Perfect Non-Interactive Zero Knowledge for NP
Jens Groth Rafail Ostrovsky Amit Sahai

U.C.L.A.
Department of Computer Science
{jg,rafail,sahai }@s. ucl a. edu

August 31, 2005

Abstract

Non-interactive zero-knowledge (NIZK) systems are fundatal cryptographic primitives used
in many constructions, including CCA2-secure cryptosystedigital signatures, and various crypto-
graphic protocols. What makes them especially attracisvihat they work equally well in a concur-
rent setting, which is notoriously hard for interactive@&nowledge protocols. However, while for
interactive zero-knowledge we know how to construct dfatiszero-knowledge argument systems for
all NP languages, for non-interactive zero-knowledges hoblem remained open since the inception
of NIZK in the late 1980's. Here we resolve two problems relgag NIZK:

e we construct the first perfect NIZK argument system for anyldguage.

e we construct the first UC-secure NIZK protocols for any NRjlzamge in the presence of a dy-
namic/adaptive adversary.

While it was already known how to construct efficient provemputational NIZK proofs for any
NP language, the known techniques yield large common mderstrings and large NIZK proofs.
As an additional implication of our techniques, we consatidy reduce both the size of the common
reference string and the size of the proofs.

Keywords: Non-interactive zero-knowledge, universal composabilibn-malleability.

1 Introduction

In this paper, we resolve a central open problem concernimig-INteractive Zero-Knowledge (NIZK)
protocols: how to construatatisticalNIZK arguments for any NP language. While fateractivezero

*Supported by NSF grant No. 0456717, and NSF Cybertrust.grant

fSupported in part by a gift from Teradata, Intel equipmeantyrfNSF Cybertrust grant No. 0430254, OKAWA research
award, B. John Garrick Foundation and Xerox Innovation graward.

fSupported by grant No. 0456717 from the NSF ITR and Cybdrpusgrams, an equipment grant from Intel, and an
Alfred P. Sloan Foundation Research Fellowship.

knowledge (ZK), it has long been known how to construct stagl zero-knowledge argument systems
for all NP languages [BCC88], for NIZK this question has r@med open for nearly two decades.

IN CONTEXT WITH PREVIOUS WORK— STATISTICAL ZERO KNOWLEDGE Blum, Feldman, and Micali
[BFM88] introduced the notion of NIZK in the common randomirs model and showed how to con-
structcomputationaNIZK proof systems for proving a single statement about aRy&hguage. The first
computational NIZK proof system for multiple theorems wasigtructed by Blum, De Santis, Micali,
and Persiano [BDMP91]. Both [BFM88] and [BDMP91] based itidiZzK systems on certain number-
theoretic assumptions (specifically, the hardness of degmluadratic residues modulo a composite num-
ber). Feige, Lapidot, and Shamir [FLS90] showed how to corstomputational NIZK proofs based on
any trapdoor permutation.

The above work, and the plethora of research on NIZK thabfaid, mainly considered NIZK where
the zero-knowledge property was only tie@mputationallythat is, a computationally bounded party can-
not extract any information beyond the correctness of therim being proven. In the casemteractive
zero knowledge, it has long been known that all NP statemzamsin fact be proven usingfatistical
(in fact, perfect) zero knowledge arguments [BC86, BCC&8]t is, even a computationally unbounded
party would not learn anything beyond the correctness oftlttkerem being proven, though we must
assume that the provernly during the execution of the protoc@d computationally bounded to ensure
soundness

Achieving statistical NIZK has been an elusive goal. Theioal work of [BFM88] showed how
an computationally unbounded prover can prove to a polyatiynbounded verifier that a number is
a guadratic-residue, where the zero-knowledge propemeitect. Statistical ZK (including statistical
NIZK?) for any non-trivial language for both proofs and argumewmtse shown to imply the existence
of a one-way function by Ostrovsky [Ost91]. Statistical KIproof systems were further explored by
De Santis, Di Crescenzo, Persiano, and Yung [DDPY98] andli@izh, Sahai, and Vadhan [GSV99],
who gave complete problems for the complexity class astatimith statistical NIZK proofs. How-
ever, these works came far short of working for all NP langsagnd in fact NP-complete languages
cannot have (even interactive) statistical zero-knowdegligpof systems unless the polynomial hierarchy
collapses [For87, AH87] Unless our computational complexity beliefs are wrongg ldaves open only
the possibility of argument systems.

Do there exisstatisticalNIZK arguments for all NP languages? Despite nearly two desaf re-
search on NIZK, the answer to this question was not knowrhiydaper, we answer this question in the
affirmative, based on a number-theoretic complexity assiampntroduced in [BGNO5].

OUR RESULTS Our main results, which we describe in more detail beloer, ar

- Perfect NIZK arguments for any NP language.

- UC-secure perfect NIZK arguments for any NP language,reeggainst adaptive/dynamic adver-
saries.

As a building block we start by constructing a simple and igfit computational NIZK proof of
knowledge for circuit satisfiability, based on the subgrdepision problem introduced in [BGNO5]. To

1Such systems where the soundness holds computationakydwame to be known asrgument systemss opposed to
proof systemsvhere the soundness condition must hold unconditionally.

2We note that the result of [Ost91] is fbionest-verifielSZK, and does not require the simulator to produce Verifier's
random tape, and therefore it includes NIZK, even for thermmm reference string which is not uniform. See also [PS05] fo
an alternative proof.

3see also [GOP98] appendix regarding subtleties of thisfpamal [SV03] for an alternative proof.

2

the best of our knowledge, our techniques are completefgrdiiit from all previous constructions of
NIZK proofs. In this NIZK proof system, the size of the comnreffierence string i€ (k), wherek is the
security parameter; thus it is independent of the size oNRestatements. The NIZK proofs have size
O(k|C]), where|C]| is the size of the circuit. We point out that this is a significeesult in its own right;
the most efficient NIZK proof systems for an NP-complete pgobwith efficient provers previously
known [KP98] required a reference string of size at le@ét?) and the NIZK proofs of size at least
O(|C|k?*). For comparison with the most efficient previous work, ptesse Table 1.

Reference | CRS size| Proof Size Assumption
Kilian-Petrank| O(|C|k*) | O(|C|k?) Trapdoor Permutations
Kilian-Petrank| O(k*) | O(|C|k?) Trapdoor Permutations

| Thispaper | O(k) | O(|C|k) | Specific Number-Theoretic [BGNO3]

Table 1: Comparison of CRS size and NIZK Proof Size for EfficiBrover NIZK Proof systems for
NP-complete language

The NIZK proofs we construct are built using encryptionsha bits in the circuit. However, by a slight
modification to only the reference string, we effectivebrsform the cryptosystem into a perfectly hiding
commitment scheme. With this transformation, we obtainréepeNIZK argument for NP statements.
The result comes in two flavors:

- Perfect NIZK arguments for circuit satisfiability with ‘dinary” soundness.

- Perfect NIZK arguments for circuit satisfiability with gutave soundness, but for circuits of limited
size.

By “ordinary” soundness we mean: for any NP statement, itfisasible to make a valid NIZK argument
for that statement given a random common reference stringieder, in real life we can of course imagine
an adversary that first sees the common reference stringhandchooses the false statement on which
he will attempt to cheat. This is normally handled by an aeptefinition of soundness (e.g. [FLS90]).
We make two observations regarding adaptive soundness:

First, we note that we can obtain full adaptive soundnes<ifr@strict the size of statements to be
proven. Letvsp(k) be the advantage of an adversary trying to decide the supgtecision problem
of [BGNO5]. We can construct NIZK arguments with adaptiverrsdness by limiting the adversary to
picking circuits of size/(k) such that(k)*®vgp (k) is negligible

Second, we observe that our construction of perfect NIZiexgnts (with only “ordinary” soundness)
already achieves a weaker, but sufficient, form of adaptumdness. It turns out, informally speaking,
that if an adversary succeeds in producing an NIZK argumenaffalse statement, it cannot “know”
that it has done so. In other words, if the adversary can effilyi recognize when it has succeeded in
specifying a false statement, theré@nnotproduce a valid proof of that statement.

