
Foundations and Applications for Secure Triggers

Ariel Futoransky1 Emiliano Kargieman1,2 Carlos Sarraute1

Ariel Waissbein1,2 ∗

January 16th, 2005

Abstract

Imagine there is certain content we want to maintain private until
some particular event occurs, when we want to have it automatically
disclosed. Suppose furthermore, that we want this done in a (possibly)
malicious host. Say, the confidential content is a piece of code belong-
ing to a computer program that should remain ciphered and then “be
triggered” (i.e., deciphered and executed) when the underlying system
satisfies a preselected condition which must remain secret after code
inspection. In this work we present different solutions for problems of
this sort, using different “declassification” criteria, based on a primitive
we call secure triggers. We establish the notion of secure triggers in the
universally-composable security framework of [Canetti 2001] and intro-
duce several examples. Our examples demonstrate that a new sort of
obfuscation is possible. Finally, we motivate its use with applications
in realistic scenarios.

1 Introduction

Fix a bitstring, that we regard as a secret. Let be given a family of predi-
cates, and secretly draw a predicate from this family according to a known
distribution. Think of predicates as functions with range in {true, false}.
We consider algorithms that return the secret if their input evaluates to
true on the chosen predicate, else they return nothing. Such algorithms
are called triggers. A trigger is called secure if it is infeasible for an adver-
sary, given a description of the family of predicates, the distribution used to

∗1 Corelabs, Core Security Technologies. Florida 141 (C1005AAC). Buenos Aires,
Argentina.
2 Doctorado en Ingenieŕıa Informática, Instituto Tecnológico de Buenos Aires (ITBA).
Av. Eduardo Madero 399 (C1106ACD). Buenos Aires, Argentina.

1

draw predicates, and the trigger’s code, to recover any semantic information
content of the secret.

Secure triggers have applications in malicious host problems ([Hoh98])
and software protection. Two areas of computer security that are closely
related, as we shall argue, and are in need of solutions (see, e.g., [CPV03],
[vO03]). This introduction to secure triggers is devoted to providing a frame-
work for analyzing them and motivating their use in these areas.

We start our description with the simple trigger. For k ∈ Z, a fixed
security parameter, simple triggers are defined by the family of predicates
{pb : {0, 1}k → {0, 1}; b ∈ {0, 1}k}, where an element pb is defined by the
rule pb(x) := true if x = b and else pb(x) := false. The simple trigger has
been used traditionally for bootstrapping a secret, for example, in the case
of a self-decryptable file that can only be decrypted by a party holding the
key1. We shall construct secure implementations of this trigger (Section 4.1).
However, our interest in the simple trigger is marginal —though it makes a
good introductory example. Our interest lies in investigating further predi-
cate families in order to provide a catalog of secure triggers for applications,
and showing how to profit from this catalog in realistic applications.

We choose the universally-composable security (UCS) framework ([Can01])
to model secure triggers. Intuitively, UCS-secure protocols emulate ideal
processes where parties interact with a trusted third party, the ideal func-
tionality, that receives the input from the parties, makes the necessary com-
putations, and hands them the output. In the case of secure triggers, we
want the ideal functionalities to, after a successful setup, answer with the
secret if and only if the input satisfies the trigger predicate. In the next
section, we will give more details on this framework.

The ideal functionality for a secure trigger instance gets defined by two
parameters: a family of predicates and a sampling algorithm. In practice,
we will select predicates arbitrarily, hence the sampling algorithm models
the attacker’s a priori information on the predicate selection process (see,
for example, Section 5).

In this work, we start a catalog of secure trigger instances with a few ex-
amples that capture the intuition of secure triggers. In each case we instan-
tiate the secure trigger ideal functionality with a family of polynomial-time
computable predicates and a polynomial-time sampling algorithm, to then

1Notice that the “immediate” implementation (see Section 2) of the simple trigger
that given H(b) and Encb(S), decrypts the encrypted secret using the input x as a key,

i.e., Decx(Encb(S)), if the input’s hash value, H(x), agrees with the key’s hash value,

H(b), is not a priori secure under standard cryptographic assumptions (e.g., H is one-
way function).

2

describe a protocol securely realizing this instantiated ideal functionality.
Let k ∈ Z be the security parameter.

• The simple trigger, defined by instantiating the secure trigger ideal
functionality with the family of predicates {pb : b ∈ {0, 1}k}, where
pb(x) := true if and only if x = b, and the sampling of b is done
uniformly in {0, 1}k .

• The subsequence trigger is our first non-trivial example. It allows a
size parameter s ∈ Z, with s > k, and is defined by instantiating
the ideal functionality with the family of predicates {pK : {0, 1}s →
{true, false}}, varying over the sets K = {(i1, b1), . . . , (ik, bk)} ⊂
{1, 2, . . . , s}×{0, 1} such that iℓ 6= iℓ′ holds, for all ℓ 6= ℓ′. A predicate
pK in this family is defined by the rule pK(x) := true if xiℓ = bℓ for
all ℓ with 1 ≤ ℓ ≤ s, and else pK(x) := false. Sampling is done
uniformly.

• The multiple-strings trigger allows a size parameter. For an integer
s, with s > 1, we instantiate the ideal functionality (of size s) with
the family of predicates {pb(1),...,b(s) : b(j) ∈ {0, 1}k ,∀j = 1, . . . , s},
where the predicate pb(1),...,b(s) evaluates to true on input x ∈ {0, 1}∗,
of size |x|, if there exist indices 1 ≤ i1, . . . , is ≤ |x| − k + 1 such that
(xij , . . . , xij+k−1) = b(j) for every j, with 1 ≤ j ≤ s. Sampling is done

uniformly in {0, 1}sk .

These triggers have immediate applications, as we show in Sections 1.1
and 5. However, the job of broadening this catalog remains. One of our
main aims is to study the extent of secure triggers, particularly in the cases
of malicious host problems and software protection. In this sense, our study
of sampling algorithms is left at an introductory level (see Remark 4.4), and
thus, the design for applications will require much caution (see, for example,
Section 5).

Some other problems that we analyzed were left open. We are particu-
larly interested in what we called the finite-state-machine trigger. That is,
a finite-state machine such that both its states and transitions are (proba-
bilistically) encrypted and the machine runs in this ciphered form until the
“trigger state” is reached, when all information is automatically deciphered.
It remains to see if one such secure trigger exists. Applications of this trigger
include software protection and remote pattern matching.

3

1.1 Motivation

The malicious host problem deals with securing the execution of trusted
mobile code run on untrusted hosts. Solutions to these problem based on
secure triggers hide “sensitive” functionalities as “completely obfuscated”
code until required for use. The mobile code is deployed on this host af-
ter a setup stage. Once deployed, the mobile code processes the data in
this host’s memory —for example, scans databases or maybe is fed by in-
put sent to these servers—, and provides the embedded trigger with inputs.
When an input satisfies the underlying predicate, the obfuscated (i.e., en-
crypted) functionalities are deciphered and executed. Hence, malicious hosts
can neither tamper with nor determine these functionalities before they are
triggered (though, they can be blocked).

