Wang’s sufficient conditions of MD5 are not sufficient

Jun Yajima and Takeshi Shimoyama

FUJITSU LABORATORIES LTD.
{jyajima,shimo}@labs.fujitsu.com

Abstract

In this paper, we report that the “sufficien-
t conditions” of MD5 [1] of the modification
technique for the collision search algorithm de-
scribed by Wang [2] are not sufficient. In our
analysis, we show at least 4 extra-conditions
for the message modification in the first block
and corrections of the several conditions which
are correspond to the highest (32nd) bit of the
sufficient conditions in the second block should
be needed. And we show the new collision
message which is completely different from the
message pairs showed in [2] [3] by using our ex-
tended sufficient conditions.

1 Introduction

Hash functions are one of the primitive func-
tions for the digital signature to generate the
digest value from arbitrary length message da-
ta. In order to authenticate the digital da-
ta, the verifier confirms the received data by
comparing the hash value. Then, the colli-
sion resistance is one of the necessary property
for every secure hash functions. Then, it will
be important question for the security of hash
function that a collision pair can be generated
easily or not.

MD?5 is a hash function developed by Rivest
in 1992 and is selected in RFC1321 [1]. MD5

has been used in many applications for digital
signature. The input of the compression func-
tion of MD5 is 512-bit, and the digest value is
128-bit.

In 2004, Wang et al. presented the concrete
message pair with 2 message blocks which oc-
curs the collision of MD5 [2]. They used “mes-
sage modification technique”, that is, they
controlled message blocks for satisfying the
“sufficient conditions” of the output bits of
every steps in the compression functions, and
they succeeded to derive the collision message
pairs. After Wang’s work, Klima proposed the
improvement algorithm [3]. He also showed d-
ifferent collision messages. It seems, howev-
er, his search were based on the message pairs
found by Wang. Actually, in the first mes-
sage block the message words from 6th to 15th
in his collision message pairs are as same as
Wang’s collision message pairs.

We tried to trace their collision search algo-
rithm in order to derive the new collision mes-
sages. In our experiment, however, we could
not find new collision messages except for data
close to one showed by Wang or Klima. Then,
by executing careful analysis, we found some
missing conditions in the “sufficient condition-
s” described in [2].

In this paper, we show the additional “suffi-
cient conditions” which should be required for
the message modificatin from the given any
random seed. And we show the new collision

message by using our modified sufficient con-
ditions, which is completely different from the
message pairs showed in [2] [3].

2 Collision search algo-
rithm by Wang’s et al.

Wang et al. showed an algorithm to find the
collision message pair of MD5 [2]. In their
method, they search some message pairs which
output arithmetic differentials of each steps
become the desired value. To do this, they
used the following search algorithms.

Procedure 1. For all steps in the first
round (1-16 step) and the first 3 or 4 steps
in the second round (17-19 or 17-20 step), the
message words are modified in order to satisfy
the bitwise equations, so called “sufficient con-
dition”, related to input words (a;,b;,¢;,d;)
and an output word in each steps.

Procedure 2. For the remaining steps, the
output is checked whether the equations for
the differentials of each step are satisfied or
not. If one of the equations does not hold,
the procedure go back to the last part of the
Procedure 1.

3 Missing conditions

After the execution of the Procedure 1 in the
previous section, the output of each steps must
satisfy the condition of the differentials de-
scribed in the Table 3 and Table 5 in [2] with
high probability. In our experiment, howev-
er, we came across that the differential condi-
tion of the output of some steps were not hold,
although all sufficient conditions were satis-
fied, especially the 7th step of the first message
block, and the 3rd step of the second message

block. (See Example 3 and Example 4 in Ap-
pendix 1.) Then, we conjectured that it means
some essential conditions were not listed in the
Table 4 and 6 in [2]. Then, we executed the
careful analysis at the steps which was not sat-
isfied the differential condition, and we found
the necessary extra-conditions, as follows.

(i) Missing condition as 31 = 0, az30 = 0,
ag 29 =0, az27 =0

In the single-message modification procedure
based on Wang’s approach for the first block,
the procedure success with extremely low
probability at the 7th step (the step gener-
ating c¢2). Then, we conjectured that extra-
conditions are required which are related to
the input bits of the 7th step. In order to seek
the missing condition, we execute the follow-
ing test at the Tth step.

