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Abstract

Traditional data authentication systems are sensitive to single bit changes and so are unsuit-
able for message spaces that are naturally ‘fuzzy’ where ‘similar’ messages are considered ‘the
same’ or at least indistinguishable. In this paper, we study unconditional secure approximate
authentication. We generalize traditional universal hashing to fuzzy universal hashing and use
it to construct secure approximate authentication for multiple messages.

1 Introduction

Traditional Message Authentication. The setting for a traditional message authentication
is as follows. Two parties, a sender A and a receiver B, agree on a secret key k. There are
two algorithms operated with the key £, an authentication tag generation algorithm TAG; and
a verification algorithm VERIFY;. If A wants to send a message m to B, then A generates an
authentication tag as ¢ = TAGk(m) and sends the pair (m,t) to B. Upon receiving (m,t), B
executes VERIFY(m,t). The verification algorithm VERIFY, returns O or 1. If it returns 1 then B
accepts (m,t) as an authenticated message.

Traditional message authentication detects single bit changes in the message with high probability.
That is, if B receives a pair (m/',t) where m' is different from the original m (even in a single bit),
then the verification algorithm VERIFYy(m/,t) returns 0 with high probability.

Carter-Wegman’s Universal Hashing. Universal hashing has played an important role in
constructing traditional authentication system [20, 21, 15, 16, 17, 22, 1, 19, 5, 6, 4]. Universal and
strongly universal hash families was first introduced by Carter and Wegman [10, 23] in a construction
of a counter-based authentication scheme for multiple messages. A strongly universals hash family
H is a set of hash functions A mapping A — B such that for any two distinct elements a1, as of A,
the values (h(a1), h(a2)) is uniformly distributed in the set B2. In Carter-Wegman’s counter-based
authentication scheme, the sender and the receiver agree on a secret hash function h randomly
chosen from a strongly universals hash family and a tuple of n random elements (r1,...,r,) of B.
The sender can send up to n messages to the receiver. To send a message m € A with a message
number i € {1,...,n}, the sender generates a tag t = h(m) @ r; and sends (m,,t) to the receiver.
The scheme is proved to be secure against an adversary with infinite computer power. That is, the
probability for an adversary to forge a message is no more than ﬁ — the probability of guessing
correct tag.

Stinson [20, 21] gave generalized notions of e-almost universal and e-almost strongly universal hash
families. The requirement for an e-almost strongly universaly hash family H is that, for any two



distinct elements a1, as of A and for any two elements b1, by of B, the probability for h € H that
by = h(a1) and by = h(az) is no more than e. If an e-almost strongly universals is used then
the probability for an adversary to forge a message in the above Carter-Wegman’s counter-based
authentication scheme is no more than e. Krawczyk [15] and Rogaway [17] later showed that the
same security can be obtained with a weaker condition, called e-almost zor universalz, on the
hash family (actually Krawczyk used the term e-otp-secure). Stinson [22] further generalized the
property e-almost zor universaly for the case (B, +) is a commutative group and called it e-almost
A universaly. Black et al [5, 6]’s construction uses both universal hash families and pseudorandom
random function families, and reduces the requirement on the hash family to e-almost universals.

Approximate Authentication. Bit sensitivity in traditional message authentication is, however,
a severe limitation for message spaces that are naturally ‘fuzzy’ and where ‘similar’ messages
are considered ‘the same’ or at least indistinguishable. Such message spaces commonly arise in
representing such media objects as images, videos or audio signals, where the distinction between
two objects is limited by human sensory systems; or in representing such human biometric data as
fingerprintings or retina scans, where two biometric readings from the same person are unlikely to
be exactly the same. Authentication of ‘fuzzy’ message spaces has new challenges. In particular, the
authentication system must tolerate variations in the message that are considered ‘indistinguishable’
but detect changes that are due to malicious tampering.

We consider unconditional security and make no assumption regarding the computational resources
of the adversaries. This is appropriate when no computational assumption about adversary’s power
can be made (typically for small mutually distrusting groups of entities that do not know each
others computational or technological advantages, e.g. advances in quantum computations, as is
the setting between nations), or when the aim is to design systems that last indefinitely.

We formalize the concept of fuzziness in a message space and introduce fuzzy universal hashing on
fuzzy spaces. Our proposed definitions of fuzzy universal hashings coincide with the traditional
definitions of universal hashings when the fuzzy space is the discrete fuzzy space, i.e. the space with
no fuzziness where every two different messages are considered as distinguishable. We show that
a secure approximate authentication scheme for multiple messages can be constructed using fuzzy
universal hashing.

Our Contribution. We view our contribution as a bridge connecting between universal hashing
and approximate authentication. We first generalize traditional universal hashings to fuzzy universal
hashings and then show that Carter-Wegman’s framework can be applied with the proposed fuzzy
universal hashing to construct a secure approximate authentication scheme for multiple messages.

Fuzzy SPACES. We define a fuzzy space simply as a message space M with a function y : MxM —
{0,1}. If x(m,m’) = 1 then the two messages m and m' are considered as indistinguishable and if
x(m,m') = 0 then they are distinguishable. Unlike other models of fuzziness which based on some
kind of distance measure, our model requires the minimum. That is, we only require two properties
on the fuzzy function y:

e every message should be indistinguishable to itself, i.e. x(m,m) = 1; and
e symmetry, i.e. x(m,m’) = x(m',m).