We are able to formalize the second observation and illigsiisutility by constructing perfect NIZK
arguments that satisfy Canetti's UC definition of secu@gnetti introduced the universal composability
(UC) framework [Can01] as a general method to argue seanirfpyotocols in an arbitrary environment.
It is a strong security definition; in particular it implie®m-malleability and security when arbitrary
protocols are executed concurrently. The notion of nonleahllity was introduced by Dolev, Dwork and

“For instance, it (k) = k¢, then we assume thagp (k) = 27" 6 *5(k), wherev is negligible.

3

Naor [DDNOQ] in the interactive setting for Zero-Knowedlgad Commitment protocols. In the non-
interactive setting, the first non-malleable commitmemt@col was given by Di Crescenzo, Ishai and
Ostrovsky [DIO98]. Sahai introduced the first non-malleallZK proof system, for a single theorem
[Sah99]. De Santis, Di Crescenzo, Ostrovsky, Persiano ahdiShowed how to construct non-malleable
NIZK proofs for polynomially-many theorems. As mentiondabge, the UC framework guarantees a
strong form of non-malleability, and in [CLOS02], it was epged that [DDO 01] achieves UC-security,
but only for the setting witlstaticadvrsaries.

We define NIZK arguments in the UC framework and construct ZKNargument (without any re-
strictions on the size of the NP statements that we provestitefies the UC security definition. From
the theory behind the UC framework, this means that we cag wlwour NIZK argument in arbitrary
settings and maintain security (includiagundneds$. At the same time, we can prove that our UC NIZK
argument enjoys a perfect zero-knowledge property.

We stress that our result holds even in the setting of dynaclaptive adversaries without erasures:
where the adversary can corrupt parties adaptively, and gpouption of a party, it learns the entire
history of the internal state of this party. Prior to our Hgsno NIZK protocol was known to be UC-
secure against dynamic/adaptive adversaries.

1.1 Notation

We model adversarial behavior as non-uniform interactinadabilistic polynomial time algorithms. Un-
less otherwise specified all other algorithms are uniforobpbilistic polynomial time algorithms. A
functionv : N — [0; 1] is negligible if for allVe > 03KVk > K : v(k) < . For two functions
f1, fo : N — [0; 1] we write f1 (k) ~ fo(k) if |f1(k) — f2(k)| is negligible. We writeoutput «— A(input)
for the process of selecting randomnessd settingutput = A(input;r).

2 Non-interactive Zero-Knowledge

Let R be an efficiently computable binary relation. For pdirsw) € R we callz the statement and
the witness. Lef. be the language consisting of statement&in
A proof system for a relatiof® consists of a key generation algorithi) a proverP and a verifief//.
The key generation algorithm produces a common refereniog st The prover takes as inp, x, w)
and checks whethdr:, w) € R. In that case, it produces a proof or argumenbtherwise it outputs
f ai | ur e. The verifier takes as inpyt, =, 7) and outputs 1 if the proof is acceptable and 0 if rejecting
the proof. We call K, P, V') an argument or a proof system f&rif it has the completeness and soundness
properties described below.

COMPLETENESS For all adversaries! we have
Pr |:0' — K(1%); (z,w) « A(0);7 « P(o,2,w) : V(o,z,7) = 1if (z,w) € R} ~ 1.
SOUNDNESS For all adversariesl we have
Pr [a — K(1%); (z,7) «+ A(o) : V(o,z,7) = 0if z ¢ L] ~ 1.

We call (K, P, V') an argument foR? if soundness holds for polynomial time adversaries and afpro
system forR if soundness also holds for computationally unboundedradvies.

4

KNOWLEDGE EXTRACTION. We call(K, P, V) an argument of knowledge or a proof of knowledge for
R if there exists a knowledge extractbr= (£, E») with the properties described below.
For all adversariesl we have

Pr o — K(1%): A(0) = 1] ~ Pr [(g,) — E(1) : A(o) = 1}
For all adversaries! we have

Pr [(a,) — B/ (1%); (z,7) « A(0);w « Ey(o,7,2,7) : V(o,z,7) = 00r (x,w) € R} ~ 1.

ZERO-KNOWLEDGE. We call(K, P, V') a NIZK argument or NIZK proof forR if there exists a simulator
S = (51, S2) with the following zero-knowledge property. For all adwemies.A we have

Pr [a — K(1%) : AP)(g) = 1] ~ Pr [(a,) Sy (1F) : AT @) (0) = 1},

whereS’ (o, 1, z,w) = Sy(o, 7, z) for (z,w) € R and outputs ai | ur e if (z,w) ¢ R.
HONEST PROVER STATE RECONSTRUCTIONIN modeling adaptive security without erasures, the prove
may be corrupted at some time. To handle such cases, we warteiod the zero-knowledge property
such that not only can we simulate an honest party makinga e also want to be able to simulate how
it constructed the proof. In other words, once the party rsuged the adversary will learn the witness
and the randomness used, we want to create convincing rareenso that it looks like the simulated
proof was constructed by an honest prover using this randesin

We say a NIZK argument or proof fak has honest prover state reconstruction if there exists a-sim
lator S = (S, S, S3) so for all. A we have

Pr [a — K(1F) : APRE) (6) = 1} ~ Pr [(a,) = Sy (1%) : ASRE@T) (6) = 1],

where PR(o, z,w) runsr « {0,1}*®); 7 « P(o,z,w;r) and returnsr,r, and whereSR runs
p— {0,1}5®): 1w« Sy(a, 7,25 p); 7 « S3(o, 7,2, w, p) and returnsr, r, both of the oracles outputting
failureif (z,w) ¢ R.

PERFECT COMPLETENESS SOUNDNESS KNOWLEDGE EXTRACTION AND ZERO-KNOWLEDGE. We
speak of perfect completeness, perfect soundness, pknieetedge extraction, perfect zero-knowledge
and perfect honest prover state reconstruction if for geffity large security parameters we have equali-
ties in the respective definitions.

Remark. Inthe paper, we will construct protocols with perfect coatphess, perfect soundness, perfect
zero-knowledge, etc. In doing so we assume the ability tk giements from certain sets, e.gs— Z;.

If we consider the more strict setting, where the partieg balve access to a source of unbiased coin-flips,
we can still pick such elements from these sets in expectga@mial time. Alternatively, we can simply
truncate the algorithms, in which case we do not get perfatipteteness, perfect soundness, etc., but do
get statistical completeness, statistical soundness, etc

3 The Boneh-Goh-Nissim Cryptosystem

Boneh, Goh and Nissim [BGNO5] suggest a cryptosystem wittr@sting homomorphic properties. The
BGN-cryptosystem is the main building block in the paper.

5

BILINEAR GROUPS We use two cyclic group&, G; of ordern, wheren = pq andp, ¢ are primes. We
make use of a bilinear map: G x G — G;. l.e., for allu,v € G anda,b € Z we havee(u®,v’) =
e(u,v)®. We require that(g, g) is a generator ofs; if ¢ is a generator ofs. We also require that group
operations, group membership, sampling of a random gemdatG and the bilinear map be efficiently
computable.

[BGNO5] suggest the following example. Pick large primpeg and letn = pq. Find the smallest
SoOP = /n — 1is prime and equal to 2 modulo 3. Consider the points on thgtielcurvey? = z* + 1
overFFp. This curve has” + 1 = /n points, so it has a subgroup of ordern. We letG, be the order
subgroup off"},, ande : G x G — G, be the modified Weil-pairing.