1. Set the 7th step input value for satisfying
the sufficient conditions.

2. Set the random bit value at the 50 bits
which does not appear the list of the suf-
ficient conditions.

3. Examine the single modification proce-
dure and check that the output difference
come to the expected value or not, ex-
haustively.

4. Extract the common condition of the in-
put value for all succeeded data.

Then we found that the following 9 conditions
were satisfied in all success data in the 7th
step.

a2.31 = 0,a230 = 0,a229 = 0,a227 =0,
da31 = 0,d230 = 0,d2,29 = 0,d2 27 = 0,
b1’6 =1.

Moreover, we found that the following 5 con-
ditions were not necessary da 31 = 0,d2 30 =

0,d2729 = 0,d2727 = 0761,6 = 1. On the
other hand, if we omit one of the condition-
s az31 = 0,a230 = 0,a229 = 0,a227 = 0,
the success rate of the modification become
extremely low. Then, we conclude that the
following 4 conditions should be needed.

a231 = 0,a230 = 0,a229 = 0,a227 =0

(ii) Correction of the sufficient condi-
tions in the 2nd message block

At the 3rd step in the 2nd message block (gen-
erating ¢; word), the output difference of the
f function must be equal to 22°. Then the
bitwise difference at 32nd bit of the function
f (fs,32) should be equal to zero. Therefore
the condition a; 30 # bbg 32 must be held. On
the other hand, the condition a3z = 1 is
listed on the Table 6 in [2], therefore the in-
put words of the 2nd block should be satisfied
bb0732 = cCp,32 = dd0732 = 0. In the sufficient
conditions, however, this kind of condition has
not not appeared. Then it is possible that al-
though the all of the sufficient conditions and
the difference condition in [2] were satisfied in
the first message block, “the single-message
modification” of the 2nd message block nev-
er succeed. Since the collision searches of the
first message block and the second message
block can be executed independently, from the
wrong first message block satisfying all of the
sufficient condition but satisfied bbg 32 = 1,
they will never success to find message to hold
the differential conditions. (See Example 4.)
Therefore, if the collision searches are execut-
ed by using the sufficient condition of the 2nd
block listed in Table 6 [2] by Wang, the ad-
ditional condition bbg 32 = 0 should be need-
ed. This additional condition, however, makes
the complexity twice as large as the original
one for the message search of the first block.
On the other hand, by the careful analysis, we
found that the condition a; 32 = 1 is unnec-
essary. In order to remove this condition, the

sufficient conditions are modified as described
in Appendix 2.

4 Collision Search

By executing the collision search algorithm by
using the sufficient conditions with our new
conditions, we succeeded to find the several o-
riginal collision message pairs. The collision
message pairs shows in Examplel and Exam-
ple2 in Appendixl1.

By our computer experiments through the
several days, we found 1319 pairs of the first
message blocks which hold the differential
properties in each round written in Table 3 of
[2]. There are 8 conditions which are related
to the first word aag, bbg, ccq, ddg of the second
block in Table 4 of [2], and we found 6 mes-
sage block satisfying 8 conditions. (1319/2% =
5.15.) In those 6 messages, 3 messages satis-
fied the condition bbg 32 = 0, we found the col-
lision pairs of MD5 from those messages. (See
Examplel.) From the remaining 3 messages
satisfied the condition bby 32 = 1, we would n-
ever find the collision message by using Wang’s
sufficient condition, however, we succeeded to
find the collision pairs of MD5 by using our
new sufficient conditions. (See Example2.)

On the average, it took several hours by us-
ing PC (Pentium4 3.8GHz) for finding one col-
lision message of MD5.

5 Conclusion

In this paper, we reported that the “sufficient
conditions” of MD5 of the modification tech-
nique for collision search described by Wang
are not sufficient. In our analysis, at least 4
extra-conditions in the 1st block and correc-
tion of the sufficient condition in 2nd block
should be needed for the message modification.
We could trace the Wang’s collision search

algorithm and could derive the new collision
messages of MD5.

References

1]

2]

R.L.Rivest, “The-MD5 Message-Digest
Algorithm”, RFC1321, April 1992.