With a minimum requirement on the fuzzy function, we leave the freedom to individual applications
to define their own fuzzy function. In some applications, if there is a distance function d that can
measure the difference of two messages then it may define x(m,m') = 1 if d(m,m') < o for some



threshold value o. In some other applications, if there is an extraction function Ext : M — & that
can be used to extract characteristic features of the message and there is a distance measure d on
this set £ of features, then it may define x(m,m') = 1 if d(Ext(m), Ext(m')) < o for some threshold
value o.

Fuzzy UNIVERSAL HASHING. We define several notions of fuzzy hashings: e-fuzzy strongly universaly,
e-fuzzy strongly universals, e-fuzzy strongly differential universals and e-fuzzy universals which nat-
urally generalize e-almost strongly universaly, e-almost strongly universals, e-almost strongly differ-
ential universalo and e-almost universals, respectively. We decided to remove all the term “almost”
because it is implied from the prefix € and we also thought that e-fuzzy almost strongly universaly
is rather long. We also follow Bernstein [4] to use the term “differential” instead of “zor”.

These generalized definitions will coincide with the traditional definitions of universal hashing when
there is no fuzziness in the message space, i.e. x(m,m’) = 0 for all m # m’. We prove some bounds
on the error term e which again become familiar bounds in the traditional case. We follow Black et
al [5, 6] technique to construct e-fuzzy universals hash families for arbitrary length messages from
an e-fuzzy universalo hash family for fixed-length messages.

APPLICATION OF Fuzzy UNIVERSAL HASHING TO APPROXIMATE AUTHENTICATION. As tradi-
tional universal hashing has been used to construct traditional secure authentication, our proposed
fuzzy universal hashing can be used to construct secure approzimate authentication for multiple
messages.

We give two constructions of approximate authentication. The first one is an one-time pad based
scheme using an e-fuzzy strongly differential universaly (or an e-fuzzy strongly universalz) hash
family. The second one is an PRF based scheme using an e-fuzzy universalo hash family and a
pseudorandom function family. Both schemes are proven unconditional secure.

Our security model is very strong. We let the adversary to access the tagging algorithm, thus,
obtaining up to n tags values t1,. .., ¢, for any chosen messages (m1, countery), ..., (my, countery,)
with one condition that no two different messages m; # m, that have the same message number
counter; = counters. The adversary wins if it can produce a forgery (m, counter,t) that passes the
verification algorithm and either counter is a new message number or counter = counter; and m
is distinguishable from m;.

Related Works. ‘Fuzzy information’ arises naturally in some situations, such as when a list of
answers to subjective questions is used to correctly identify a user, as in the personal entropy system
of [12], or in the use of biometric data, such as fingerprints or retina scans for authentication [7].

In quantum mechanics the Heisenberg uncertainty principle gives physical limits on the accuracy
with which measurements may be made, and information known. Measurements on quantum
mechanical systems are therefore also natural fuzzy sources.

Fuzzy extractors [11, 8, 9] provide methods of reconstructing a private string extracted from a fuzzy
secret, using a matching public string. Fuzzy sketches reconstruction of the fuzzy secret with any
public string. In both cases the aim is to ensure the system secrets, the fuzzy secret or private
string, not leak. Reusable fuzzy extractors [8] strengthen the security model by allowing adversaries
to access extraction and regeneration oracles, and to adaptively choose perturbations of the secret
under attack.

Fuzzy extractors and sketches can be applied for user authentication by extracting cryptographic
keys from users biometric data and ensuring that the keys (or the biometric data itself) can be
reproduced without error. In fuzzy hashing based authentication, however, a randomly chosen hash



function is used to construct a tag for a fuzzy secret, such that tampering with the fuzzy secret
can be detected. In the case of biometric data, the tag can be seen as a key dependent hash that
can be stored in the server database, instead of the actual fuzzy secret, hence providing a higher
level of security.

Authentication of media data requires tolerance to small changes in information which occur during
processing such as compression and decompression, or during application of various types of filtering
used for enhancement. Traditional data authentication systems are sensitive to single bit changes
and so are unsuitable for media authentication. Feature hashing algorithms [13, 14] extract features
of media objects that remain invariant under the required set of transformations. Fuzzy hashing
based approximate authentication provide a cryptographic model, in the unconditionally secure
setting, for keyed feature hashing.

The paper is organized as follows. In section 2 we define fuzzy spaces and fuzzy universal hashing.
Relationship between different classes of (fuzzy) hash families and construction of fuzzy hash fami-
lies are presented in section 2.3 and section 2.4, respectively. In section 3, we discuss application of
fuzzy universal hash families to approximate authentication. Section 3.1 presents the one-time pad
based approximate authentication and section 3.2 presents the PRF based approximate authenti-
cation.

2 Fuzzy Universal Hashing

2.1 Fuzzy Spaces

Let M be a message space. We will introduce the notion of fuzzy functions on the message space
M that decides whether two messages are distinguishable or not. A fuzzy function is a function
X : MxM — {0,1} such that for any m and m' in M, if x(m,m') = 1 then m and m' are considered
as “indistinguishable” and if x(m,m’) = 0 then m and m' are considered as “distinguishable”. There
are two conditions on the fuzzy function y:

e x(m,m) =1 for all m € M; and

e x(m,m') = x(m',m) for all m,m' € M.

A fuzzy space (M,x) is a message space M together with a fuzzy function x. There are two
special fuzzy functions. The first one is the indiscrete fuzzy function that treats all messages as
indistinguishable, i.e. x(m,m') = 1 for all m, m' € M. The second one is the discrete fuzzy function
that treats any two different messages as distinguishable, i.e. x(m, m') = 0 for all m # m' € M.
A message space with the indiscrete fuzzy function forms an indiscrete fuzzy space; and a message
space with the discrete fuzzy function forms a discrete fuzzy space.