The following application examples show possible uses of secure triggers
in the malicious host problem setting. The first one shall be revisited in
detail in Section 5.

Anonymous shopping agent: Some gentleman wants to buy a very rare
product (make/model/color/price) using a mobile-code program that crawls
some etailers’ websites. Given the nature of his business, he requires that
no other party can find out his identity, what is he looking for, or how much
money is he prepared to pay (except for the etailer where he will make the
buy). He thus implements a secure trigger —to be deployed in several etail-
ers servers as anonymous mobile code— that searches for this target product
and then, only when it is found, the secure trigger produces his name an
emails himself the details. The trigger produces the sensitive information
only when needed. Moreover, the only parties finding out this information
are the etailers that have the target product in their sites. Assuming that
the range of products sold world wide by etailers is large enough, we can
guarantee that brute-force attacks to this trigger become infeasible.

More generally, this problem relates to private-information retrieval. Un-
der certain assumptions on databases, the user is able to search databases
for a target entry (described partially by some of its attributes) while no
attacker examining or controlling a database missing the target entry can
infer it from the mobile code.

Information warfare worm attack: Anticipating an international-conflict sce-
nario, the information-warfare department of one of the nations involved
anonymously disseminates a worm over the Internet. The worm looks in-
conspicuous enough: takes control of a machine, records keystrokes, steals
passwords, and tries to infect other systems.

4

As systems are infected, an embedded trigger is fed with configuration
information used to detect potential targets. To make it resistant to brute-
force attacks, only a small portion of the target parameters satisfy the trigger
predicate. For example, assuming that there is a sufficiently large set of pos-
sible configurations, we can use the subsequence trigger to check if certain
bits of a description match those same bits in the target description with-
out leaking them. When a matching target is found, the trigger decrypts
and executes a sophisticated module that scans the machine’s hard drives
for sensitive information, compresses, encrypts and uses a steganographic
channel to transmit the information back to the worm’s creators.

None of this specialized behavior can be inferred by inspecting the worm’s
code (until it triggers): The security team of the nation under attack cannot
answer “What is the worm looking for?” nor “What does the worm do after
finding it?”.

Our interest in secure triggers grew from research done by the authors
and others in the design of a practical software protection tool ([BFN+03]).
The goal of this framework is to enforce license policy and embed robust
watermarks. Its basic ingredient, is obfuscation through secure triggers. The
software protection application is very complex in itself and its description
lies beyond the scope of this work. For a deeper discussion on this, we
refer to [BFN+03]. We will briefly get back to other obfuscation issues in
Section 2.

2 Related work

A few protocols similar to certain trigger instances have already been pub-
lished, while most of them are only related to the simple trigger. In this
sense it is worth pointing out the paper [JS02], where authors introduce
fuzzy vaults: a scheme that reconstructs an encrypted secret from a set of
shares permitting a small portion of them to be corrupted (e.g., the secret
can be re-constructed with any eighteen out of twenty shares). Fuzzy vault
is an example of secure trigger that complements our catalog.

Simple triggers have been used for the construction of virus. In the early
90s a virus called Cheeba searched in the file-system of infected machines for
a specific file (USERS.BBS) to launch the virus program ([Per03]). The search
was done in a trigger-like manner by matching the hash value of each of the
infected computer’s files with a “hard-coded” value (see [Gry92]). A post in
the Slashdot webpage comments on a worm with this behavior [Ano02]2.

2These applications hint on our cyber-warfare application described earlier in this sec-

5

More generally, the simple trigger can be related to well-known cryp-
tographic protocols such as: password authentications —checked by com-
paring the candidate’s digest to the original password’s digest— before de-
cryption; oracle hashing ([Can97, Can00b, CMR98]); commitment ([Blu81]);
all-or-nothing transforms ([Riv97]); etcetera. These constructions agree on
one thing, after a secret value is fed they disclose a secret while they remain
secure against offline attacks. We remark that these notions and secure
triggers are essentially distinct. Primarily, because secure triggers permit
arbitrary predicate families, other than the simple trigger, while it is not
apparent if any one of these primitives could be used to construct other in-
stances secure triggers. Another difference can be spotted when comparing
these notions at protocol level, since the party intended to “hit” the trigger
in the execution of a trigger protocol is not necessarily that who sets up the
trigger procedure (and knows the secret), but external parties which hold
the information satisfying the trigger predicate. Indeed, simple triggers are
not commitment schemes, since the party doing the setup for a secure trigger
(e.g., the commitment) is not required to open the secret (e.g., decommit)3.
(Compare with protocol πsimple−a in Section 4.1.) Conversely, it is not the
focus of this work to give further implementations of the simple trigger.

Other primitives worth mentioning include those coming from timed-
release cryptography (e.g., [DN93], [RSW96], [DOR99] and [BN00]), where
the goal is to maintain secrecy until a predetermined amount of time has
passed. But, with secure triggers the goal is to maintain secrecy until a
predetermined event occurs.

Finally, it is important to compare our results with the recent obfusca-
tion results ([BGI+01], [LPS04]). One can argue that, in order to achieve
a reasonable form of software protection in todays computers (e.g., with-
out requiring special hardware), obfuscation is required. For example, if a
program includes license checks that can be analyzed and tampered with
by a skilled programmer, then pirates will probably be able to thwart these
license checks. From a cryptographic standpoint, one cannot design an ob-
fuscation algorithm (for sufficiently general Turing machines) as defined and
proved in [BGI+01]. Let us mention that the “trigger obfuscation” is of a
different nature, as secure triggers can only be used to obfuscate very spe-
cial Turing machines; “trigger obfuscation” blocks analysis before the code
is executed —but not after.

tion.
3In particular, simple triggers are not UC commitment schemes and the impossibility

result of [CF01] cannot be applied.

6

As a side note, let us mention that this new paradigm, proved to be very
useful in the construction of a software protection framework ([BFN+03]).
The key idea here, is to have certain portions of the code —possibly con-
taining license checks— obfuscated with triggers. Each of these portions of
code is embedded in a trigger (as a secret), and the predicate is selected
according to the value held by certain local variables, in an untampered run
of the program, at the instant immediately before the portion of code must
be executed. Commercial software is complex (branching) and will typically
include several portions of code that are executed under very stringent con-
ditions, e.g., rare events are described by rare values of the local variables, it
happens that it is difficult for an attacker to infer the value of these variables
(and hit the trigger). See more on this in op. cit..

In [LPS04], authors adapt the definition of obfuscation of [BGI+01] to
the random oracle model in order to design a family of algorithms, point-
functions with general output, that is obfuscatable. This functions and the
simple trigger ideal functionality have the same input/output behavior!