THE SUBGROUP DECISION PROBLEMLetG be an algorithm that takes a security parameter as input and
outputs(p, ¢, G, Gy, e) such thap, g are primesn = pq andG, G, are descriptions of groups of order
ande : G x G — GGy is a bilinear map.

Let G, be the subgroup df of orderq. The subgroup decision problem is to distinguish elemehts o
G from elements ofz,. LetG,.,, be the generators @ and letA be an adversary. Define

SD-AdVA(L) = Pr[(p,,G,Gr,¢) — G(1)in = pg g, h — Gyen + A, G, G, e,9,h) = 1]
Pt [(p.0.C.Gr6) - GOIm = paig o Gpennh — G\ {1 :
A(n,G,Gy,e,9,h) =1].

Definition 1 The subgroup decision assumption holds for gener@tibthere exists a negligible function
vsp : N — [0; 1] so for any adversaryl we have SD-AdW(1*) < vsp (k) for sufficiently largek.

We remark that we have changed the wording of the subgroupideg@roblem slightly in comparison
with [BGNO5], but the definitions are equivalent.

THE BGN-CRYPTOSYSTEM We generate a public key by runnirg, ¢, G, G,,e) «— G(1%), setting
n = pq, selectingg as a random generator &f andh as a random generator Gf,. The public key is
(n,G, Gy, e, g, h) while the decryption key ig, g.

To encrypt a message of lengthO(log k) using randomness < Z* we compute the ciphertext
c = ¢g™h". To decrypt we compute! = g"h™? = (¢g?)™ and exhaustively search for.

By the subgroup decision assumption, we could indistirtabsy select: to be a random generator of
G as well. In this case, we do not have a cryptosystem but ratperfectly hiding commitment scheme.

4 Non-interactive Zero-Knowledge Proof

4.1 NIZK Proof that ¢ Encrypts O or 1

We will construct a NIZK proof of knowledge for circuit sdisbility in Section 4.2. As a building block
in this NIZK proof, we will encrypt the truth-values of the n@s in the circuit. We need to convince
the verifier that these ciphertexts have been correctly édrnWe therefore start by constructing a NIZK
proof that a BGN-ciphertext has either 0 or 1 as plaintext.

We observe that if a ciphertextcontains 0 or 1, then eitherc G, orcg™' € G, soe(c,cg™!) has
orderg. Write ¢ = g%, thene(c, cg™') = e(g, ¢)*Y~Y. If e(c, cg!) has order;, theny(y — 1) = 0 mod p,
soy = 0 mod p ory = 1 mod p. Our strategy is to show thafc, cg!) has ordeg.

If we know m,w soc = ¢g"h® thenm = 0 impliese(c,cg™) = e(h*, g 'h") = e(h, (g7 h*)?)
and if m = 1 we havee(c,cg™) = e(gh*, h*) = e(h, (gh*)”). So in both cases we getc,cg™!) =
e(h, (¢*™~1h™*)¥). Revealing the two components will immediately convince terifier thate(c, cg™!)
has order;, however may not be zero-knowledge.

Instead, we make a NIZK proof fefc, cg~*) having ordey; as follows. We choose a random exponent
rand compute(c, cg™) = e(h”, (¢ 'h*)*"). We reveal these two components, and must convince
the verifier that the first element, = A" has order;. For this purpose, we show him the element
Sincee(my, g) = e(h”, g) = e(h, g") the verifier can now tell that, has ordey;.

To argue zero-knowledge we change the public key. Insteaddwhgh of orderq, we useh of order
n and selecy so we know the discrete logarithm. Now all ciphertexts amégaély hiding commitments
so we can create all of them as encryptions of 0. We can simtliatrevelation of" because we know
the discrete logarithm.

Common reference string:

' (p7Q7(G> Glae) — g(lk)
2. n=pq

H

3. g random generator dk
4. h random generator df,
5. Returno = (n, G, Gy, e, g, h).

Statement: The statement is an element G. The claim is that there exists a péin, w) € Z? so
m € {0,1} andc = g™h".

Proof: Input (o, ¢, (m, w)).

1. Checke € G,m € {0,1} andc = ¢g"h™. Returnf ai | ur e if check fails.

N

T 1y

r 2m—1pw\wr ! r
3. m =h" T = (" W)Y =g
4. Returnr = (7T1,7T2,7T3)

Verification: Input (o, c, 7 = (m, w2, 73)).

1. Checkc € G andr € G*
2. Checke(c,cg™!) = e(my, m2) ande(ry, g) = e(h, 73)

3. Return 1 if both checks pass, else return 0

Figure 1: NIZK proof of plaintext being zero or one.
Theorem 2 The protocol in Figure 1 is a NIZK proof thate G has plaintexin € {0, 1} with honest
prover state reconstruction.

Proof. PERFECT COMPLETENESS Let z be the secret discrete logarithm #0 = g¢*. We
know thatc = ¢™h*, wherem € {0,1}. This gives use(c,cg™!) = e(gmtow, gm 1Tow) =

7

e(g, g)mm-DFEwEm_ltaw) _ (g gyre@moltawjurt _ o(pr (g2mlpwyer—y — o(r,). Furthermore,
e(m,g) = e(h”, g) = e(h, g") = e(h, m3).

PERFECT SOUNDNESS Let againxz be the secret discrete logarithm 8o= ¢*. Considerc, 7 so
e(c,cg™) = e(my, m) ande(my, g) = e(h, m3). There exist < m < p andw € Z soc = g™h".

We havee(r}, g) = e(m,) = e(h,m3)? = e(h?,m3) = e(1,73) = 1. Therefore;r; must have order
1 or ¢q. This means there exists somsom; = h'.

As before we have(c, cg™!) = e(g, g)m(m-DHaw(@m=taw) At the same time we havéc, cg™!) =
e(my,) = e(h", my) and therefore(c, cg™1)? = e(h", m3) = e(1,m) = 1. Som(m — 1) + zw((2m —

1) + zw) = 0 mod n, andp|z tells usm(m — 1) = 0 mod p. Since0 < m < p this impliesm € {0, 1}.
So there does indeed existe {0, 1} andw soc = g"h".

COMPUTATIONAL ZERO-KNOWLEDGE AND HONEST PROVER STATE RECONSTRUCTIQNFirst, we de-
scribe the simulatof = (.5, S5, S3). 51 runs the algorithm for generating the common referencagstri
with the following modification. It selecté to be a random generator fé and setsy = h”, where
~ « Z . During the generation of the common reference string tmeilsitor also learnsg, ¢. S; outputs
(07 T) = ((nv G, G, 9 h’)v (p, q, 7))

S, on input (o, 7, ¢) simulates a proof as follows. Eithercg™!, or both are generators f@. The
simulator picks «— Z*. If ¢ is a generator it sets, = ¢, m, = (cg~')" andms = «}. If cis not a
generator for the group, then the simulator sgts- (cg™!)", m = ¢, 75 = 7}.

Sy is given the witnesgm, w) soc = ¢™h" andm € {0,1} and wishes to reconstruct how the
prover could have come up with the proof Since it knowsy it can writec = hY™*%, Consider first
the case where is a generator fofs, then we haveyed(n,ym + w) = 1. So we can write the proof
asm = hrOmtw) g, = (g2melpwyelOmtw)™t o — grmtw) \We returnr(ym 4+ w) mod n as the
prover’s simulated randomness that would cause it to p@duln case: is not a generator, we know that
cg~' is a generator and we write the proofas= h"(0(n-Dtw)) — (g2m=1pwywlrOim=—"1tw)™" . —
g"0m=D+w) and return:(y(m — 1) + w) mod n as the prover’s simulated randomness.