In this article, we do not consider indiscrete fuzzy spaces, that is, we implicitly assume that in the
considered fuzzy space, there always exist two messages m and m' such that x(m,m’) = 0.

The set of messages that are indistinguishable to m is denoted by
Xm = {m' :m' € M, x(m,m') =1}.

Denote
x| = max [xm|.



We always have m € x,, and |x| > 1.

When x is the discrete fuzzy function then x,, = {m} for all m € M and thus, |x| = 1. The value
|x| measures the fuzziness of the space (M, x). In a traditional authentication system, there is no
fuzziness in the message space, thus, it is equivalent to the discrete fuzzy space.

When there is a distance function d on the set of messages M then a fuzzy function can be defined
as x(m,m') = 1 if any only if d(m, m') < o for some threshold distance o.

2.2 Fuzzy Hashing on Fuzzy Spaces

Universal hash families play important role in constructing traditional authentication system. We
generalize definitions of several universal hash families for fuzzy spaces. As we will see later,
our generalized definitions coincide with the traditional definitions when the fuzzy function is the
discrete fuzzy function.

We start with the definition of the traditional e-strongly universal; hash family.

Definition 1 e-Strongly universal; (e-SU; )
Let A, B be finite sets. Let H be a finite hash family mapping A to B. H is e-strongly universal;
if for every x € A and for every y € B,

{heH:y=nh(z)} <eH|
This is our definition of e-fuzzy strongly universal; hash families.

Definition 2 e-Fuzzy strongly universaly (e-FSU; )
Let (A, x) be a finite fuzzy space, B be a finite set. Let H be a finite hash family mapping A to B.
H is e-fuzzy strongly universaly if for every x € A and for every y € B,

{ heH:yeh(x:) } <elH|.

When y is the discrete fuzzy function, x, = {z}, and y € h(xz) is equivalent to y = h(z), thus the
condition in the Definition 2,
{heH:yeh(x) } <elH|

coincides with the condition in the Definition 1,

{heH:y=nh(z)} <eH|
Now let us look at the definition of e-strongly universaly hash families.

Definition 3 e-Strongly universaly (e-SUs)
Let A, B be finite sets. Let H be a finite hash family mapping A to B. H is e-strongly universaly
if for every 1,19 € A such that x1 # xo and for every y1,y2 € B,

H
{(heH g1 = hiz1),ys = h(zs) }] < %

We similarly define our e-fuzzy strongly universaly hash families as follows.



Definition 4 ¢-Fuzzy strongly universaly (e-FSUs)
Let (A, x) be a finite fuzzy space, B be a finite set. Let H be a finite hash family mapping A to
B. H is e-fuzzy strongly universaly if for every x1,z9 € A such that x(x1,z2) = 0 and for every

Y1,Y2 € B;
|H]

|{ heH:y =h(z1),y2 Eh(X@) }l <€|B|

When x is the discrete fuzzy function then an e-FSU; hash family is e-SUs.

Definitions of e-strongly differential universalo and the generalized e-fuzzy strongly differential
universaly are as follows.

Definition 5 e-Strongly differential universals (e-SDU;)
Let A be a finite set, and (B,+) be a finite commutative group. Let H be a finite hash family
mapping A to B. H is e-strongly differential universals if for every x1,z2 € A such that 1 # xo
and for every y € B,

[{ h € H:y=h(z1) — h(z2) }| < €[H|.

Definition 6 e-Fuzzy strongly differential universaly (e-FSDU; )

Let (A, x) be a finite fuzzy space, (B,+) be a finite commutative group. Let H be a finite hash
family mapping A to B. H is e-fuzzy strongly differential universaly if for every x1,2z0 € A such
that x(z1,z2) = 0 and for every y € B,

[{ h€H:y+h(z1) € h(Xay) } < €lH|.
The following lemma, provides a lower bound for the parameter € in e-FSU1, e-FSUs and e-FSDUs.
Lemma 1 If H is an e-FSUy (or e-FSU,, €-FSDUs) hash family mapping A to B then

h > — h > —.

Definitions of e-universaly and the generalized e-fuzzy universalo are as follows.

Definition 7 e-Universaly (e-Us)
Let A, B be finite sets. Let H be a finite hash family mapping A to B. H is e-universals if for
every x1,x2 € A such that 1 # x2,

{ h € H:h(z1) = h(z2) }| <elH|.
Definition 8 e-Fuzzy universaly (e-FUz)

Let (A, x) be a finite fuzzy space, and B be a finite set. Let H be a finite hash family mapping A
to B. H is e-fuzzy universaly if for every x1,z2 € A such that x(x1,z2) =0,

[{ h€H:h(z1) € h(Xa,) } < elHI.

The following lemma provides a lower bound for the parameter € in e-FUs.



Lemma 2 If H is an €-FUy hash family mapping A to B then

s AP =Bl Y pealxal 4] - |Bllx]
~IBI(IAP? = Xpea lx«) ~ IBI(IAl = Ix])

When y is the discrete fuzzy function then an e-FUj; hash family is e-Us. In this case, |x| = 1, and
the lower bound in Lemma 2 becomes the familiar bound [18, 22] for e-Us,

14— 18]
= IBIA - 1)

2.3 Relationship Between Different Classes of Hash Families

In traditional universal hashing [22], e-SUs implies e-SU7, e-SU, implies e-SDU; and e-SDU; implies
e-Us. In the following theorem, we will show that the same implications hold in fuzzy universal
hashing.