3 The Universally Composable Security framework

By now, Canetti’s UCS framework ([Can00a, Can01]) has become popular in
cryptology, as many authors analyze the security of protocols using it. The
best reference is Canetti’s own paper [Can00c] (see also [CF01], [CK02],
[DN02]).

The UCS framework aims to capture the task of secure function evalu-
ation in an asynchronous, ideally authenticated network. To this end two
models are considered, a first model that represents a protocol execution
in real life and a second model that captures the security requirements of
the given task in an idealized setting. A protocol is said secure in the UCS

sense if no interactive distinguisher can tell apart an execution in the real-life
model from one in the idealized setting.

Explicitly, in both worlds the parties are interactive, probabilistic, pol-
ynomial-time Turing machines (ITM for short). All parties participate in a
message-driven protocol inside an asynchronous network without guaranteed
delivery of messages, where communication is public and unauthenticated.
These parties interact with two adversarial parties called environment (the
interactive distinguisher) and adversary —also ITMs.

• Real-life protocol: parties interact during the execution of the protocol
communicating through channels accessible to the attacker (for eaves-
dropping, stopping, or inserting messages). The parties receive their

7

input directly from the environment, through special I/O channels in-
accessible to the attacker, and work out the result by themselves. The
output of the protocol is forwarded to the environment.

• Ideal process: A protocol execution amounts to the environment de-
livering the input to dummy parties that make no computations and
forward their input to a trusted party, the ideal functionality, an ad-
ditional ITM which remains unseen by the environment. This party
makes all the necessary protocol calculations and returns them with
the result, which they output for the environment. In this scenario,
the attacker cannot eavesdrop on communications, but can freely com-
municate with the ideal functionality; it can only detect and stop a
message from the ideal functionality to the parties (but cannot see its
contents).

The environment acts as an interactive distinguisher: over a coin toss (its
result being secret to the environment), it will participate in the execution
of a real-life protocol or an ideal process. It will provide parties with their
input and witness their outputs. It will communicate with the adversary
arbitrarily. Once the protocol execution is finished, it must decide whether
it has participated in a real-life protocol or in an ideal process. A protocol
is said to securely realize an ideal functionality with respect to a class of
adversaries C if for every real-life adversary in C, there exists an ideal-process
adversary in C such that no environment can tell whether it participates in a
real-life protocol or in an ideal process with non-negligible probability. We
consider two settings: static adversaries and adaptive adversaries. In the
adaptive setting, as in [CK02], we will allow protocol parties to erase local
data.

4 Secure trigger procedures

We want to model trigger algorithms as non-interactive algorithms that do
not leak semantic information for the secret nor information reveal the se-
lected predicate, when the setup occurs without active intervention from the
attacker. This is captured by the secure trigger ideal functionality described
below.

The following assumption will be used throughout the paper. Ideal func-
tionalities do not accept secrets of size smaller than the security parame-
ter. The condition is not required by all our protocols, but will be assumed

8

Functionality F

F proceeds as follows running with parties D,T and adversary S.

1. Wait for a message from D of the form (Setup, S) and record S. Put
the message TriggerActivated in the outgoing communication tape with
recipient T , and send (Setup, |S|) to S.

2. Wait for one of the messages (Trigger,F) or (Trigger,S) from S and
record this message.

a) If the message was (Trigger,F), use Samp to draw a predicate
p from {p}. Next, For any input (Check, x) received from T , if p(x) =
true holds, return the secret to T . Else, do nothing.

b) If it was (Trigger,S), hand any input (Check, x) received from
T to S. If S answers this message, forward the answer to T ; else, do
nothing.

Figure 1: The Secure Trigger Ideal Functionality

throughout for the sake of simplicity. Note that it is not particularly restric-
tive in practice, e.g., for typical choices of security parameter and secret.

Formally, the environment interacts with an adversary and two protocol
parties: a dealer, D, and a triggerer, T . A secure trigger ideal function-
ality instance is parametrized by a family of polynomial-time computable
predicates {p} and a polynomial-time sampling algorithm Samp (supported
on {p}). An instance F := F ({p},Samp) expects to receive a message of the
form (Setup, S) from D. If the size of the secret, |S|, is smaller than the
security parameter k, it terminates. Else, it uses Samp to draw a predicate
p from the given family of predicates, it forwards the message (Setup, |S|) to
the ideal-process adversary, and sends the output TriggerActivated to T . At
any time, the ideal functionality waits for one of the messages (Trigger,S)
or (Trigger,F) from the ideal-process adversary. In the first case, for ev-
ery input (Check, x) received from T , F will output S for the triggerer if
p(x) = true. In the second case, the ideal functionality will forward every
input (Check, x) to the ideal-process adversary and return T with whatever
S answers. Else it does nothing. This is summarized in Figure 1.

Step 2 in Figure 1 might require some explanation. Indeed, we will as-
sume in practice that the setup (Step 1) is done without active participation
of the adversary. This means in particular that no attacker can tamper with

9

the setup message (in which case S answers (Setup,F), thus simplifying the
ideal process). We do not require this here and make no further assumptions.
We could, of course, have the setup message authenticated; but this would
also require unnecessary preliminary work. Instead, we allow the ideal func-
tionality to “change plans” if faced with a real-life adversary that tampers
with the setup message sent by D to T (Fig. 1, (2.b)). The ideal-process
adversary will detect if the real-life adversary tampers with the setup mes-
sage and interact with the ideal functionality so that the tampering does
not allow the environment to distinguish one protocol from the other.

In order to design real-life protocols for secure triggers we might require
the use of certain cryptographic primitives: a ind-cpa secure symmetric ci-
pher (Gen, Enc, Dec), a one-way function h : {0, 1}∗ → {0, 1}∗, and a collec-
tion of pseudo-random generators. In the latter case, for integers k, s ∈ Z

with s ≥ k, we shall denote by Gk,s a pseudo-random generator that expands
strings of size k to strings of size k + s. See for instance [Gol01, Gol04].

4.1 The simple trigger

Let k ∈ Z. The ideal functionality for a simple trigger, Fsimple, with security
parameter k is defined by the predicate family

{

pb : {0, 1}∗ → {true, false}; b ∈ {0, 1}k
}

,

where pb(x) := true if x = b, else pb(x) := false; together with the sam-
pling algorithm that selects b ∈ {0, 1}k according to the first k bits of its
random tape. We shall design two protocols, one securely realizing Fsimple
with respect to static adversaries (πsimple−s) and another one securely re-
alizing it with respect to adaptive adversaries when local erasure of data
is allowed (πsimple−a). The former is concise, easier to understand, and
might be enough for most applications. The latter, presents a more delicate
problem and requires a less direct solution.