To argue computational zero-knowledge we consider a hgxperiment, where we usg to generate
the common reference strilag but implement the simulation oracle using the real pravewe first show
that for all adversariegl we have

| Pr |0 «— K(lk) : APR(”"")(J) = 1] — Pr |:(O', T) Sl(lk) : APR(U"")(U) = 1| < vsp(k),

where PR(o, (0,¢), (m,w)) runsr «— Z:;7 «— P(o,(0o,c),(m,w);r) and returnsr, r, and outputs
failureifm¢ {0,1} orc# g™h".

The only difference between the two experiments is the &oich. In one casep is a random
generator ofG in the other case it is a generator @. We do not use the knowledge pfq or the
discrete logarithm of with respect ta: in either experiment. Consider now a subgroup decisionlprob
challenge(n, G, Gy, e, g, h). The challenges correspond exactly to common referenireystproduced
by respectivelyk” andS;. The advantage ofl is therefore bounded by (k).

Next, we go from the hybrid experiment to the simulation. &bt4d we have

Pr [(o—, 7) — Si(1%) : APRE@) (5) = 1] —Pr [(g, 7) — Si(1%) : ASROT) (0) = 1],
where SR runsp «— Z:;m «— Sy(o,7,(0,¢);p);r «— Ss(o,7,(0,c),(m,w), p) and returnsr,r, or
failureifm¢ {0,1}orc # g™h".

A simulated proofr = (7,72, m3) uniquely defines the randomnesss Z* somr; = A", and it is
indeed this randomnesg outputs. We therefore just need to argue that simulatedfpirmve the same

8

distribution as real proofs in the hybrid experiment. Inecass a generator fofz, S, selectsr «— Z
at random and set; = ¢", which gives us a random generator@f In a real prover’s proof is also
a random generator @& whenh has ordem. Sincenr; uniquely definesr, andns, we see that the two
distributions are identical. ¥ is not a generator fo, thencg—! and since a simulated, = (cg~!)" for
r « Z; is arandom generator &f, we can use a similar argument to show that also in this caggehe
perfect simulation.

O

4.2 NIZK Proof of Knowledge for Circuit Satisfiability

Suppose we have a circditand want to prove that there existssoC'(w) = 1. Since any circuit can be
linearly reduced to a circuit built only from NAND-gates, wal without loss of generality focus on this
simpler case.

To prove satisfiability of” we encrypt the bit value of each wire, when the circuit is estdd on the
input bits inw. Using the NIZK proof in Figure 1 it is straightforward to pethat all ciphertexts contain
a plaintext in{0,1}. We form the output ciphertext with randomnésso it is straightforward for the
verifier to check that the output of the circuit is 1.

The only thing left is to prove that all the encrypted outpires do indeed evaluate the NAND-gates
correctly. We make the following observation, leaving thegf to the reader.

Lemma 3 Letbg, by, by € {0,1}.
bo + b1 + 20, — 2 € {0, 1} if and only if b, = by NAND b;.

Given ciphertextsy, c1, co containing plaintextdg, b;, b, we can use the homomorphic properties to
form the ciphertextcocicag™2. A NIZK proof that cocicig™ contains a plaintext if0, 1} implies
by = by NAND by, as required. We make such a NIZK proof for each NAND-gat&edircuit.

Theorem 4 The protocol in Figure 2 is a NIZK proof of knowledge of citcsiatisfiability with honest
prover state reconstruction.

Proof. PERFECT COMPLETENESS Knowing a satisfying assignmeant for C', we can compute truth-

values for all wires that are consistent with the NAND-gatied make the circuit have 1 as output. Perfect
completeness follows from the perfect completeness of {@&droofs of plaintexts being either O or 1.

PERFECT SOUNDNESS Since we prove for each wire that the encrypted plaintesitiser O or 1, we have
made a perfectly binding commitment to a bit for each wire.LBynma 3, the NIZK proofs for the gates
imply that all encrypted wire-bits respect the NAND-gatémally, we know that the output ciphertext is
g, So the output bitis 1.

PERFECT KNOWLEDGE EXTRACTION The extractor sets up the common reference string by rgrthim
key generator for the NIZK proof. In the process it leapng. This allows it to decrypt the ciphertexts
containing the input-bits. Since the NIZK proof has perfmtindness, these input bits must correspond
to a witnessy soC'(w) = 1.

COMPUTATIONAL ZERO-KNOWLEDGE AND HONEST PROVER STATE RECONSTRUCTIQN_et S; be the
simulator of the NIZK proof for a ciphertext having 0 or 1 asiptext. We use the same algorithm to
create the common reference string for simulation of cirsatisfiability NIZK proofs. In other words,
bothg, h are random generators Gfand the simulator knows € Z* sog = h".

9

Common reference string:

1. (p,q,G,Gy,e) «— G(1*)

2. n=pq

3. g random generator @&

4. h random generator df,

5. Returno = (n, G, Gy, e, g, h).

Statement: The statement is a circuit built from NAND-gates. The claim is that there exist input
bitsw soC'(w) = 1.

Proof: The prover has a witness consisting of input bits s6'(w) = 1.

1. Extendw to contain the bits of all wires in the circuit.

2. Encrypt each bit; asc; = g“*h", with r; «— Z.

3. For all¢; make a NIZK proof of existence af;, r; sow; = {0,1} and¢; = g*ih".
4

. For the output of the circuit we let the ciphertextdg,.. = ¢, i.e., an easily verifiable
encryption of 1.

5. For all NAND-gates, we do the following. We have input aptextsc,, c; and output
ciphertexts:,. We wish to prove the existence of, w, w, € {0,1} andrq, ry, 73 SO
wy = wo NAND w; andc; = g“7h"7. To do so we make a NIZK proof that there exist
m,r with m € {0,1} socycicag™2 = g™h'.

6. Returnt consisting of all the ciphertexts and NIZK proofs.
Verification: The verifier given a circui”’ and a proofr.
1. Check that all wires have a corresponding ciphertext hatithe output wire’s ciphertext]
iSg.
2. Check that all ciphertexts have a NIZK proof of the plaxnteeing O or 1.
3. Check that all NAND-gates have a valid NIZK proof of conapice.
4. Return 1 if all checks pass, else return O.

Figure 2: NIZK proof for circuit satisfiability.

S, starts by choosing the ciphertexts for the wires: The oukfg gets the ciphertext. For all other
wires, it selects a ciphertext = h™ with r; — Z . Later, whenS; learns a witness), it can compute the
corresponding messages € {0, 1} for all these ciphertexts, and open them:as gmiprimma

For all these ciphertextS, simulates a NIZK proof that they contain 0 or 1 as the plaintédso
for all NAND-gates with input wires,, i; and output wire, it simulates a NIZK proof that;, ¢;, ¢, g >
contains a plaintextthat is O or 1. Later, upon learning thieegsw, Ss; knows the plaintexts);, < {0, 1}
and randomizers;, — wiﬂfl that constitute a satisfactory encryption of the wires oatsfied circuit.

For each NIZK proof of a plaintext being O or £; can run the honest prover state reconstructor to get

convincing randomness that would make the prover produsetbof.

10

To prove that this is a good simulation, we first consider arispaxperiment where we use the simu-
lator to create the common reference string, but use thereaeér to create the NIZK proofs. As in the
proof of Theorem 2, we can argue that for all adversadesge have

1Pt |0 K(1%) : APRO) () = 1] —Pr [(o—, 7) — S1(1F) : APR@) (5) = 1]| < wsp(k),

wherePR(o, C,w) runst «— P(o, C,w;r) and returnsr, r.