Theorem 1 The following implications hold:
1. e-FSU;, —> €-FSUy;

2. G—FSUQ - G—FSDUQ;
3. €-FSDUy — €-FUs.

The following theorem provides generic constructions of fuzzy universal hashing from traditional
universal hashing.

Theorem 2 The following implications hold:
1. -SU1 = (e|x|)-FSU;;

e-SUy = (e|x|)-FSUs;
€-SDUy = (€|x|)-FSDUq;

e-Uy = (e|x|)-FUa.

Example. In the evaluation hash [19], the set of messages A is the set of all polynomials of degree
less than n over GF(2¢) that we will denoted by GF(2¢)[t],. Each hash function is indexed by an
element of GF(2¢). The hash value of a hash function o € GF(2¢) for a message P € GF(2°)[t],
is aP(«a). It is easy to see that the described hash family is 7;-SDUs. That is because, for any
y € GF(2%), and for any two different polynomials Pi, P» € GF(2¢)[t],, there are at most n values
for a € GF(2%) such that y = aP;(a) — aPy(a). These values « are the roots of the polynomial
Q(t) =y —tP(t) + tPe(t) with 1 < degQ < n.

Suppose now we define a fuzzy function on the message space GF(2%)[t],, as follows. Two polyno-
mials Py, P, € GF(2%)[t], are considered as “indistinguishable”, i.e. x(Py, P,) = 1, if and only if,
P, and P, are different in at most one coefficient and the different value of this coefficient is at



most 1. For example x(t2 + 3t + 1,#2 + 2t + 1) = 1, whereas x(t> + 3t + 1,42 + 2t + 2) = 0 and
x(# +3t+ 1,82+ 4t +1) = 0.

With the above fuzzy function, |x| = 2n + 1, hence, by Theorem 2(3), the evaluation hash family
is "0 _RSDU,.

2.4 Constructions of Fuzzy Hashing

From a fuzzy function x on A, we can naturally define a new fuzzy function x* on A¢ as follows,

x(at, ... ap), (b1,...,bg)) = x(a1,b1) X -+ X x(ag, be).

That is two tuples (a1,...,as), (b1,...,b) € A¢ are indistinguishable if all of their corresponding
components are indistinguishable. We have |x¢| = |x|¢.

Suppose we have a fuzzy hash family H = {h : (A4, x) — B}. Consider the following constructions
of fuzzy hash families mapping (A%, x%) — BY, (A4,x) — BY, (A% xY) — B and (4%, x%) — B,

Construction 1: H : (A%, x%) — B*
For each h in H = {h: (A, x) — B} we define a function mapping (A%, x*) — B¢ as follows

h((a1,-..,ap)) = (h(a1),...,h(ap)).

Construction 2: H® : (A%, x*) — B*
For each (hy,...,hs) € H¢ we define a function mapping (A%, x¢) — B¢ as follows

(h1,--- he)((a1,-- -, ae)) = (hi(ar), - .., he(ar)).-

Construction 8: H® : (A%, x*) — B
For each (hi,...,hs) € H® we define a function mapping (A%, x¢) — B as follows

(hl,...,hg)((al,...,ag)) = hl(al) 4+ -+ hz(ag).

Construction 4: H¢: (A,x) — B¢
For each (hi,...,hs) € H® we define a function mapping (4, x) — B as follows

(hl, ey hg)(a) == (hl(a), . ,hg(a)).

Construction 5: H¢: (A,x) —» B
For each (hi,...,hs) € H® we define a function mapping (4, x) — B as follows

(h1,...,he)(a) = hi(a) + - + he(a).
We show that these constructions preserve certain fuzzy properties.

Theorem 3 If H : (A,x) — B is e-FSU, (e-FSUs, ¢-FSDU,, €-FUy) then
e in the Construction 1, H : (A%, x*) — B¢ is e-FSU, (¢|B|*"'-FSU,, e-FSDU,, e-FU,);
: (A% x%) — Bt is L-FSU, (€*|B|*~1-FSUy, e-FSDU,, €-FU,);
e in the Construction 3, H* : (A%, x*) — B is €|x|*"1-FSU, (e|x|*'-FSUs, €|x|*"'-FSDU,);
: (A,x) = Bt is €-FSU, (e*-FSU,, €'-FSDUy, €-FU,);
: (A, x) = B is €|x|-FSU1 (e|x|-FSUs, €|x|-FSDU;).

e in the Construction 2, H*

e in the Construction 4, H*

e in the Construction 5, H*



2.5 Fuzzy universal hashing for arbitrary-length messages

In this section, we follow Black et al [5, 6] technique and show how to construct an e-fuzzy universals
hash family for arbitrary-length messages. Suppose A = {0,1}? is a fixed length message space
with a fuzzy function y : A x A — {0,1}. Suppose B = {0,1}® and H is an e-fuzzy universaly hash
family mapping A to B. We first define a new fuzzy function é on the set {0,1}* of all strings of
arbitrary length that extends the old fuzzy function x. With this new fuzzy function ¢ on {0, 1}*,
we then use H to define a new e-FU, hash family H* = {h* : {0,1}* — {0,1}*}.

For a string z, let |z| denote the length of z. Let len,(z) denote the value (|| mod a) encoded
as [log, a]-bit string. If |z| < a then let pad,(z) denote the string of length a obtained from the
string = by zero-padding.

Fuzzy FuncTioN § oN {0,1}* OBTAINED FROM Fuzzy FUNCTION x ON {0,1}°.