Xiaoyun Wang and Hongbo Yu, “How to
Break MD5 and Other Hash Functions”,
published on the web.
http://wuw.infosec.sdu.edu.cn/
paper/md5-attack.pdf

Vlastimil Klima, “Finding MD5
Collisions on a Notebook PC Using
Multi-message Modifications”,
Cryptology ePrint Archive, April 2005.
http:
//eprint.iacr.org/2005/102.pdf

Appendix1 : Examples

Examplel(Collision message pairs (bby 32 = O[in 1st block]))

Stream data format

message(input stream for MD5) message’(input stream for MD5)
E14FEAGE 3447B53D 5B322F79 A268209C E14FEAEE 3447B53D 5B322F79 A268209C
31ED3206 F8A93424 BBFA6676 82270114 31ED3206 F8A93424 BBFA6676 82A70114
E3088992 OE7DAF60 D1097B79 1838BC7C E3088992 OE7DAF60 D1097BF9 1838BC7C
ADBO87C4 FEC56E1B 09F0C324 DD949A39 ADB087C4 FECS56E1B 09F0C324 DD949A39
D5754A47 FE74344C 2465A855 5088F9DD D5754AC7 FE74344C 2465A855 5088F9DD
51A07A6B 4CDO9DA87 36BB1758 AEGS8DDAE 51A07A6B 4CDODA87 36BB1758 AEESDCAE

Q0CSFEAA A1B6C A7C34F6B 8D7748 OCSEAA A1B6C A7C34FEB 8D7748
digest(output stream from MD5) digest’(output stream from MD5)
BF5AFFA4 DF8F186D 3FA7D511 5A3AE28E BF5AFFA4 DF8F186D 3FA7D511 5A3AE28E

Internal word data format

message word for blockl message’ word for blockl
X , 0X , X , Ox ,
0xF26C3CA7, 0x25394C38, 0xF26C3CA7, 0x25394C38,
Ox6EEA4FE1, 0x3DB54734, OxEEEA4FE1, 0x3DB54734,
0x792F325B, 0x9C2068A2, 0x792F325B, 0x9C2068A2,
0x0632ED31, 0x2434A9F8, 0x0632ED31, 0x2434A9F8,
0x7666FABB, 0x14012782, 0x7666FABB, 0x1401A782,
0x928908E3, 0x60AF7DOE, 0x928908E3, 0x60AF7DOE,
0x797B09D1, 0x7CBC3818 0xF97B09D1, 0x7CBC3818
context state after blockl context state after blockl
aa0 = 0x , = 0x , aald” = 0x , = 0x ,
ccO = 0x5B8E4409, bb0 = 0x0946EB5C ccO’ = 0xDD8E4409, bb0’ = 0x8B46EB5C
message word for block2 message’ word for block2
X , 0% , X , 0X ,
0x24C3F009, 0x399A94DD, 0x24C3F009, 0x399A94DD,
0x474A75D5, 0x4C34T74FE, 0xC74A75D5, Ox4C34T74FE,
0x55A86524, 0xDDF98850, 0x55A86524, 0xDDF98850,
0x6B7AA051, 0x87DAD94C, 0x6B7AA051, 0x87DAD94C,
0x5817BB36, OxAEDDGSAE, 0x5817BB36, OxAEDCESAE,
OxAABEOCDO, 0x6C1BEA72, OxAA8EOCDO, Ox6C1BEA72,
0x6B4FC3A7, 0xFC48778D OxEB4FC3A7, OxFC48778D
context state after block2 context state after block2
aa0 = 0x , = 0x , aa0’ = 0x , = 0x ,
ccO = 0xAC7788A2, bb0 = 0x06E78521 ccO’ = 0xAC7788A2, bb0’ = 0x06E78521

(aa0=aa0’, dd0=dd0’, cc0O=cc0’, bb0O=bb0’)

Example2(Collision message pairs (bby 32 = 1[in 1st block]))

Stream data format

message(input stream for MD5) message’(input stream for MD5)
0”02 780 Y B X ATA7ACA "006B20