Next, we modify the way we create proofs. Instead of runnivgyreal prover, we create the encryp-
tions of the wires:; as the real prover, but simulate the NIZK proofs of O or 1 bemg plaintext and
simulate the NIZK proofs for the NAND-gates as well. ¢ Frora gnoof of Theorem 2 we get that this
modification does not increas&s probability of outputting 1. We have

Pr [(a, 7) — Sy (1%) : APEE) () = 1} =Pr [(a, 7) — Sy(1F) : APSE@T)(6) = 1],

where PSR(o, 7, C,w) creates ciphertexts correctly but simulates NIZK proofs for 0- or 1-plaintexts
and the randomness involved, and outgus | ur e if C'(w) # 1.
Finally, we go to the full simulation. For all we have

Pr [(a, 7) — Sy (1F) : APSE@T) (6) = 1} =Pr [(a, 7) — S1(1%) : ASEET) () = 1],

where SR runsm «— Sy(o,7,C;p);r «— Ss(o,7,C,w, p) and returnsr, r, and outputd ai | ur e if
C(w) # 1. The only difference here is in the way we create the cipkestdut since they are perfectly
hiding, we cannot distinguish the two experiments.

O

5 Non-interactive Statistical Zero-Knowledge Argument

In this section, we construct a NIZK argument of circuit stdibility with perfect zero-knowledge. The
main idea is a simple modification of the NIZK proof for cirtgatisfiability in Figure 2. Instead of
choosingh of orderq, we leth be a random generator 6f. This wayg™h" is no longer an encryption
of m, but a perfectly hiding commitment te. It corresponds to using; restricted to the first half of its
outputs as key generator. Completeness is obvious anddbégfrTheorem 4 reveals that the argument
is perfect zero-knowledge.

Soundness is trickier though. Sing&h™ is not statistically binding, we cannot prove soundness as
we did in Theorem 4. Suppose we have circuii L generated independently of the common reference
string. We can argue that no adversary can distinguigh@rordern from anh of orderq, and therefore
has negligible probability of making an acceptable NIZKuargent.

However, if the common reference string is chosen first, theradversary may choose a circait
that depends on the common reference string. For instareceamnot exclude the possibility that it could
create an acceptable NIZK argument fohaving order smaller than. This is a false statement, since
h has ordemn. However, if we try to argue soundness by switching the esfee string to contaih with
orderq, then the statement is suddenly true and it might be possildesate such a NIZK argument.

In order to overcome this problem we tighten the subgrougsastassumption. We show that if all
adversaries have less théfk)“*v(k) chance of distinguishing generating eithe6 or G, then all
adversaries have less thafk) chance of making an acceptable argument for an unsatisfiablét of
size/l(k). This limits the size of the circuits for which we can proveisdness.

11

Let S, be the simulatorS; from the proof of Theorem 4 restricted to its first output. Wevénthe
following theorem

Theorem 5 (S,, P, V) is a NIZK argument for circuit satisfiability for circuits cfize at most (k) if
vsp(k) < £(k)~*®v(k) for some negligible function.

Proof. As in the proof of Theorem 4, we can show that the protocol feafept completeness. Perfect
zero-knowledge and honest prover state reconstructibmsifrom the proof of Theorem 4. This leaves
us with the question of soundness.

NON-ADAPTIVE COMPUTATIONAL SOUNDNESS We first demonstrate that the NIZK argument has non-
adaptive soundness, i.e., all adversaries have negligrbleability of proving a false statement if they
choose this statement independently of the common refergnog.

Consider any circuif’ with no satisfying witness and a polynomial time adversdrhat with proba-
bility So-Adv 4(1*) breaks the soundness property. In other wartlis given a common reference string
and proceeds to output a valid argumentWe will construct an adversaiy that decides the subgroup
decision problem with probability SD-Ag\1*) =So-Adv,(1%).

B gets a challengén, G, Gy, e, g, h) and has to decide whethkehas order or not. This corresponds
to a common reference string generated by eith@r S,. So we can give it tod and output 1 if and only
if A forms a valid argument fof’ being true.

In caseh has ordem, the common reference string produced®ys distributed exactly as in a real
argument. The adversary therefore has probability So-Ath) of generating an acceptable argument.

On the other hand, in cagehas order; the common reference string produced®is distributed as
the reference string in the previously described NIZK pr&hce the NIZK proof has perfect soundness,
the probability of.A producing a valid argument is O.

COMPUTATIONAL SOUNDNESS Consider now an adversa@/with probability So-Ady, (1) for break-
ing the soundness property. L@tbe the unsatisfiable circuit of size at mégt) that is most likely to
be used byA in a valid NIZK argument. As argued in the previous paragrdpé probability ofA se-
lecting this circuit when it sees the reference string andinggan acceptable NIZK argument is at most
SD-Adv(1¥). There are at mog(k)“® circuits of size/(k). Summing over all possible circuits we have
So-Advy(1%) < 0(k) Pugp(k) < v(k).

0

6 Universally Composable Non-interactive Zero-Knowledge

6.1 Modeling Non-interactive Zero-Knowledge Arguments

The universal composability (UC) framework (see [CanOtJdaletailed description) is a strong security
model capturing security of a protocol under concurrenteen of arbitrary protocols. We model all
other things not directly related to the protocol througlolypomial time environment. The environment
can at its own choosing give inputs to the parties runningptteéocol, and according to the protocol
specification the parties can give outputs to the environminaddition, there is an adversan that
attacks the protocol.4 can communicate freely with the environment. It can alsougrparties, in
which case it learns the entire history of that party and gammplete control over the actions of this
party.

To model security we use a simulation paradigm. We spec#yfaimctionality 7 that the protocol
should realize. The functionalitf can be seen as a trusted party that handles the entire prexacnition

12

and tells the parties what they would output if they exectitedprotocol correctly. In the ideal process,
the parties simply pass on inputs from environmengtand whenever receiving a message fréthey
output it to the environment. In the ideal process, we havie@al process adversa S does not learn
the content of messages sent frgnto the parties, but is in control of when, if ever, a messagmf{f

is delivered to the designated parycan corrupt parties, at the time of corruption it will leathiaputs
the party has received and all outputs it has sent to theamwient. As the real world adversaty,can
freely communicate with the environment.

We now compare these two models and say that it is secure ifvidament can distinguish between
the two worlds. This means, the protocol is secure, if for danmynning in the real world, there exists an
S running in the ideal process with so no environment can distinguish between the two worlds.

The standard zero-knowledge functionalify, as defined in [Can01] goes as follows: On input
(prove,P,V, sid, z, w) from P the functionality 7, checks thafx,w) € R and in that case sends
(proof,P, V, sid, z) to V. It is thus part of the model that the prover will send the prtooa particular
receiver and that this receiver will learn who the provefisis is a very reasonable model when we talk
about interactive NIZK proofs of knowledge. We remark thathveonly small modifications in the UC
NIZK argument that we are about to suggest we could secuealize this functionality.

However, when we talk about NIZK arguments we do not alwaysxkwho is going to receive the
NIZK argument. We simply create a strimg which is the NIZK argument. We may create this string in
advance and later decide to whom to send it. Furthermoréamyywho intercepts the stringcan verify
the truth of the statement and can use the string to convitie@about the truth of the statement. The
NIZK argument is not deniable; quite on the contrary it i;isferable. For this reason, and because the
protocol and the security proof becomes a little simpler,swggest a different functionalitfy;,x to
capture the essence of NIZK arguments.

Parameterized with relatioR and running with partie#’, . . ., P, and adversang.

Proof: On input prove,sid, ssid, x,w) from party P ignore if (z, w) ¢ R. Send prove,r) to S and
wait for answer groof, 7). Upon receiving the answer stofe, 7) and send
(proof, sid, ssid, w) to P.