Protocol πsimple−s: The dealer waits for an input of the form (Setup, S)
and terminates if |S| < k holds. Else, D uses the key generation algorithm
Gen to generate b := Gen(1k), writes the message (Setup, Encb(0

k), Encb(S))
in its outgoing communication tape with recipient T , and terminates. The
triggerer expects a message of the form (Setup, A,B), for A,B ∈ {0, 1}∗, and
outputs TriggerActivated. Then, for every input (Check, x) that T receives,
it will output Decx(B), if Encx(0k) = A. Else, it does nothing.

10

Theorem 4.1 Protocol πsimple−s securely realizes Fsimple with respect to
static adversaries.

Proof: Fix a real-life adversary. We construct an ideal-process adversary
such that no environment Z can distinguish if it participate in a real-life
protocol or an ideal-process execution with more than negligible probability.

The ideal-process adversary, S, we construct does the following. In par-
allel to the ideal-process execution, it simulates a virtual copy, A, of the
real-life adversary in a black-box way. It imitates a copy of the execution of
the real-life protocol πsimple−s for A, and forwards all messages from Z to
A and back. More explicitly, the ideal process behaves as follows.

Assume that no party is corrupted. When S receives the size of the
secret, |S|, from the ideal functionality, it generates b′ := Gen(1k) and sim-
ulates the message (Setup, Encb′(0

k), Encb′(1
|S|)) for A with sender D and

recipient T . Here 0k and 1|S| denote the all-zeroes string of size k and the
all-ones string of size |S|, respectively.

At any time S waits for A to send a setup message to T , which we denote
by (Setup, A,B), and lets through all messages from the ideal functionality
to the triggerer. If this setup message agrees with that simulated by S,
i.e., if Encb′(0

k) = A and Encb′(1
|S|) = B, then the ideal-process adversary

sends the message (Trigger,Fsimple) to the ideal functionality. Else, it sends
the message (Trigger,S); next, for every message (Check, x) it receives from
Fsimple, it returns Decx(B) if Encx(0k) = A; else, it does nothing. This
finishes the description of S in the uncorrupted case.

Assume that some party is corrupted, and recall that in the static set-
ting corruption occurs on startup. Then, S corrupts the corresponding
party, provides A with the internal state of the corrupted party, and follows
A’s instructions. If the dealer was corrupted, then S will also deliver S to
A. Notice that S needs to imitate the behavior of the corrupted parties
for A, for example, if A corrupts the dealer and instructs it to run accord-
ing to its algorithm, then S will compute and deliver the setup message
(Setup, Encb(0

k), Encb(S)) to A, with sender D and receiver T , for some
b = Gen(1k).

The proof is completed by showing that Z cannot use the differences
between the two runs to distinguish one from the other. But there is only
one difference4, and it happens in the uncorrupted case: the environment
receives the string Encb′(0

k), Encb′(1
|S|) from the adversary in the ideal pro-

cess, while it receives Encb(0
k), Encb(S) in the real-life protocol. It is easy

to see that an environment that distinguishes one from the other with non-
negligible probability, breaks the given ind-cpa secure encryption scheme.

11

✷

Protocol πsimple−s is insecure against adaptive adversaries, this is easy
to see because if the real-life adversary corrupts the dealer after delivering
the setup message, it retrieves both b (or b′) and S. However, at that point
of the protocol execution, the ideal-process adversary has already delivered
(Setup, Encb′(0

k), Encb′(1
|S|)) which is inconsistent with b′ and S. That is,

the value Encb′(1
|S|) binds S to 1|S|. In order to construct a protocol secure

with respect to adaptive adversaries, we will use one-time pad encryption
(compare with [CK02, Section 5.1]).

Protocol πsimple−a: The dealer waits for an input of the form (Setup, S)
and terminates if |S| < k holds. Else, D uses a pseudo-random generator to
expand k bits from its random tape, b, to a bitstring (b(1), b(2)) := Gk,|S|(b)

in {0, 1}k ×{0, 1}|S|, and deletes the value of b from its memory. Then, the
dealer puts the message (Setup, b(1), b(2)⊕S)5 in its outgoing communication
tape with recipient T and terminates. The triggerer expects a setup message
(Setup, A,B), for some A,B ∈ {0, 1}∗, and outputs TriggerActivated. Next,
for every input (Check, x) it receives, it computes (x(1), x(2)) := Gk,|S|(x),

and if x(1) = A, it outputs x(2) ⊕B. Else it does nothing.

For s ≥ k, consider Gk,s as a function with range in {0, 1}k × {0, 1}s.
Notice that by [Gol01, Proposition 3.3.8], the map {0, 1}k → {0, 1}k defined
by the rule x 7→ x(1), for (x(1), x(2)) = Gk,s(x), defines a one-way function.
Therefore, if (x(1), x(2)) := Gk,s(x), (b(1), b(2)) := G(b), and x1 = b(1), then
x(2) = b(2) holds except with negligible probability. We are ready to prove
the following theorem.

Theorem 4.2 Protocol πsimple−a securely realizes Fsimple with respect to
adaptive adversaries if local data erasure is allowed.

Proof: Fix a real-life adversary. We define an ideal-process adversary S
such that no environment Z can distinguish one from the other with non-
negligible probability.

The adversary S runs a virtual copy of the real-life adversaryA in parallel
with the execution of the ideal process. It imitates a copy an execution of
the real-life protocol πsimple−a for A, and will forward all messages from
Z to A and vice versa. Let the ideal process execution start, and assume
for now that A has not corrupted the dealer yet. Then, the ideal-process

4Other differences occur with negligible probability and can be ignored, e.g., it might
happen that Encx(0k) = Encb(0

k) but pb(x) = false —but only with negligible probability.
5Here ⊕ stands for the bitwise X-OR operation.

12

adversary waits for a message containing the size of the secret, |S|, from the
ideal functionality and selects the strings c1 ∈ {0, 1}

k , c2 ∈ {0, 1}
|S| from to

its random tape, and hands the message (Setup, c1, c2) to A with sender D

and recipient T .
The ideal-process adversary waits for A to send a setup message (Setup,

A,B) to T , for some A,B ∈ {0, 1}∗, at any time of the protocol execution.
Once sent, S lets through all messages from the ideal functionality to the
triggerer. If this setup message agrees with the one simulated by S, i.e.,
if c1 = A and c2 = B, then S sends the message (Trigger,Fsimple) to the
ideal functionality, and sends (Trigger,S) otherwise. In the latter case, for
every message (Check, x) received from Fsimple, S computes (x(1), x(2)) :=
Gk,|S|(x), and returns B ⊕ x(2) if x(1) = A. Else, S does nothing.

In the case that A corrupts D or T , then S corrupts the corresponding
party and provides A with its internal state. If D is corrupted before |S|
has been received, then S simulates a “real” dealer for A: it hands S along
with the setup message (Setup, b(1), b(2) ⊕ S), with sender D and recipient
T , where b ∈ {0, 1}k is chosen from the ideal-process adversary’s random
tape and (b(1), b(2)) := Gk,|S|(b). If the corruption occurs after |S| was
received (thus, b has already been deleted and A has received the “fake”
setup message (Setup, c1, c2)), then the ideal-process adversary obtains the
secret S from the dealer and hands A the values c1, c2⊕S that are consistent
with the setup message and secret.