CBASE79B 21089D5C DS8AEA238 30E70F06 CBASE71B 21089D5C DS8AEA238 30E70F06
41AD3305 FC2714A3 37B18681 626B12D7 41AD3305 FC2714A3 37B18681 62EB12D7
DD2CF625 B863392F 852DDF25 9BFD9650 DD2CF625 B863392F 852DDFA5 9BFD9650
93DF6C6A 819A3D1A 0121C1F3 70E16A74 93DF6C6A 819A3D1A 0121C1F3 70E16A74
9471A6A5 922744ED 24959DC6 4CF8FDFO 9471A625 922744ED 24959DC6 4CF8FDFO
6D1734A3 535BI9F69 BAD54524 6F702956 6D1734A3 535B9F69 BAD54524 6FF02856

digest(output stream from MD5) digest’(output stream from MD5)
B9B32875 F636F1A2 3DA41833 1E7B8T7A7 BO9B32875 F636F1A2 3DA41833 1E7B8T7A7

Internal word data format

message word for blockl message’ word for block1l
X , 0X , X , Ox ,
0xAOACA4A7A1, 0xOFB206C9, OxAQOAC4ATA1, 0xOFB206C9,
0x9BE7A8CB, 0x5C9D0821, 0x1BE7A8CB, 0x5C9D0821,
0x38A2AED8, 0x060FE730, 0x38A2AED8, 0x060FE730,
0x0533AD41, 0xA31427FC, 0x0533AD41, 0xA31427FC,
0x8186B137, 0xD7126B62, 0x8186B137, 0xD712EB62,
0x25F62CDD, 0x2F3963B8, 0x25F62CDD, 0x2F3963B8,
0x25DF2D85, 0x5096FD9B OxA5DF2D85, 0x5096FD9B
context state after blockl context state after blockl
aa0 = 0x , = 0x , aald” = 0x , = 0x ,
ccO = 0xF3027284, bb0 = 0xF1C68C8A cc0’ = 0x75027284, bb0’ = 0x73C68C8A
message word for block2 message’ word for block2
X , 0% , X , 0X ,
0xF3C12101, 0x746AE170, 0xF3C12101, Ox746AE170,
OxABA67194, 0xED442792, 0x25A67194, 0xED442792,
0xC69D9524, O0xFOFDF84C, 0xC69D9524, OxFOFDF84C,
0xA334176D, 0x699F5B53, 0xA334176D, 0x699F5B53,
0x2445D5BA, 0x5629706F, 0x2445D5BA, 0x5628F06F,
0xA17524E4, 0xE3441BA5, OxA17524E4, 0xE3441BA5,
O0xCD50DF8A, 0x8D15172F 0x4D50DF8A, 0x8D15172F
context state after block2 context state after block2
aa0 = 0x , = 0x , aa0’ = 0x , = 0x ,
ccO = 0x7230864E, bb0 = 0xBEDAF3B9 ccO’ = 0x7230864E, bb0’ = OxBEDAF3B9

(aa0=aa0’, dd0=dd0’, cc0O=cc0’, bb0O=bb0’)

Example3 (the differential condition of the 7th step output of blockl
were not hold.(as27 =1, as30 = 1 [in 1st block]))

Internal word data format

message word for blockl message’ word for blockl
~0xb5d35049e, 0x2b3c%edc, 0xbd35049e, 0x2b3c%edc,
0x63ea6960, 0x32alaala, 0x63ea6960, 0Ox32alaala,
0x83babcfb, 0xabd27635 0x03babcfb, 0xabd27635
input data for 7th step input data for 7th step
cI=0x1Ic , bl=0xc77adc cI’=0x1c R =0xcT77adc
a2=0xad400027, d2=0x277fbc43 a2’=0xad3fffe7, d2’=0xa7ffbc03

Example4 (the differential condition of the 3rd step output of block2
were not hold.(a; 33 = bby 32 [in 2nd block]))

Internal word data format

message word for blockl message’ word for blockl
X , 0X , X , Ox ,
0xAOAC47A1, 0xOFB206C9, 0xAOAC4T7A1, 0xOFB206C9,
0x9BE7A8CB, 0x5C9D0821, 0x1BE7A8CB, 0x5C9D0821,
0x38A2AED8, 0x060FE730, 0x38A2AED8, 0x060FE730,
0x0533AD41, 0xA31427FC, 0x0533AD41, 0xA31427FC,
0x8186B137, 0xD7126B62, 0x8186B137, 0xD712EB62,
0x25F62CDD, 0x2F3963B8, 0x25F62CDD, 0x2F3963B8,
0x25DF2D85, 0x5096FD9B O0xA5DF2D85, 0x5096FD9B
context state after blockl context state after blockl
aa0 = 0x , = 0x , aa0’ = 0x , = 0x ,
ccO = 0xF3027284, bb0 = 0xF1C68C8A ccO’ = 0x75027284, bb0’ = 0x73C68C8A
message word for block2 message’ word for block2
0x590d4d36, 0xecl1d7483 0x590d4d36, 0Oxecl1d7483
input data for 3rd step input data for 3rd step
cc0=0x , =0xf1c68c8a cc07=0x R =0x73c68c8a