If m,m' € {0,1}* are two strings of different lengths then we define §(m,m’) = 0. If 0 < |m| =
|m/| < a then we define 6(m,m') = x(pad,(m),pad,(m')). Finally, if |m| = |m'| > a, write
m = mi||...||mg—1||mr and m' = mi||...||m}_,||m) where |mi| =+ = |mp_1| = |mfj| =--- =
|m)._i| = a, 0 < |my|,|m}| < a, and define

d(m,m") = x(m1,mh) x -+ x x(mp_1,mj_;) % x(pad,(my), pad, (my,)).

The new fuzzy function ¢ is equal to the old fuzzy function x when restricted to {0, 1}*.

e-FU; Hasu FamiLy H* = {h* : ({0,1}*,0) — {0,1}*} OBTAINED FROM e-FU; HASH FAMILY

H = {h:({0,1}% x) = {0,1}"}.
Each function ~ € H corresponds to a function h* € H* defined as follows,

h*(m) = h(m)]| ... |[h(my—1)||h(pad,(ms))|[lenq (m),

where m = mq||...||mg_1||mg with |mi| =--- = |mg_1| = a and 0 < |my| < a.

Theorem 4 If H = {h : ({0,1}%,x) — {0,1}*} is e-FU, then the above described H* = {h* :
({0,1}*,0) — {0,1}*} is also e-FUs.

3 Application to Approximate Authentication

In this section, we discuss the application of fuzzy universal hashing in approximate authentication
for multiple messages.

In traditional authentication, universal hashing has been used to construct a secure MAC. Similarly,
we will show that our fuzzy hashing can be used to construct secure approximate authentication
for multiple messages. Our construction of approximate authentication follows the Carter-Wegman
framework [10, 23].

The sender and the receiver share two things: a random chosen hash function A from a fuzzy
universal hash family and a secret encryption key. To send a message m, the sender associates it
with a message number ¢, and makes sure that no two different messages associated with the same
message number. To generate the authentication tag ¢ for the message m, the sender then hashes
the message m and then encrypts the resulting hash using ¢ and the secret encryption key. We will
use the one-time pad encryption, that is ¢ = h(m) + r;, where r; is the ith part of the encryption



key. With this choice, if we want to authenticate up to n messages then the sender and the receiver
must share a secret encryption key as a tuple (r1,...,7,) of n components.

Another method is to use pseudorandom function families (PRF). In this method, the sender and
the receiver share a random chosen function h from a fuzzy universal hash family and a random
chosen function f from a pseudorandom function family. To generate the authentication tag ¢,
instead of encrypting the resulting hash h(m), we encode it with the message number i to obtain
(h(m),i), and then apply the function f and set ¢t = f((h(m),)).

The tuple (m,,t) is sent to the receiver who actually receives (m/,,t) for some m' that is indistin-
guishable to m. The receiver will accept (m/',4,t) as authenticated if ¢ = TAG(secrer) (M, ) for some
m € Xpy Where TAG(secrer) denotes the tagging algorithm.

In section 3.1 we discuss one-time pad based approximate authentication scheme and in section 3.2
we discuss PRF-based scheme. We show that in the one-time pad based scheme, if an e-fuzzy
strongly differential universaly hash family is used (or an e-fuzzy strongly universaly is used) then
the one-time pad based scheme is secure against forgery attack with the probability of 1 — €. In the
PRF-based scheme, if an e-fuzzy universalo hash family is used then the PRF-based scheme is secure
against forgery attack with the probability of 1—e. This security is proved in information-theoretical
sense.

3.1 One-time pad based approximate authentication

Let (A, x) be a finite fuzzy space and (B,+) be a finite commutative group. Let H be a finite
hash family mapping A to B. We will use H to construct an approximate authentication scheme
FMAC[H, n] where the parameter n denotes the maximum number of messages to authenticate. The
message space is A, the authenticator space is B. The scheme FMAC[H,n| = (KEY, TAG, VERIFY)
is defined as follows:

function KEY function TAG( ... r,) (M, cOunter)
h+ H
(r1y...,7q) < B" return h(m) + Tcounter
return (h,ry,...,7y)

function VERIFY (4, . r,.)(m, counter,t)
if counter € {1,...,n} and (t — reounter) € h(Xxm) then
return 1 (accept)
end if
return 0 (reject)

In the FMAC[H, n| scheme, the sender and the receiver share a random chosen function h € H
and a random tuple (rq,...,r,) € B™. To send a message m, the sender associates it with a
message number counter € {1,...,n}, and makes sure that no two different messages associated
with the same message number. The authentication tag ¢ for the message m is generated as
t = h(m) 4 Tcounter- The receiver receives (m, counter,t) and checks if t — Tcoynter = h(m') for some
m' € xm to accept it as an authenticated message. This requires up to |x| number of checking.

Forgery Attack Model. Let FMAC[H,n| = (KEY, TAG, VERIFY) be an approximate authenti-
cation scheme. Let ¢ be an integer such that 0 < ¢ < n. Let A be an adversary with access to the
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tagging oracle TAG. Consider the following experiment ExpiMAC[H "]( ). In this experiment, first,

we execute the function KEY to obtain a random key (h,r1,...,7,) € H x B™. Then the adversary
A adaptively queries the tagging oracle TAG with ¢ pairs (ml, countery), ..., (me, counter.), with
the following restriction: no two different messages m; # m, associated with the same message
number counter; = counters. The tagging oracle answers each query (m;, counter;) with the value
ti = TAG(hpy,... r,) (i, counter;). Finally, the adversary A presents a forgery (m,counter,t). We
consider

o A wins of type 1 if VERIFY(h’Th___M)(m, counter,t) = 1, counter = counter; for some 1 < j <
¢, and x(m,m;) = 0; and

o Awinsoftype2if VERIFY(; ;. ..\ (m, counter,t) = 1 and counter ¢ {counteri,...,counter.}.
Let Adv iMAC[H "](c Typel) and AdviMAC[H ] (¢, Type2) denote the probability for A to win of

type 1 and type 2, respectively, in the experiment Exp , . We have the following bounds

on these probabilities.