In order to show that protocol πsimple−a securely realizes Fsimple, we
notice that there is a single difference between the two runs. The values
b(1) and b(2) generated by D in the real-life protocol are computationally
independent, whereas the values c1 and c2 ⊕ S generated by S in the ideal
process are independently distributed. However, one can see that breaking
the security of this protocol can be reduced to breaking the security of Gk,|S|,
which proves the theorem. ✷

4.2 The subsequence trigger

Let s, k ∈ Z be fixed integers with s > k. The subsequence trigger ideal
functionality, Fsubset, is defined by the family of predicates
{

pK : {0, 1}s → {true, false};K = {(i1, b1), . . . , (ik, bk)} ⊂ {1, . . . , s} × {0, 1},

such that iℓ 6= iℓ′ if ℓ 6= ℓ′
}

,

where a predicate pK in this family evaluates to true on input x = (x1, . . . ,

xs) ∈ {0, 1}
s, if and only if, xiℓ = bℓ holds for every ℓ with 1 ≤ ℓ ≤

13

k. The sampling algorithm, will independently select (b1, . . . , bk) ∈ {0, 1}
k

according to its random tape and k distinct integers i1, . . . , ik in {1, . . . , s}
(see Figure 2).

let J := {1, . . . , s};
for ℓ := 1 to k do: {

set bℓ ← {0, 1};
set iℓ ← J ;
let J := J \ {iℓ};
};

output K = {(i1, b1), . . . , (ik, bk)};

Figure 2: Sampling algorithm for K

We remark that according to this ideal functionality, both the sequence
i1, . . . , ik and b = (b1, . . . , bk) are not leaked during the protocol execution,
except if the trigger is hit.

We shall design a protocol that securely realizes this ideal functionality
with respect to adaptive adversaries. To implement the real-life protocol
we construct an auxiliary family of (polynomially-computable) functions
{τ : {0, 1}s → {0, 1}k}. Given K = {(i1, b1), . . . , (ik, bk)} as above we can
produce (an algorithm for) a function τ such that pK(x) = true if and only if
τ(x) = (b1, . . . , bk), then the triggerer will be able to decide if pK(x) = true

by checking if the first entry of Gk,s(τ(x)) agrees with b(1), for given τ and
b(1) (where (b(1), b(2)) = Gk,s(b)). But with the added property that τ and
b(1) do not leak b(2) (cf., Protocol πsimple−a)! The family {τ} verifies the
following properties:

1. Let be given K = {(i1, b1), . . . , (ik, bk)} as above and x ∈ {0, 1}s such
that pK(x) = true, then we can compute the algorithm for a function
τ such that τ(x) = (xi1 , . . . , xik) = (b1, . . . , bk).

2. Every function τ in this family is onto, and maps an input x in {0, 1}s

to τ(x) = τ(x1, . . . , xs) = (xj1, . . . , xjk
), for some distinct integers

j1, . . . , jk ∈ {1, . . . , s}. Furthermore, if y ∈ {0, 1}s is such that yjℓ
=

xjℓ
for 1 ≤ ℓ ≤ k, then both values have the same output τ(x) = τ(y).

Now, we can see from the above properties, that the conditions “pK(x) =
true” and “τ(x) = (b1, . . . , bk)” are equivalent.

With out further delays let H be a one-way function and assume that
the output is of a fixed size for all input of size s, i.e., |H(x)| = m for every

14

x ∈ {0, 1}s (and some m ∈ Z). Let
{

σ(t1,...,ts) : {1, 2, . . . , s} × {0, 1}s → {0, 1}k ; ti ∈ {0, 1}
m, for 1 ≤ i ≤ s

}

be a family of functions, where σ(t1,...,ts)(i, x) := y := (y1, . . . , yk) is defined
by the algorithm in Figure 3. We need some notation. Let J denote the finite
sequence J := (1, . . . , s). For every finite sequence of distinct integers I, and
every integer i in I, let I \ {i} denote the sequence obtained by deleting i

and re-indexing all integers to the right of i. For example (1, 2, 3, 4) \ {2} =
(1, 3, 4).

Stored: (t1, . . . , ts).
Input: j, (x1, . . . , xs).

let j1 := j; y1 := xj ;J := (1, . . . , s) \ {j1};
for ℓ := 2 to k do: {

compute n :=
(

H(j1|y1| . . . |jℓ−1|yℓ−1) ⊕ tjℓ−1

)

mod
(s− ℓ + 1);

let j denote the n-th entry in J ;
let jℓ := j; yℓ := xj ;J := J \ {jℓ};

output (y1, . . . , yk);

Figure 3: The auxiliary function

This algorithm is short but might not be so easy to follow. A function
σ is uniquely defined by elements t1, . . . , ts. Assume them fixed. We briefly
describe how to evaluate σ in an input j1, x for x ∈ {0, 1}s, j1 ∈ Z with 1 ≤
j1 ≤ s. According to the algorithm (Figure 3), the first bit of the output, y1,
is defined as y1 := xj1. Assume that i1, y1, . . . , iℓ−1, yℓ−1 have been computed
and ℓ ≤ k. To compute iℓ, yℓ we let n := H(j1|y1| · · · |jℓ−1|yℓ−1) ⊕ tjℓ−1

,
consider this bitstring as an integer, and compute its remainder modulo
s − ℓ + 1 (the pipe in the above expression stands for the concatenation).
The next line in the algorithm simply means that jℓ must be selected as the
n–th undeleted integer from {1, . . . , s}, counting from the left. Then, we set
yℓ := xjℓ

.
Given any function σ, notice that for every j (1 ≤ j ≤ s), the function

τ := σ(j,) : {0, 1}s → {0, 1}k

trivially verifies property 2 above. To see that property 1 is also verified,
notice that given K and x ∈ {0, 1}s such that pK(x) = true, one can run

15

the algorithm on input (i1, x) without specializing the values of t1, . . . , ts,
and sequentially specialize each tjℓ−1

when required so that jℓ = iℓ. We are
now ready to describe the protocol for this trigger.

Real-life protocol for the subsequence scheme (πsubseq−a).– The
dealer waits for an input of the form (Setup, S) and terminates if |S| < k

holds. Else, D sets b ∈ {0, 1}k and t1, . . . , ts ∈ {0, 1}
m according to k + ms

bits of its random tape, uses the pseudo-random generator algorithm to com-
pute (b(1), b(2)) := Gk,|S|(b), deletes b from its memory, writes the message

(Setup, (t1, . . . , ts), b
(1), b(2) ⊕ S) in its outgoing communication tape with

recipient T , and terminates. The triggerer expects a setup message of the
form (Setup, R,A,B), for R ∈ ({0, 1}m)s, and A,B ∈ {0, 1}∗, and outputs
TriggerActivated. Next, for every input (Check, x) that T receives, for every
i = 1, . . . , s: the triggerer runs the algorithm of Figure 3 with input i, x. De-
note its output by σ(i, x), and write (x(i,1), x(i,2)) := Gk,|S|(σ(i, x)). Then,

the triggerer checks whether x(i,1) = A, and if it does, it outputs x(i,2) ⊕B.
Else, it does nothing.