al=0xb5a23603, di1=0xbd823e19 al’=0x37a23603, d1’=0x3£823e39

Appendix2 : List of sufficient sonditions (corrected)

First Message Block

c1 c1,7=0,c1,12=0,c1,20=0
b1,7 = O, b1,8 = (1,8, b1,9 = (1,9, b1,10 = C1,10, b1,11 = C1,11, b1,12 = 1, b1,13 = (1,13,
by b1,14 = c1,14, b1,15 = c1,15, b1,16 = c1,16, b1,17 = c1,17, b1,18 = c1,18, b1,19 = €1,19, b1,20 = 1,

bi21 =ci21, bi22 =c1,22, b123 =c123, b124 =0, b1 320 =1

a21 = 1, a23 =1, a2 = I, a27 =0, a2 = 0, a29 = 0, a2,10 = 0, a2,;11 = 0, az,12 = 0,
a2,13 =0, a2,14 = 0, a2,15 = 0, a2,16 = 0, a2,17 =0, a2,18 =0, a2,19 = 0, az,20 =0, az21 =0,

a2 az,22 = 0, az23 = 1, az24 = 0, az.26 = 0, az28 = 1, ’02,29 = 0‘7 ’02,30 =0}

a231 =01 az32 =1

d2y =1,d22=a22,d23=0,d24 =024, das =a25,d26 =0,d2,7=1,d28=0, d2,90 =0,
d2,10 =0, d211 =1,d212 =1,d213=1,d214 =1,d215 =0, d216 =1, d2,;17 = 1, d2,18 = 1,

da
d219 = 1, d22o = 1, d221 = 1, da22 = 1, d223 = 1, d224 = 0, d225 = a2,25, d226 = 1,
do,27 = a2,27, d228 = 0, da29 = a2,29, d2,30 = @230, d2,31 = @231, d2,32 =0
c21=0,c22=0,¢c23=0,c24=0,c25=0,c26=1,c27=0,¢c28=0,c209=0, c2,10=0,
c211 =0,c212=1,c213=1,c014a =1, c215 =1, c216 =1, 2,17 =0, c2,18 =1, c2,19 = 1,
C2

C2,20 = 1, C2,21 = 17 C2,22 = 1, C2,23 = 17 C2,24 = 1, C2,25 = 1, C2,26 = 1, C2,27 = 07 C2,28 = 0,
c2,20 =0, c230 =0, 231 =0, c232 =0

D21 =0,b22=0,b23=0,024=0,025=0,b26=0,b27=1,028=0,029=1,0b210=0,
b b2,11 =1, b2,12 =0, b2,14 =0, b2,16 =0, ba,17 =1, ba18 =0, ba19 =0, b2 20 =0, b2 21 =1,
baos =1, ba25 =1, baoe =0, baor =0, baog =0, baog =0, b230 =0, ba31 =0, ba3z2 =0

a371 = 17 az.2 = 0, a3,3 = 17 a3,4 = 1, a3,5 = 1, a376 = 1, asz, 7 = 0, a37g = 0, asz,g9 = 1,

asz0 = 1, ag;i1 = 1, az;12 = 1, az;13 = b2,13, az;i4a = 1, az;i6 = 0, az;i7 = 0, az,18 = 0,