Verification: On input {erify, sid, ssid, x,) from V' check whethe(z, 7) is stored. If not send
(verify,x,) to S and wait for an answer(tnessw). Upon receiving of the answer, check
whether(z, w) € R and in that case, stofe,). If (z, 7) has been stored return
(verification,sid, ssid,1) toV, else return\erification,sid, ssid,0).

Figure 3: NIZK functionalityFy;z k.

6.2 Tools

We will need a few cryptographic tools to securely realize 7 .

PERFECTLY HIDING COMMITMENT SCHEME WITH EXTRACTION A perfectly hiding commitment
scheme with extraction (first used in [CKOSO01] in the settrigoerfectly hiding non-malleable com-
mitment) has the following property. We can run a key gememaalgorithmhk «— Kstat(1*) to get a
hiding keyhk, or we can alternatively run a key generation algorithi, 2k) «— Kextract(1*) in which
case we get both a hiding kéy: and an extraction keyk. (K stat,com) constitute a perfectly hiding

13

commitment scheme. On the other haf¥dextract, com, dec) constitute a public key cryptosystem with
errorless decryption, i.e.,

Pr [(hk, wk) «— Kextract(1%) : ¥(m,r) : decy(compg(m;r)) = m| ~ 1.

We demand that no adversafycan distinguish between the two key generation algoritirhss implies
that the cryptosystem is semantically secure against aohplsgntext attack since the perfectly hiding
commitment does not reveal what the message is.

We have already seen one example of a perfectly hiding camenit scheme with extraction. We can
set up the BGN-cryptosystem with a public key, whérkeas full ordern. In this case the cryptosystem
is a perfectly hiding commitment scheme. We can also set witip ~ having orderg, in this case the
cryptosystem has errorless decryption. The subgroupidaalsassumption implies that no adversary can
distinguish commitment keys from cryptosystem keys.

PSEUDORANDOM CRYPTOSYSTEM A cryptosystemi Kpseudo, E/, D) has pseudorandom ciphertexts of
length/z (k) if for all adversaries4d we have

Pr [(pk, dk) — Kpseudo(1¥) : AP0 (pk) = 1}

~ Pr [(pk, dk) «— Kpseudo(1¥) : Af+O(pk) = A(c) = 1],

where R, (m) runsc « {0,1}*#*) and returnse. We require that the cryptosystem have errorless
decryption as defined earlier.

The BGN-cryptosystem serves as an example of a pseudoracigptosystem. It is also known that
trapdoor permutations imply pseudorandom cryptosystamsan use the Goldreich-Levin hard-core bit
[GL89] of a trapdoor permutation to make a one-time pad.

TAG-BASED SIMULATION-SOUND TRAPDOOR COMMITMENTA tag-based commitment scheme has four
algorithms. The key generation algorithiitom produces a commitment key as well as a trapdoor key
tk. There is a commitment algorithm that takes as input the coment keyck, a message: and any
tagtag and outputs a commitment= commit.x(m, tag;). To open a commitmentwe revealmn, tag
and the randomness Anybody can now verify whether indeed= commit.(m, tag; r). As usual, the
commitment scheme must be both hiding and binding.

In addition, to these two algorithms there are also a couplepdoor algorithm&'com, Topen that
allow us to create an equivocal commitment and later opencthinmitment to any value we prefer. We
create an equivocal commitment and an equivocation key.ag) «— Tcom. 4 (tag). Later we can
open it to any message asr < Topen, .(c, m, tag), such that = commit(m, tag; r). We require
that equivocal commitments and openings are indistingilghfrom real openings. For all adversariés
we have

Pr [(ck,tk) — Kcom(1%) : ARG (ck) = 1] ~ Pr [(ck,tk) — Kcom(1¥) : A0 (ck) = 1],

where R(m,tag) returns a randomly selected randomizer a@¥dm,tag) computes(c,ek) «—
Tcomey, i (m, tag); r < Topen,, (¢, m, tag) and returns and.A does not submit the sameyg twice to
the oracle.

The tag-based simulation soundness property is based artloa of simulation soundness intro-
duced by Sahai [Sah99] for NIZK proofs. It means that a commaitt usinggag remains binding even if

14

we have made equivocations for commitments using diffeeegd. For all adversarie4 we have
Pr [(Cku tk) — K(1); (c,tag, mo, ro, my,11) — A%V (ck) :
¢ = commit(myg, tag; ro) = commit.,(mq, tag; 1) andmgy # m; andtag ¢ Q| =~ 0,

where O(commit,tag) computes(c,ek) « Tcome(tag), returnsc and stores(c,tag, ek), and
O(open, c, m, tag) returnsr « Topen, ., (c,m,tag) if (c,tag,ek) has been stored, and wheggis
the list of tags for which equivocal commitments have beedenizy O.

Tag-based simulation-sound trapdoor commitment wereifirglicitly defined in [DIO98], and ex-
plicitly in [CKOSO01, MYO04]. The notion of simulation soundss for NIZK [Sah99] will be critical to us
here, as well (see below). Aside from [DIO98, Sah99, CKOS0104], other constructions of tag-based
simulation sound commitments or schemes that can easitpbsformed into tag-based simulation-sound
commitments have appeared in [DD@L, CLOS02, GMY03, DG03, Gro04, Gro05].

STRONG ONETIME SIGNATURES. We remind the reader that strong one-time signatures alowd-
versary to ask an oracle for a signature on one arbitrary agessThen it must be infeasible to forge a
signature on any different message and also infeasiblen@ ag with a different signature on the same
message. One-time signatures can be constructed from apéanctions.

6.3 UC NIZK

The standard technique to prove that a protocol securelizesaa functionality in the UC framework
is to show that the ideal model adversaycan simulate everything that happens on top of the ideal
functionality. In our case, there are two tricky parts. Eits may learn that a stateme6t has been
proved and has to simulate a UC NIZK argumeniithout knowing the witness. Furthermore, if this
honest prover is corrupted later then we learn the witnessioigt now simulate the randomness of the
prover that would lead it to produce The second problem is that whenevesees an acceptable UC
NIZK argumentr for a statement’, then an honest verifidr will accept. We must therefore, input a
witnessw to Fy ;7 SO it can instruct” to accept.

The main idea in overcoming these hurdles is to commit to thieessw and make a NIZK proof
that indeed we have committed to a withnesso C'(w) = 1. We must show that our NIZK proof has a
simulation-soundness property (see above) to ensurerhgatroe statements can be proven. On the other
hand, if the NIZK proof has the honest prover state reconstm property, then we can simulate NIZK
proofs and the prover’'s random coins when forming this NI1Z&gd. This leaves us with the commitment
scheme. On one hand, when we simulate UC NIZK arguments wetwamake equivocal commitments
that can be opened to anything since we do not know the wityeis©n the other hand, when we see a
UC NIZK argument that we did not construct ourselves we warlid able to extract the witness, since
we have to give it tdF vz k.

We will construct such a commitment scheme from the toolsifipd in the previous section. We use
a tag-based simulation-sound trapdoor commitment schemm@mmit to each bit ofv. If w has lengti
this gives us commitments, . . ., ¢,. For honest provers we can use the trapdoorkeyg create equivocal
commitments that can be opened to any bit we like. This esalddo simulate the commitments of the
honest provers, and when we leasrupon corruption, we can simulate the randomness they cavd h
used to commit to the witness

We still have an extraction problem, it is not clear that wa eatract a witness from commitments
created by a malicious adversary. To solve this problem e to encrypt the openings of the com-

15

mitments. Now we can extract witnesses, but we have reinted the problem of equivocation. In a
simulated commitment we may know two different openings ebmmitmentc; to respectively 0 and
1, however, if we encrypt the opening then we are stuck with jpossible opening. This is where the
pseudorandomness property of the cryptosystem comes dyh#e can simply make two encryptions,
one of an opening to 0 and one of an opening to 1. Since thertgtte are pseudorandom, we can open
the ciphertext containing the opening we want and claimtti@bther ciphertext was chosen as a random
string. To recap, the idea so far to commit to athig to make a commitment to this bit, and create a
ciphertextc; ;, containing an opening of to b, while choosing:; ;_, as a random string.