Notice that T is not given a function x 7→ τ(x) but the collection of
functions {x 7→ σ(i, x); 1 ≤ i ≤ s}. Asymptotic computations for T remain
in (sk)O(1).

Theorem 4.3 Protocol πsubseq−a securely realizes Fsubseq with respect to
adaptive adversaries if local erasure of data is allowed.

Proof: The proof follows the lines of the proof of Theorem 4.2. Given
a real-life adversary, we construct an ideal-process adversary S such that
no environment can decide if it participates in a real-life protocol or in an
ideal-process execution with non-negligible probability. The proof is again
by simulation, and only a few modifications need to be made. That is, S
simulates a copy of the real-life adversary A, it functions as an interface
so that A and the environment communicate freely, and imitates a copy of
πsubset−a for A.

In the case that D is not corrupted before setup, the ideal adversary
simulates a setup message for A: (Setup, (t′1, . . . , t

′
s), c1, c2), where t′1, . . . , t

′
s

are s random values selected uniformly in {0, 1}m and c1 and c2 are ran-
dom values in {0, 1}k and {0, 1}s, respectively. Again, the ideal-process
adversary waits for A to forward a setup message to the triggerer, and lets
through messages from Fsubset to T . If the setup message was modified
to (Setup, R,A,B) (or created), with R ∈ ({0, 1}m)s and A,B ∈ {0, 1}∗,
then the adversary sends the message (Trigger,S) to the ideal functionality.

16

Next, for every input (Check, x) it receives from Fsubset, and for every i

with 1 ≤ i ≤ s, it computes (x(i,1), x(i,2)) := Gk,|S|(σ(i, x)), and it returns

x(i,2) ⊕B if x(i,1) = A (here σ := σR denotes the auxiliary function defined
by R according to the algorithm in Figure 3). Else, it returns nothing.

If some party is corrupted, then S corrupts the corresponding party, it
provides A with its internal state, and follows A’s instructions. Addition-
ally, if the dealer was corrupted, it will deliver the secret S along with the
setup message (Setup, (t1, . . . , ts), b

(1), b(2) ⊕ S) for (b(1), b(2)) := Gk,|S|(b),

randomly chosen t1, . . . , ts in {0, 1}m and b ∈ {0, 1}k .
The proof is completed by showing that Z cannot use the differences

between the two runs to distinguish one from the other. And again, there
is a single difference from the environment’s perspective. It occurs in the
case that no party is corrupted before setup. In the ideal-process, Z receives
from S the values (t′1, . . . , t

′
s), c1, c2 while it receives (t1, . . . , ts), b

(1), b(2)⊕S

from A. The values b(1) and b(2) generated by D in the real-life protocol are
computationally independent, whereas the values c1 and c2 ⊕ S generated
by S in the ideal process are independently distributed. Since the values
t1, . . . , ts and t′1, . . . , t

′
s are both drawn independently in {0, 1}m, it follows

immediately that an environment that distinguishes one view from the other
with non-negligible probability, breaks the security of Gk,|S|, which proves
the theorem. ✷

A word on sampling. It is important to notice that the sampling in the
ideal process and the selection process for t1, . . . , ts and b in the real-life
protocol define identical distributions supported in K.

Remark 4.4 The selection process for K in the real-life protocol is not
straight forward. One chooses b1, . . . , bk randomly (same as in the ideal pro-
cess) and then chooses t1, . . . , ts from which we the values i1, . . . , ik are de-
duced along with the information necessary to evaluate the auxiliary function
σ. However, we could actually choose the value of the key K = {(i1, b1), . . . ,
(ik, bk)} and then deduce some values t1, . . . , ts ∈ {0, 1}

m so that the func-
tion σ(t1,...,ts) verifies σ(t1,...,ts)(i1, x) = b if and only if pK(x) = true (Prop-
erty 1). Since the function σ(t1,...,ts)(i1, ·) is onto, for every t1, . . . , ts ∈
{0, 1}m, we would like to argue that by changing the original setup method
for the real-life protocol πsubset−s by this new setup method does not damage
its security. However, it is unclear if one can actually do it.

17

4.3 Multiple-strings trigger

Let k, s ∈ Z be integers with s ≥ 2, where k is the security parameter.
The ideal functionality for a multiple-strings trigger, Fmult, is defined by
the predicate family

{

pb(1),...,b(s) : {0, 1}∗ → {true, false}; b(1), . . . , b(s) ∈ {0, 1}k
}

,

where pb(1),...,b(s) is defined by pb(1),...,b(s)(x) := true if, writing x = (x1, . . . , xt),

there exist indices i1, . . . , is such that (xi1 , . . . , xi1+k−1) = b(1), . . . , (xis , . . . ,

xis+k−1) = b(s), and pb(1),...,b(s)(x) := false if not. The sampling algorithm

draws the values of b(1), . . . , b(s) ∈ {0, 1}k according to sk bits of its random
tape. Notice that the ideal functionality can feasibly evaluate predicates; it
runs in (sk)O(1).

Real-life protocol (πmult−a).– The dealer waits for an input of the form
(Setup, S) and terminates if |S| < k holds. Else, it draws strings b(1), . . . , b(s)

in {0, 1}k from it random tape, uses the pseudo-random generation algo-
rithm Gk,|S| to compute (b(1,1), b(1,2)) := Gk,|S|(b

(1)), . . . , (b(s,1), b(s,2)) :=

Gk,|S|(b
(s)) in {0, 1}k×{0, 1}s, and deletes the values of b(1), . . . , b(s) from its

memory. Finally, it writes the message (Setup, b(1,1), . . . , b(s,1), S⊕(⊕ib
(i,2))

in its outgoing communication tape with recipient T and terminates6. The
triggerer expects a message of the form (Setup, A1, . . . , As, B), with A1, . . . ,

As, B ∈ {0, 1}
∗, and outputs TriggerActivated. Then, for every input (Check, x)

it receives, the triggerer outputs every substring (xi, . . . , xi+k−1) such that
the first entry in Gk,|S|(xi, . . . , xi+k−1) equals Aj, for some i, j with 1 ≤ i ≤
|x|−k+1, 1 ≤ j ≤ s. Additionally, it this condition holds for all A1, . . . , As,
then the triggerer also outputs B ⊕

(

⊕i (xi, . . . , xi+k−1)
)

—here the X-OR
is taken over one substring (xi, . . . , xi+k−1) matching Aj , for each j with
1 ≤ j ≤ k (without repetitions). Else, it returns nothing.

