k1P + k2φ(P , where k2 = k/λ, k1 =
k mod λ. See [12] for details..

Finally we point out that many curves that have been suggested as suitable
for use in pairing-based cryptography are in fact already of the NSS form [3], [7],
and furthermore have a group order of the required form. For example the k = 12
curve suggested in Appendix A of [3] is of this form, as is the nice k = 8 curve
suggested by Brezing and Weng [7] and implemented in [19]. This is facilitated
by the group order of these curves being derived from a cyclotomic polynomial
which, as luck would have it, is of the same form as r = λ2 + λ + 1.

Are NSS curves any less secure than supersingular curves or indeed general
pairing-friendly non-supersingular curves? There is no reason to think so. In
standard elliptic curve cryptography some classes of curves are considered as
weaker than others, although sometimes the reasons are not well supported by
any hard evidence. For example it is considered in certain quarters (for example
the German National Security Agency), that curves with smaller CM discrim-

10



inants are in some sense weaker than others [8]. Whatever the merits of such
judgements, they do not apply in the pairing context, where it is already known
that there is an index calculus attack on the extension field Fpk , which arises
as a direct consequence of having a small embedding degree k. Of course by
choosing p and k wisely this index calculus attack becomes infeasible. It re-
mains an interesting open question whether or not there are any weak classes of
pairing-suitable curves, supersingular or non-supersingular.

8 Conclusions

We have described a method of calculating pairings on certain non-supersingular
curves, which is faster than using the equivalent supersingular curve, as originally
recommended by Boneh and Franklin [6] for use in Identity Based Encryption.
The proposed method is more efficient in terms of time or of space than any other
method so far proposed for prime characteristic fields and at contemporary levels
of security.
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