The commitment scheme is equivocable, however, again wé lpeusareful that we can extract a
message from an adversarial commitment. The problem issthaé we equivocate commitments for
honest provers it may be the case that the adversary cangareduivocable commitments. This means,
the adversary can produce some simulation sound commitenenid encryptions; o, ¢;; of openings
to respectively 0 and 1. To resolve this issue we will selkettags for the commitments in a way so
the adversary is forced to use a tag that has not been usedkanaquivocable commitment. When
an honest prover is making a commitment, we will select keysafstrong one-time signature scheme
(vk, sk) « Ksign(1¥). We will usetag = (vk,C) when making the commitment. The verification
key vk will be published together with the commitment, and we wigjrsthe commitment (as well as
something else) using this key. Since the adversary caonge fsignatures, it must use a different tag,
and therefore the commitment is binding and only one of tpaeitexts can contain an opening®f
This allows us to establish simulation soundness.

If the adversary corrupts a party that has uskcarlier, then it may indeed sign messages using
and can therefore usé: in the tag for commitments. However, since we also includestatement’ in
the tag for the commitment using:, the adversary can only create an equivocable commitmenti@
NIZK argument for the same statemerit We will observe that in this particular case we do not need to
extract the witness), because we can get it during the corruption of the prover.

Finally, in order to make the UC NIZK argument perfect zermwledge we wrap all the commitments
¢; and the ciphertexts , inside a perfectly hiding commitmeatIn the simulation, however, we generate
the key for this commitment scheme in a way such that it iss$ta cryptosystem and we can extract the
plaintext. We note that this step is only added to make the WKKNirgument perfect zero-knowledge, it
can be omitted if perfect zero-knowledge is not needed.

The resulting protocol can be seen in Figure 4. We use theiontaom Section 6.2.

Theorem 6 The protocol in Figure 6 securely realiz€s,; x in the Fors-model.

Proof. Let A be any adversary. We will describe an ideal adversasp no environment can distinguish
whether it is running in theF-rs-hybrid model with partied”;, . .., P, and adversaryl or in the ideal
process WithFy;zx, S and dummy partie®,, . .., P,.

S starts by invoking a copy ofl. It will run a simulated interaction ofd, the parties and the envi-
ronment. In particular, whenever the simulag¢d@¢ommunicates with the environmetjust passes this
information along. And whenevet corrupts a party?;, S corrupts the corresponding dummy pafy
SIMULATING Fcgrs. S chooses the common reference string in the following waselicts(hk, xk) «—
Kextract(1%); (ck,tk) «— Kcom(1%); (pk,dk) « Kpseudo(1¥) and(o,7) < S;(1*). This meansS
is capable of extracting plaintext committed undér, able to create and equivocate simulation sound
trapdoor commitments, decrypt pseudorandom ciphertexdssanulate NIZK proofs and make honest
prover state reconstruction of NIZK proofs.

16

CRS generation:

1. hk «— Kstat(1¥)

2. (ck,tk) «— Kcom(1¥)

3. (pk,dk) «— Kpseudo(1%)
4. (o,7) « Sy (1%)

5. Return® = (hk, ck, pk, o)

Statement: A circuit C' and a claim that there exists input wiressoC'(w) = 1.
Proof: On input(3, C, w).

1. CheckC(w) = 1 and returrf ai | ur e if not

2. (vk,sk) — Ksign(1¥)

3. Fori = 1to/ selectr; at random and let; = commit(w;, (vk, C); ;)
4

. Fori = 1to ¢ selectR,, at random and set ,,, = E,.(r;; R.,) and choose; ;_,, as a
random string.

5. Choose at random and let = comp(c1, ¢10, €11, - - -, Co, Co0, Co1;T)

6. Create a NIZK proofr for the statement that there existsuch thatC(w) = 1 and there
exists randomness sthas been produced as described in steps 3,4 and 5.

7. s« signg (C, vk, c,)
8. Returnll = (vk,c,m,s)
Verification: On input(X, C, II)
1. Parsdl = (vk,c,m,s)
2. Verify thats is a signature o(C, vk, ¢, 7) undervk.

3. Verify the proofr
4. Returnl if all checks work out, else return O

Figure 4: UC NIZK argument.

Common reference string: On input étart,sid) runY «— K (1%).
Send €rs,sid, X) to all parties and halt.

Figure 5: Protocol for UC NIZK common reference string getien.

LetY = (hk, ck, pk, o). S simulatesFcrs sending €rs,sid, ¥) to all parties. Wheneved decides to
deliver such a message to a pafty S will simulate P; receiving this string.

SIMULATING UNCORRUPTED PROVERS SupposeS receives roof,sid, ssid, C') from Fnzr. This
means that some dummy parfy received input §rove,sid, ssid, C, w), whereC(w) = 1. We must
simulate the output a real parfywould make, however, we may not knaw

17

Proof: Party P waits until receiving €rs,sid,) from Fcrs.
On input prove,sid, ssid, C,w) runIl « P(X, C,w). Output proof,sid, ssid, 7).

Verification: PartyV waits until receiving €rs,sid,) from F¢gs.
On input {erify,sid, ssid, C, 1) runb < V (3, C, II). Output {erification,sid, ssid, b).

Figure 6: Protocol for UC NIZK argument.

We create(vk, sk) «— Ksign(1¥). Lettag = (vk,C) and form equivocal commitments;, ek) «
Tcomyy, «(tag). We simulate openings of the's to both 0 and 1. For all = 1to ¢ andb = 0 to
1 computep;, « Topen, (i, b, tag). Selectr;;, at random and sef;, = Ep(pip;7i). Compute
¢ = Epg(ci,c10.¢11,- .-, ¢0,¢o0,c01;7) for a randomr. Choose randomnegsand simulate the NIZK
proof ast — Sy(o, 7, (C, vk, ¢); p). Finally, create a one-time signatwen C, vk, ¢, .

LetIl = (vk, ¢, 7, s) and return groof,I1) to Fn ;7. Fnrzx Subsequently sendproof,sid, ssid, I1)
to P and we deliver this message so it gets output to the envirohme

SIMULATING UNCORRUPTED VERIFIERS SupposeS receives Yerify ,C, IT) from Fy;zx. This means
an honest dummy partly has receivedverify ,sid, ssid, C, II) from the environment.

S checks the UC NIZK argument, «— V (X, C,II). If invalid, it sends fitnessno wi t ness) to
Fnizx and delivers the consequent messaggification, sid, ssid, 0) to V that outputs this rejection to
the environment.

On the other hand, if the UC NIZK argument is valid we must érgxtract a witness. If C' has ever
been proved by an honest prover that was later corrupted,ilvknew the witness and do not need to
run the following extraction procedure. If the witness i¢ kiwown alreadyS uses the extraction keyk
to extract a plaintext;, ¢, o, 11, - - -, e, ce0, ce,1 fromc. Since it knows the decryption ke, it can then
decrypt allc; ,. This gives us plaintexts,; ,. We check whethet; = Tcom,. (b, (vk, C'); p;) and in that
caseb is a possible candidate for tleh bit of w.

If successful in all of thisS letsw be these bits. However, if any of the bits are ambiguous, i.e.
w; could be both 0 and 1, or if any of them are inextractable, theatsw = no w t ness. It sends
(witnessw) to Fuzzx. It delivers the resulting output messagétahat outputs it to the environment.