The real-life protocol πmult−a realizes the ideal functionality Fmult with
respect to static adversaries. However, this ideal functionality does not
mimic an “idealized computation” as expected, since the protocol πmult−a

leaks some information (with negligible probability). Explicitly, if an input
x ∈ {0, 1}∗ is such that several, but not all, of the b(i)s are contained in
x, then T discovers these values. Therefore, we need to modify the secure
trigger ideal functionality replacing step (2) in Figure 1 by (2’) as in Figure 4.

6The selection of the secret sharing scheme used to reconstruct the key ⊕ibi from the
shares b

(1), . . . , b(s) is arbitrary and could be modularly replaced with the same security
results. We use this one here for the sake of simplicity.

18

Functionality F ′
mult

(2’) Wait for one of the messages (Trigger,F ′
mult) or (Trigger,S) from S.

• a) If the message was (Trigger,F ′
mult), for every input (Check, x)

received from T , for every i, j ∈ Z, with 1 ≤ i < |x| − k, 1 ≤ j ≤ s

such that (xi, . . . , xi+k−1) = b(j), output (xi, . . . , xi+k−1) for T .
(Here |x| denotes the size of the bitstring x.) Additionally, if
pb(1),...,b(s)(x) = true holds, return the secret to T .

• b) If it was (Trigger,S), for any input (Check, x) received from T ,
hand it to S. If S answers this message, forward the answer to T .

Figure 4: Modified Ideal Functionality

Theorem 4.5 Protocol πmult−a securely realizes F ′
mult with respect to adap-

tive adversaries if local erasure of data is allowed.

Proof: The proof follows the lines of the proofs of Theorems 4.2 and 4.3.
Given a real-life adversary, we design an ideal-process adversary such that no
environment can distinguish one from the other with non-negligible probabil-
ity. Again, the ideal-process adversary, S, will simulate a real-life adversary,
A, imitate a copy of πmult−a for A, and act as an interface between A and
Z.

Assume that the dealer is not corrupted before setup. When the ideal-
process adversary receives the size of the secret from Fmult, it sends the
setup message (Setup, c1, . . . , cs,⊕idi) to A, where c1, . . . , cs and d1, . . . , ds

are uniformly selected in {0, 1}k and {0, 1}|S|, respectively. Next, the ideal-
process adversary waits for A to forward a setup message to the triggerer,
and starts letting through messages from F ′

mult to T . If the real-life ad-
versary forwarded the setup message without modifications, then S sends
(Trigger,F ′

mult) to the ideal functionality. If the setup message was modified
to (Setup, A1, . . . , As, B) (or created), for A1, . . . , As, B ∈ {0, 1}

∗, the ideal-
process adversary sends the message (Trigger,S) to the ideal functionality.
Next, for every input (Check, x) it receives from F ′

mult, for every i, j, with
1 ≤ i ≤ |x|−k+1, 1 ≤ j ≤ s, such that the first entry of Gk,|S|(xi, . . . , xi+k−1)
agrees with Aj , the ideal-process adversary outputs (xi, . . . , xi+k−1). Also,
if all the A1, . . . , As were matched, S hands

(

⊕j (xij , . . . , xij+k−1)
)

⊕B) to
F ′
mult.

19

In case that A corrupts D or T , then S corrupts the corresponding
party and provides A with its internal state. If D is corrupted before |S|
has been received, then S will simulate a “real” dealer for A: it will compute
the setup message (Setup, b(1,1), . . . , b(1,s), (⊕ib

(2,i))⊕S), for (b(1,i), b(2,i)) :=
Gk,|S|(b

(i)) and b(i) ∈ {0, 1}k uniformly chosen (for all i with 1 ≤ i ≤ s), and
send it to T along with the secret S. If D is corrupted after setup, (thus, the
values of b(1), . . . , b(s) have already been deleted in the real-life protocol),
then the ideal-process adversary obtains the secret S from the dealer and
hands A the strings (c1, d1), . . . , (cs−1, ds−1), (cs, ds⊕S) representing values
that are consistent with the setup message and secret.

In order to show that protocol πmult−a securely realizes F ′
mult, we no-

tice that there is a single difference between the two runs. The values
(b(1,1), b(2,1)), . . . , (b(1,s),

b(2,s)) generated by D in the real-life protocol are computationally inde-
pendent, whereas the values (c1, d1), . . . , (cs−1, ds−1), (cs, ds ⊕ S) generated
by S in the ideal process are independently distributed. However, one can
see that breaking the security of this protocol can be reduced to breaking
the security of Gk,|S|, which proves the theorem. ✷

Finally, it is interesting to compare the subsequence trigger with the
multiple-strings trigger. A first comparison shows that Fsubset accepts fixed-
size inputs while F ′

mult accepts arbitrary inputs. Even more, they provide
different security, for example, assume that we want to trigger a secret pro-
cedure if an input x = (x1, . . . , x1024) verifies the conditions (x1, . . . , x10) =
(k1, . . . , k10), (x101, . . . , x110) = (k11, . . . , k20),
. . . , (x700, . . . , x710) = (k71, . . . , k80), for some secret values (k1, . . . , k80) ∈
{0, 1}80. That is, we want to check if 8 different strings within the input
match 8 secret strings, these strings being secret. If we use the multiple-
strings trigger then an attacker can succeed by doing a brute-force attack on
8 strings of 10 bits, each. In fact, by using the subsequence trigger ensure
that attackers do not learn which are the bits being checked. However, if we
use a subsequence trigger, then we can get 80 bits security!

5 Applications

We return to the example “anonymous shopping agent” from Section 1.1.
In this setting, etailers provide an anonymous shopping service whereby
customers are allowed to submit an agent that crawls databases searching
for the product they like. A customer wants to use an agent to crawl these
databases for his targeted product without the product’s description nor his

20

name. It is required that the code resists reverse-engineering analysis and
does not leak the sensitive information.

To design the mobile code we will make use of the subsequence trigger.
But first, let us state our assumptions.

• Let us assume without loss of generality that the etailer databases
have all the same format (or support a single crawling API), and each
entry can be described by a bitstring of size N , for some N ∈ Z.

• Each entry is described by a set of attributes of a fixed length,

• Customers can deploy their mobile code anonymously,

• Etailers can run the agents safely (e.g., sandboxing),

• The number of possible products on etailers databases is large (e.g., of
size larger than 280). Moreover, we can assume that the distribution
deduced from marketing information (and all that other information
available to etailers) is such that the number of products with proba-
bility greater than the target product’s own probability is large, too.