Lemma 3 If H is e-FSDU, (or e-FSU3) then

AdviMAC[H’n] (c, Typel) < e

Lemma 4 For any H,

FMAC[H,
Adv _A [ n](c Typ62) |BHH| zEA Z' Xw

It follows from Lemma 3, Lemma 4 and Lemma 1 that, if H is e FSDU; (or e-FSUs), then the

probability, AdViMAC[H n]( ), for A to win in the experiment ExpiMAC[H "e)

by € as stated in the following theorem.

is bounded above

Theorem 5 If H is e-FSDU, (or e-FSU;) then

AvaF‘tMAC [H:n] (c) <e.

3.2 PRF based approximate authentication

This section generalizes Black et al’s [5, 6] construction of secure PRF-based MAC. Black et al
show that from an e-universal, hash family we can construct a secure PRF-based MAC scheme. We
show that from an e-fuzzy universala hash family we can construct a secure PRF-based approzximate
authentication scheme.

Let H be an e-fuzzy universalo hash family mapping A — B. Let F' be a pseudorandom function
family mapping {0,1}* — {0,1}". Using H and F', we construct an approximate authentication
scheme FMACI[H, F] = (KEY, TAG, VERIFY) as follows. Note that (-,-) denotes a linear-time
computable function that maps a string z € {0,1}* and a string y € {0,1}" into a string (z,y) of
length |z| + v + O(1), which can be used to recover x and y in linear-time.

11



function KEY function TAG, r)(m, counter)
h<+ H
f«F return f((h(m), counter))
return (h, f)

function VERIFY(y p)(m, counter,t)

if counter € {1,...,n} and t = f((h(m'), counter)) for some m' € x,, then
return 1 (accept)
end if

return 0 (reject)

In the FMACIH, F| scheme, the sender and the receiver share a random chosen function h € H
and a random chosen function f € F. To send a message m, the sender associates it with a
message number counter € {0,1}”, and makes sure that no two different messages associated
with the same message number. To generate the authentication tag ¢ for the message m, the
sender hashes the message m, encodes the resulting hash h(m) with the message number counter
to obtain (h(m), counter), and then applies the function f to get ¢ = f((h(m),counter)). The
receiver receives (m, counter,t) and checks if ¢ = f({h(m'), counter)) for some m' € x,, to accept
it as an authenticated message. This requires up to |x| number of checking.

Forgery Attack Model. Let FMAC[H, F| = (KEY, TAG, VERIFY) be an approximate authenti-
cation scheme. Let ¢ be an integer. Let A be an adversary with access to the tagging oracle TAG.
Consider the following experiment ExpiMAC[H’F](c). In this experiment, first, we execute the func-
tion KEY to obtain a random key (h, f) € H x F. Then the adversary A adaptively queries the
tagging oracle TAG with ¢ pairs (mq, countery), ..., (mc, counter.), with the following restriction:
no two different messages m; # m; associated with the same message number counter; = counters.
The tagging oracle answers each query (m;, counter;) with the value t; = TAG, y)(m;, counter;).

Finally, the adversary A presents a forgery (m,counter,t). We consider

e A wins of type 1 if VERIFY(h, ) (m, counter,t) = 1, counter = counter; for some 1 < j <,
and x(m,m;) = 0; and

e A wins of type 2 if VERIFY(}, 1)(m, counter,t) = 1 and counter € {countery, ..., counter.}.

Let AdviMAC[H’F](c, Typel) and AdviMAC[H’F](c, Type2) denote the probability for A to win of
type 1 and type 2, respectively, in the experiment ExpiMAC[H’F](c). Let Rand(7) be the set of all

functions mapping {0,1}* — {0,1}7, so that choosing a random f < Rand(7) means associating
to each string x € {0,1}* a random string f(z) € {0,1}". We have the following bounds.

Lemma 5 If H is e-FU, then

AdviMAC[H’Rand(T)] (¢, Typel) < max(e,277).

Lemma 6
AdViMAC[H’Rand(TN(C, Typ62) <277,

From Lemma 5 and Lemma 6, we have the following bound on the probability, AdviMAC[H,F] (©)
for A to win in the experiment ExpiMAC[H’F ] (c).

bl
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Theorem 6 If H is e-FU, then

AdviMAC[H’Rand(T)] (c) < max(e,277).
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Appendix

Proof of Lemma 1. Part 1. Assume that H is e-FSU;. Fix ¢ € A. Consider |H| subsets of B,
h(xz), he€ H.

Since H is e-FSU7, each y € B is in at most €/H| number of these subsets, therefore,

> Ih(xa)l < ¢[H]||BI.

heH
Thus,
1
€> | > — h
|B\|H| > Ih(xa)l 2 37 min [
heH
This holds for every xz € A, so
—_— h h

Part 2. Assume that H is e-FSU,. Fix z,z2' € A such that x(z,z') = 0. We count the number of
tuples (h,y,y') € H x B? such that 4/ = h(z') and y € h(xz) by two ways.