as
a3, 19 =0, az20 =0, azo1 =1, azes =1, aze6 = 1, az 27 =0, az 28 =1, az 29 = 1, a3z,30 = 1,
az31 =1,a332 =1
d d3q =0,d32=0,d37=1,d3s =0,ds0 =0,d313=1,d314 =0, ds16 =1, dzi7 =1,
3
dzigs =1,d3190=1,d320=1,d3z21 =1,d324=0,d331=1,d332=0
c31 =0,¢c32=1,c37=1,¢c38=1,¢c39=0,c313=0, c3,14 =0, ¢3,15 = d3,15, €3,16 = 1,
C3
c317 =1,c318 =0, 319 =0, c320 =0, c331 =0, c332 =0
b 38 =0, 039 =1,0313=1,0314=0,0315=0,0316=0,0317=0, b3,18 =0, 03,19 =0,
3
b3,20 = 1, b3 25 = 3,25, b3,26 = €3,26, b3,31 =0, b3 32 =0
as,4 =1, a48 =0, a49 =0, as,;14 =1, as,15 = 1, as,16 = 1, as,17 = 1, as,18 = 1, as,10 = 1,
aq
a420 =1, as25 =1, as06 =0, ag31 =1, ag320 =0
d doa=1,dsg=1,dso=1,ds1a=1,ds15 =1,ds1i6 =1,dsi7 =1,ds18 =1, ds19 =0,
4
da20=1,ds25 =0, da26 =0, da30 =0, da32=0
C4 caa=0,ca16 =1, ca25 =1,ca26 =0,ca30=1,ca32=0
by bazo =1, b432=0
9R as,4 = b4, as,16 = ba,16, a5,18 = 0, as32 = 0, ds ;18 = 1, d5,30 = a5,30, d5,32 = 0, ¢5,18 = 0,

cs,32 =0, bs 30 =0, as,18 = bs.18, 66,32 =0, ds32 =0, 6,32 = 0, be,32 # C6,32,

3R ¢34,32 = 0, bi12,32 = d12,32,

a13,32 = C12,32, d13,32 7 b12,32, C13,32 = Q13,32, D13,32 = d13,32, Q14,32 = C13,32, d14,32 = 013,32,
4R C14,32 = @14,32, b14,32 = d14,32, a15,32 = C14,32, di5,32 = b14,32, C15,32 = @15,32, bis,26 = 0,
b1s,32 # di5,32, a16,26 = 1, a16,27 = 0, a16,32 = C15,32, di6,32 = b15,32, C16,32 = di6,32

OUT ddo2s = 0, cco26 = 1, ccoer = 0, ccoza = ddo,z2, bbo2s = 0, bbg2r = 0, bbos = 0,