To design the trigger, we write the description of the selected product
and its price as a bitstring of a considerable size (e.g., k ≥ 160). To do this,
we uniformly choose certain bits from the target product description, writing
their index and their value as K ⊂ {1, . . . , N} × {0, 1} (and possibly add
some pairs (i, b) so that the product, and its preferred price, are described
unequivocally by K). Finally, we run the setup for a subsequence trigger
real-life protocol and compute a triggerer T with K selected as above and
S to be a procedure that sends an email to the buyer with a description of
the product it found and the name of the etailer.

From the above assumptions one can deduce that no brute-force attack
on this secure trigger can succeed, and therefore the agent is secure.

References

[Ano02] Anonymous. Slashdot post (#4537102). At http://www.slashdot.org,
2002.

[BFN+03] Diego Bendersky, Ariel Futoransky, Luciano Notarfrancesco,
Carlos Sarraute, and Ariel Waissbein. Advanced software
protection now. Corelabs Technical Report, available at
http://www.coresecurity.com/corelabs/projects/software protection.php,
2003.

21

[BGI+01] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit
Sahai, Salil Vadhan, and Ke Yang. On the (im)possibility of obfuscating
programs. In Joe Kilian, editor, Advances in Cryptology - CRYPTO
2001, volume 2139 of LNCS, pages 1–18, UCSB, Santa Barbara (CA),
August 2001. Springer.

[Blu81] Manuel Blum. Coin flipping by telephone. In Allen Gersho, editor,
Advances in Cryptology. A report on CRYPTO ‘81, IEEE Workshop on
Communications Securit, pages 11–15, Santa Barbara, California, USA,
August 1981.

[BN00] Dan Boneh and Moni Naor. Timed commitments. In Mihir Bellare, ed-
itor, AAdvances in Cryptology - CRYPTO 2000, volume 1880 of LNCS,
pages 236–254, Santa Barbara, California, USA, 2000. Springer.

[Can97] Ran Canetti. Towards realizing random oracles: Hash functions that
hide all partial information. In Burton S. Kaliski Jr., editor, Advances
in Cryptology - CRYPTO ’97, volume 1294 of LNCS, pages 455–469,
Santa Barbara, California, USA, 1997. Springer.

[Can00a] Ran Canetti. Security and composition of multiparty cryptographic
protocols. Journal of Cryptology, 13(1):143–202, 2000.

[Can00b] Ran Canetti. Towards realizing random oracles: Hash functions that
hide all partial information (revised version), 2000.

[Can00c] Ran Canetti. Universally composable security: A new paradigm for
cryptographic protocols. Cryptology ePrint Archive, Report 2000/067.
Full paper version of [Can01], 2000.

[Can01] Ran Canetti. Universally composable security: A new paradigm for
cryptographic protocols. In 42nd Annual Symposium on Foundations of
Computer Science, FOCS 2001, Proceedings,, pages 136–145, Las Vegas,
Nevada, USA, 14th-17th October 2001, 2001. IEEE Computer Society.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments.
In Joe Kilian, editor, Advances in Cryptology - CRYPTO 2001, volume
2139 of LNCS, pages 19–40, Santa Barbara, Ca) USA, 2001. Springer.

[CK02] Ran Canetti and Hugo Krawczyk. Universally composable notions of key
exchange and secure channels. In Lars R. Knudsen, editor, Advances in
Cryptology - EUROCRYPT 2002, volume 2332 of LNCS, pages 337–351,
Amsterdam, The Netherlands, 2002. Springer.

[CMR98] Ran Canetti, Daniele Micciancio, and Omer Reingold. Perfectly one-way
probabilistic hash functions (preliminary version). In Thirtieth Annual
ACM Symposium on the Theory of Computing. Proceedings,, pages 131–
140, Dallas, Texas, May 1998. ACM Press.

22

[CPV03] Joris Classens, Bart Preneel, and Joss Vandewalle. (How) can mobile
agents do secure electronic transactions on untrusted hosts? — a survey
of the security issues and the current solutions. ACM Transactions on
Internet Technology, 3(1361):28–48, 2003.

[DN93] Cynthia Dwork and Moni Naor. Pricing via processing or combat-
ting junk mail. In Ernest F. Brickell, editor, Advances in Cryptology
- CRYPTO ’92, volume 740 of LNCS, pages 139–147, UCSB, Santa
Barbara (CA), USA, August 1993. Springer.

[DN02] Ivan Damgaard and Jesper Buus Nielsen. Perfect hiding and per-
fect binding universally composable commitment schemes with con-
stant expansion factor. In Moti Yung, editor, Advances in Cryptology -
CRYPTO 2002, volume 2442 of LNCS, pages 581–596, Santa Barbara,
California, USA, 2002. Springer.

[DOR99] Giovanni Di Crescenzo, Rafail Ostrovsky, and Sivaramakrishnan Ra-
jagopalan. Conditional oblivious transfer and timed-release encryption.
In Jacques Stern, editor, Advances in Cryptology - EUROCRYPT ’99,
volume 1592 of Add data for field: Series, pages 74–89, Prague, Czech
Republic, May 1999. Springer.

[Gol01] Oded Goldreich. Foundations of Cryptography (Vol. 1). Cambridge
University Press, 2001.

[Gol04] Oded Goldreich. Foundations of Cryptography (Vol. 2). Cambridge
University Press, 2004.

[Gry92] Dmitry Gryaznov. An analysis of cheeba. In EICAR’92 conference,
1992.

[Hoh98] Fritz Hohl. Time limited blackbox security: Protecting mobile agents
from malicious hosts. In Giovanni Vigna, editor, Mobile Agents and
Security, volume 1419 of LNCS, pages 92–113. Springer, 1998.

[JS02] A. Juels and M. Sudan. A fuzzy vault scheme. In Proceedings of IEEE
Internation Symposium on Information Theory, pages 408–426, Lau-
sanne, Switzerland, 2002. IEEE Press.

[LPS04] Benjamin Lynn, Manoj Prahbakasan, and Amit Sahai. Positive results
and techniques for obfuscation. In Christian Cachin and Jan Camenisch,
editors, Advances in Cryptology — Eurocrypt ’04, volume 3027 of LNCS,
pages 20–39, Interlaken, Switzerland, May 2004. Springer-Verlag, New
York.

[Per03] Frederic Perriot. Personal communication, 2003.

[Riv97] Ronald L. Rivest. All-or-nothing encryption and the package transform.
In Eli Biham, editor, Fast Software Encryption, 4th International Work-
shop, FSE ’97, volume 1267 of LNCS, pages 210–218, Haifa, Israel, 1997.
Springer.

23

[RSW96] Ron Rivest, Adi Shamir, and David Wagner. Time lock puzzles and
timed release cryptography. Technical report, MIT Laboratory of Com-
puter Science, 1996.

[vO03] Paul C. van Oorschot. Revisiting software protection (invited talk). In
Colin Boyd and Wenbo Mao, editors, Information Security, 6th Interna-
tional Conference, ISC 2003, volume 2851 of LNCS, pages 1–13, Bristol,
UK, October 2003. Springer.

24