In the first way, we choose the function A first. Once h is chosen, y' is specified as y' = h(z') and
there are |h(xz)| choices for y. So the number of questioning tuples is

> h0)l-

heH

In the second way, we choose y and g/ first. There are |B|? choices for (y,y’). Once (y,y’) is chosen,

|H

since H is e-FSU,, there are no more than eﬁ choices for h. So the number of questioning tuples

is o more than | B|2eli} = ¢ B||H].

Therefore,

elBIIH| > > [h(xz)l,
heH

and

|h(x |>—mlnlh(x )|
IBHHI,LEZH 1= |B| h ’

ThlS hO]dS fOI‘ every r € A, SO
— ma E h max min h .
|B||H| | Xw - | €A helH| (X:u)‘

Part 3. Assume that H is e-FSDUs. Fix z,z' € A such that x(z,z’) = 0. We count the number of
tuples (h,y) € H x B such that y + h(z') € h(x,) by two ways.

In the first way, we choose the function A first. Once h is chosen, there are |h(x;)| choices for y as
y € h(xz) — h(z'). So the number of questioning tuples is

> h(x)l-

heH

15



In the second way, we choose y first. There are |B| choices for y. Once y is chosen, since H is
e-FSDUj, there are no more than e|H| choices for h. So the number of questioning tuples is no
more than |B|e|H]|.

Therefore,

|BlelH| > |h(xa)l;
heH

and

h(xz)| > —= m1n|h(x )|-
|B\|H|,§,‘ 212 57 gl

This holds for every xz € A, so

1

hixa)| > h(xa)|-
> TR Z\ (xa)| |B‘ max min h(xe )|

Proof of Lemma 2. Assume that H is e-FUs. Fix z € A. We count the number of tuples (h,z') €
H x A such that x(z,z") = 0 and h(z') € h(x;) by two ways.

In the first way, we choose the function h first. Once h is chosen, 2’ must be in the set A1 (h(xz))\
Xz- S0 the number of questioning tuples is

Z'h h(xz))| — [HI|Xa -

heH

In the second way, we choose z’ first. There are |A| — |xz| choices for z’ since 2’ & x,. Once z' is
chosen, since H is e-FUj, there are no more than €|H| choices for h. So the number of questioning
tuples is no more than ¢|H|(|A| — |xz|)-

Therefore,
el H|(JA] = [xz) > Y b (b))l = [Hllxal > D B (2(=))] = | H|xal,
heH heH

and

elH|(|A] = [xa|) + | Hl[xa| > Y W7} (A(2))]-
heH

This holds for every z € A, so

> EHNA] = [xal) + [Hlxal) > >0 D7 |p~

€A r€AheH
By Schwarz’s inequality,

B (h(z))| = 3 |p |>— ! A

€A yeB yEB

hence,

I INUBIES 3p WIRIIBIEES 5

rt€AheH heH z€A
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On the other hand, we have

> (eHI(4] = [xa]) + | HlIxal) = €lH] (\Al2 - wa|> +HI Y Ixal,

T€EA TEA T€EA

SO

HI||AJ]?
el <|A|2—Z|Xw|) +1H Y el 2 R

T€EA TEA

Since 1 < |x| < [x| < |A], we have |A] < > -4 |xz| < [x]|4] < |A|?, and

AP = 1Bl X gealxal o AP —|BIx|IA] _ |A]-|Bllx]
~ BI(JA]? = Xpealxal) ~ IBI(IA? = [x|IA])  [BI(IA] - [x])
Proof of Theorem 1.
Part 1. eFSUy = eFSU;. Assume that H is e-FSUs, we will show that H is e-FSU;.

Fix yo € B and fix 21,22 € A such that x(z1,22) = 0. For each y; € B, consider the following
subset of H,
Hy ={he€H:y =h(z1),y2 € h(Xz,) }-

These subsets Hy, are pairwise disjoint and
U Hy, ={he€H:ys €h(xs) }-
Y1EB

Therefore,

{heH:ys€hlxs) = |Hyl
y1€B

Since H is e-FSUs, for every y; € B, |Hy,| < e | . Thus,

{ heH:ys€h(xa,) } <elH|
This holds for every zo € A and every ys € B, therefore, H is e-FSU;.

Part 2. e-FSUy = e-FSDU,. Assume that H is e-FSUs, we will show that H is e-FSDU5.

Fix y € B and fix z1,z9 € A such that x(z1,z2) = 0. For each y; € B, consider the following
subset of H,
Hyl = { heH:y = h(wl)ay‘l‘yl € h(Xzz) }

These subsets H,, are pairwise disjoint and

U Hy ={heH:y+h(z) € h(xs) }-
y1€EB

Therefore,

{heH:y+h(z)€h(xe) Y= [Hyl
y1€EB

Since H is e-FSUs, for every y; € B, |Hy,| < 6|B| Thus,

[{ heH:y+[f(21)€hxe,) } <elH|
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This holds for every y € B and for every z1,z9 € A such that x(z1,z2) = 0, therefore, H is
e-FSDUs.

Proof of Theorem 4. Let m,z € {0,1}* such that d(m,z) = 0. We prove that Prp«cpy«[h*(z) €
h*(0mm)] < e

Suppose there exist h* € H* and m’' € x,, such that h*(z) = h*(m'). Then, since |h*(z)| = |h*(m’)],
we must have [|z|/a] = [|m'|/a]. The last [logsy a]-bit strings of h*(z) and h*(m') equal implies

that |z| = |m/| (mod a). Thus, |z| = |m'| = |m|. Therefore, if |z| # |m| then Pry«cg«[h*(z) €
h*(6m)] = 0.