bbo,32 = cco.32

Second Message Block

41,32 # bbo,3s |

ay a6 =0,a1,12=0,a12 =1, a12 =0, a127 =1, a1,28 =0,
di2=0,di3=0,die =0,di,7 =a17 dig = a1s, di,i2 = 1, di,13 = 61,13, d1,16 = 0,
d1 dii7 = ai,17, di,18 = ai,18, di1,19 = a1,19, di,20 = 1,20, d1,21 = @1,21, di22 = 0, d1,26 = 0,
di27 =1, di28 =1, di,20 = a1,29, d1,30 = a1,30, d1,31 = a1,31,| d1,32 = G1,32
cig=1,caz=1,cia=dis,c15=dis,c1i6 =1, ca7r=1,c18=0,c1090=1,c1,12 =1,
c1 c113=0,crir=1,cris =1, cii9=1,c120=1,c121 =1, c120 =0, c126 =1, c1,07 = 1,
cio8 =1, c120=1,c130 =1, c1,31 =0,| c1,32 =d1,32
bi1=c11,012=0,013=0,014=0,b15=1,016 =0,017=0,b185 =0,b19 =0,
bi,10 = ¢1,10, b1,11 = c1,11, bi,i2 = 0, b1,13 = 0, bi,ir = 0, bi,1s = 0, bi,19 = 1, bi20 = 0,
by bioi = 0, bioo = 0, bios = 1, bior = 0, bios = 1, biog = 1, bizo = 1, b1,31 = 0,
b1,32 = c1,32
a1 = 07 a2 = O, a3 = 0, a4 = O, a5 = 1, a6 = 0, a7 = 1, a8 = 0, a9 = O,
as a2,10=1,a211 =1,a212=1,a213=0,a217=1,a218 =1, a219 =1, az20 =1, az21 =0,
a222 =1, a2,27 =0, a228 = 1, az20 = 0, az,30 =0, az,31 = 1, | a2,32 # b1,32
d2’1 =0, d2,2 =1, d2,3 =1, d2,4 = 0, d2,5 =1, d2,6 =0, d2,7 =1, dzys = 0, d2,9 =0,
do d2,10 =0, d2,11 =1, do12=1,d213 =0,d217 =0, d2;18 =1, d221 =0, d2j22 = 1, d2,26 =0,
doo7 =1,d228 =0, d220 =0,| da2,32 =a2,32
c21=1,¢c,7=0,c208=0,¢c20=0, c2,10=1, c2,11 =1, c2,12 =1, c2,13 = 1, c2,16 = d2,16,
o c217 = 1, c2,18 = 0, c221 = 0, 222 = 0, €224 = d2,24, C2,25 = d225, C2.26 = 1, c207 = 1,
c2,28 =0, ca00=1,| c2,32 # d2,32
D21 =0, b22 =c22,b27 =1, 028 =1,029 =1, 0210=1, 0216 =1, ba;17 =0, b218 = 1,
b baor = 1, baoo = 1, baoga = 0, b2os = 0, b2og = 0, baor = 1, baog = 0, b9 = 0,
b2,32 = c2,32
az1 = 1,a32=0,a37=1,a38 =1, az9 = 1, asz,10 =0, az,13 = b2,13, az,16 =0, a3z, 17 = 1,
as a3, 18 =0, az24 =0, as25 =0, as26 =0, az27 =1, az 28 =1, az 29 = 1,| as32 =ba32
d3g =0,d32=0,d37=1,dsg =1,dso =1,d310=1,d313=0,ds16 =1, d3i7 =1,
a3 ds1s =1,d310=0,d324=1,d325 =1,d326 =1,d327 =1,| d332 =as332
cs1=1,c32=1,c37=1,c38=1,¢c39=1,c310=1, c3,13 =0, 3,14 = d3,14, C3,15 = d3,15,
as c3i6 =1, c317 =1, 3,18 =0, 3,19 =1, €320 = d3,20, | €3,32 = d3,32
bag =1,0313 =1, b314 =0,0315 =0, b316 =0, 03,17 =0, b3g;18 =0, b3,19 = 0, bz 20 = 1,
as bs,25 = 3,25, b3,26 = 3,26, b3,27 = C3,27, b3,28 = 3,28, b3,20 = €3,29, b3,30 = 3,30, b3,31 = c3,31
b330 = c3,32
asa =1, aa8 =0, a414a =1, aa,15 =1, as,16 = 1, as17 = 1, as,18 = 1, as,10 = 1 as20 = 1,
a4 as425 =1, as426 =1, aso7 =1, as08 = 1, as,20 =1, as,30 = 1, as,31 =0, | as,32 # b3,32
daa=1,dag=1,ds1a=1,ds15 =1,ds16 =1,ds17=1,ds18 =1, ds10 =0, dsp0 =1,
ds daos =0, da26 =0, daor =0, da28 =0, da29 =0, da30 =0, daz1 =1, | daz2 = aa32
c44 =0, c416 =0, ca25 =1, ca26 =0, cap7r =1, ca28 =1, ca290 =1, ca30 =1, ca31 = 1,
C4 C4,32 = da32
ba bazo =1, ’ ba,32 = 4,32 ‘
as,4 = baa, as,16 = ba,16, as5,18 = 0, | as5,30 = ba32 |, ds,18 = 1, ds,30 = a5,30, | ds,32 = as,32 |,
2R cs,18 = 0, ’ c5,32 = ds,32 ‘, ’ bs,32 = 05,32‘ , 6,18 = bs18, | a6,32 =bs32 |, | de,32 = ae,32 |,
’ 6,32 = de,32 ‘, ’ be,32 # Co,32 ‘
3R P34,.32 = 1, bi2,32 = di2,32
13,32 = C12,32, d13,32 75 512,32, C13,32 = @13,32, b13,32 = 6113,327 a14,32 = C13,32, d14,32 = 513,327
4R C14,32 = @14,32, b1432 = d14,32, Q15,32 = C14,32, d15,32 = b14,32, C15,32 = 15,32, b15,32 # di5,32,

a16,26 = 1, a16,32 = C15,32, d16,26 = 1, d16,32 = b15,32, C16,26 = 1, C16,32 = G16,32, b16,26 = 1