Assume that |z| = |m|, write z = z1|| ... ||zx_1||zx and m = mq]||...||mk_1||my where |z1| =--- =
|zg_1] = |m1| =+ = |mg_1| = a and 0 < |zg]|, |mg| < a. Since §(z,m) = 0, we have x(z;, m;) =0

for some i € [1,k — 1] or x(pad,(zx), pad,(mg)) = 0.

For each h* € H*, if h*(z) € h*(dy,) then for the corresponding h € H, we have h(z;) € h(xm;)
and h(pad, (7)) € h(Xpad, (m;))- Thus,

Prysen+[h*(z) € B ()] < min(Praen[h(xi) € h(Xm,)]; Procu[h(pady(zk)) € P(Xpad, (ms))]);

and therefore, it follows that Prp«cp«[h*(z) € h*(dp,)] < € since H is e-FUs.

Proof of Lemma 3. We give the proof for the case H is e-FSDU,. The case H is e-FSU; can be
proved similarly.

We can assume that A queries the tagging algorithm with ¢ pairs (m1, countery), ..., (m, counter,),
such that ¢ message numbers countery, ..., counter, are all distinct. The tagging algorithm answers
A with ¢1,...,t.. Finally, A presents a forgery (m,counter;,t) and wins of type 1. Consider two
sets:

K ={(h,r1,---,m) € H X B" : TAG(p, 1, .. r,,) (M, counter;) = t;,Vi = 1,...,c}

and
K'={(h,r1,...,mn) € Hx B" : TAG (ry,...r) (M, coOunter;) = t;,Vi=1,... ¢,
and VERIFY (, ,,  .y(m, counterj,t) =1 }.
Then AdviMAC[H’"](c, Typel) = max ”LKI‘, where the maximum is taken over all choices of my, ...,

m. € A, distinct countery,...,counter. € {1,...,n}, t1,...,tc € B,j € {l,...,c¢}, me€ A, t € B
such that x(m,m;) = 0.

It is easy to see that |K| = |H||B|"~¢. Now we count the number of tuples (h,71,...,7,) that belong
to the set K'. The condition VERIFY (4, . .)(m,counter;j,t) = 1 requires ¢ — Tcounter; € h(Xm),
and the condition TAG ., ... r,) (M, counter;) = t; requires Teounter; = tj — h(m;). So h must be
chosen so that (t —t;) + h(m;) € h(xm). Since H is e-FSDU, and x(m,m;) = 0, there are at most

€| H| choices for h. Once h is chosen, Tcounter;, - - - » Tcounter, are specified as Teounter; = ti — h(m;).
—_ . ~ ~ 1 —

There are |B|" ¢ choices for grl,]...,rcounterl,...,rcounterc,...,rn). So, |K'| < €|H||B|™" ¢ and

K| FMAC[H,n

= <e Therefore, Adv 4 (¢, Typel) < e.

Proof of Lemma 4. We can assume that A queries the tagging algorithm with ¢ pairs (m1, countery),
.., (me,counter,), such that ¢ message numbers countery,...,counter. are all distinct. The
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tagging algorithm answers A with ¢1,...,t.. Finally, A presents a forgery (m,counter,t) with
counter ¢ {countery,...,counter.} and wins of type 2. Consider two sets:

K ={(h,r1,...,m0) € H x B" : TAG(1,,...r,,) (mi, counter;) = t;,Vi =1,...,c}

and
K = {(h,’rl, - ,rn) € Hx B" : TAG(h,Th___,rn)(mi,counteri) =t,Vi=1,...,¢,
and VERIFY (. r.)(m, counter,t) =1 }.
Then AdviMAC[H’n](c, Typel) = max ”LKI“, where the maximum is taken over all choices of my, ...,

m. € A, distinct countery, ..., counter., counter € {1,...,n}, t1,...,t. € B, m € Aand t € B.

We have |K| = |H||B|™ ¢. Now we count the number of tuples (h,r1,...,r,) that belong to the set
K'. The condition VERIFY (p, 1, ....r,.) (M, counter, t) = 1 requires ¢ — Tcounter € h(xm). So for each
choice of h, there are |h(xm)| choices for reounter- In total, we have >,y |h(xm)| choices for the

pair (h,Tcounter). Once h is chosen, reounterss - - -» Tcounter, are specified as reounter; = ti — h(m;),

and there are |B|" ¢! choices'for (rl,...,fwumeh,...,fwumer,...,f'coumerc,.A.é[,rn%. So, |K'| =
e K FMAC[H

B S m)| and 15 = G e IhGon)l. Therefore, Advi"™ (e, Typer) <

\H|1|B| maxmeA EheH |h(Xm)‘

Proof of Lemma 5. Suppose in the experiment ExpiMAC[H’Rand(T)] (¢), a random f € Rand(r)

and a random h € H are chosen. Assume that A queries the tagging algorithm with ¢ pairs
(mq, countery), ..., (me, counter,), such that ¢ message numbers countery, ..., counter. are all dis-

tinct. The tagging algorithm answers A with ¢y,...,t.. Finally, A presents a forgery (m, counter;,t)

and wins of type 1. In this case, let Collision be the event that h(m;) € h(xm). Since x(m,m;) =0

and H is e-FU,, Pr[Collision] < e. On the other hand, for any f and h, we have Pr[Collision] < 277

because A must predict f((h(m'), counter;)) for some m' € x,, having seen only f((h(m1), counter;)),
.., f({h(m¢), counter.)) where (h(m'), counter;) & {(h(m1),counter), ..., (h(m.), counterc)}.

FMAC[H,Rand(T)](

Therefore, Adv 4 ¢, Typel) < max(e,277).
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