We will later argue that the probability of the UC NIZK argumdeing valid, yet not being able to
supply a good witness t@y;~x is negligible. That means with overwhelming probability imput a
valid withnessw to Fn ;7 Whenll is an acceptable UC NIZK argument for satisfiability(of

SIMULATING CORRUPTION. Suppose a simulated par&y is corrupted by4. Then we have to simulate
the transcript of?,. We start by corrupting®, thereby learning all UC NIZK arguments it has verified. It
is straightforward to simulatg;’s internal tapes when running these verification processes

We also learn all statementsthat it has proved together with the corresponding witregsdrecall,
the UC NIZK argument$] have been provided hy. Here is how we can simulate the randomness that
would leadP; to produce such a UC NIZK argumelit SinceS created:;, c; o, ¢; 1 such that; , contains
a 0-opening of;; andc; ; contains a 1-opening af it can produce good looking randomness to claim
that it committed tav;. This also gives us convincing randomness for constructiitfhese commitments
and for producing the ciphertext so we can run the honest prover state reconstruction #igof; to
simulate randomness that would lead the prover to produce

HYBRIDS. We wish to argue that no environment can distinguish betviee adversaryl running with
parties executing the UC NIZK protocol in tif&. zs-hybrid model and the ideal adversa$yrunning in

18

the Fy1zx-hybrid model with dummy parties. In order to do so we definesa hybrid experiments and
show that the environment cannot distinguish between aityeoih.

HO: This is theFqrs-hybrid model running with adversary and parties”,, . . ., B,.

H1: We modify HO by running hk, zk) <« Kextract(1¥) instead ofhk «— Kstat(1*) when generating
the common reference string

HO and H1 are indistinguishable, because otherwise we dmuild a distinguisher that could tell
which key generation algorithm creatgé.

H2: We modify H1 in the way an uncorrupted provErcreates commitments, ..., c¢. Lettag =
(vk,C) as chosen in the proof. Instead of creatingby selectingr; at random and setting
¢; = commit.(w;,tag;r;), we create an equivocal commitmemnf, ek) «— Tcom. 4 (tag) and
subsequently produce randomness, < Topen,, .(c;, w;, tag). We continue the proof using
Piw, INStead ofr;.

H1 and H2 are indistinguishable. If they were distinguidbathhen we could distinguish real com-
mitments and openings from equivocal commitments and egated openings, in violation of the
definition of trapdoor commitments.

H3: In H3, we make another modification to the procedure follovsgdan honest prover. We are
already creating; as an equivocal commitment and equivocating it with randesap,; ,,, that
would open it to containy;. We run the equivocation procedure once more to also create c
vincing randomness that would explainas a commitment t@ — w;. This means, we compute
Pii—w; — Topeny .(ci,1 — w;, tag). Instead of selecting;;_.,, as a random string, we choose

to encryptp; 1w, asc;1—w;, = Epk(pii—w;: Ti1—w,;) fOr a randomly chosen;;_,,,. We still pretend
thatc; ;_,, Is a randomly chosen string when we carry out the NIZK proof if the prover is ever
corrupted.

H2 and H3 are indistinguishable because of the pseudorameksrproperty of the cryptosystem.
Suppose we could distinguish H2 and H3, then we can disthigoetween an encryption oracle
and an oracle that supplies randomly chosen strings.

H4: Consider the case where an honest partgceives\erify,sid, ssid, C, IT). Supposél is indeed an
acceptable UC NIZK argument and the one-time signaturensehteas verification keyk. If vk
was selected by an honest party in making a UC NIZK argumbistpiarty is still uncorrupted, yet
C, 11 differ from the UC NIZK argument this honest party producgen we outpuf ai | ur e to
the environment.

To argue that H3 and H4 are indistinguishable we need to shawthe probability of failure is
negligible. This follows from the fact that outputtirfcai | ur e corresponds to a forgery of a
strong one-time signature.

H5: Again, we look at the case of an uncorrupted verifier that hasaeptable UC NIZK argumett I1
to verify. If C, II were produced by an uncorrupted prover we do not change thequi, neither
do we modify the protocol it has been proved by an honest prover that has later been wmrup
In all other cases, we use the extraction kéyin an attempt to decryptto get a plaintext on the
formey, cio, ¢, .., ce, o0, con. Then we use the decryption ke to attempt to decrypt the ,'s

19

to getp; , SO¢;, = commit (b, (vk, C); p;p. We outputf ai | ur e if at any point we encounter a
¢; = commit, (0, (vk, C), p;io) = commite (1, (vk,C), pi1).

Simulation soundness of the commitment scheme impliesHdaand H5 are indistinguishable.
Consider the taguk, C'). Outputtingf ai | ur e corresponds to breaking the binding property of
the commitment scheme, unless we have previously equed@tommitment with taguk, C).

In H4, we ruled out the possibility afk: coming from a UC NIZK argument of a party that is still
uncorrupted. This leaves us with the possibility.4fcorrupting an honest provér, learning the
secret keysk corresponding tak and making a UC NIZK argument using this. However, this
means tha€' stems from the same honest prover that has now been coryapigdh that case we
do not try to extracp; ,’s.

H6: We modify the common reference string by selecting- K (1%) instead of(o, 7) « S;(1%).

Since we do not use for anything at the moment, the zero-knowledge propertylieesghat H5
and H6 are indistinguishable.

H7: As in H5, we try to extractp, o, p;1's. We outputf ai | ur e if we cannot decryptc to get

€1,€10,C11,---,Cr,Co0,Co1. We also outpuf ai | ur e if there is ani so we cannot decrypt ei-
therc; o or ¢; 1 to give usp; , SO¢; = commit (b, (vk, C); p;p). We ruled out the possibility of both
pi,0 andp; ; being an opening of; in HS, so if everything is OK so far we have a uniquely defined
w so for alli we haver; = commit,(w;, (vk, C); piw,;). We outpuff ai | ur e if C'(w) # 1.

¢ From the soundness property of the NIZK proof and the essrilecryption property of the cryp-
tosystems we know that we do succeed in decryptitg somec,, c¢1,¢11, - - -, s, Cr0,Cr1. The
NIZK proof also tells us that for all = 1 to ¢ at least one of the; o, ¢; ; will have a propemp,; so

¢; = commit, (b, (vk, C'); pip). By the soundness property of the NIZK proof we havev) = 1.
The probability of outputting ai | ur e is therefore negligible, and H6 is indistinguishable from
H7.

H8: Instead of making real NIZK proofs for uncorrupted provers wge the honest prover state recon-

SIM:

struction simulators. In other words, we rin 7) < S;(1¥) when we create the common reference
string. We user < Sy(o, 7, -; p) with p random to simulate the honest provers NIZK proofs that
has been correctly generated. Finally, if any such proveoiiripted we use «— S3(o, 7, x, 7, -, p)

to create convincing randomness that would make the pravgpuor on the witness for being
correctly generated.

The honest prover state reconstruction property of the NpZ#of implies that H7 and H8 are
indistinguishable.

This is the ideal process running wiffly ;7 x ands.

H8 is already very similar to the ideal process. Honest poireH8 make UC NIZK arguments in

the same way aS without using the knowledge of the witnegsfor anything. It therefore makes

no difference thaf only learnsw upon corruption of a party when it has to simulate the random
tape of said party.

Whenever an honest verifier has to verify a proofl we are also very close to what happens in the
simulation. IfC,II has been produced by an honest prover it returns 1, as witluhemy verifier

in the ideal process. I’ is a statement proved by an honest prover, but this provelatersbeen
corrupted, then in H8 the verifier will return 1 it is an acceptable UC NIZK argumeng in

20

a similar situation will have corrupted the dummy proverttimade the UC NIZK argument, and
therefore it will know the witness. [l is an acceptable UC NIZK argument, it can therefore give
this witness taF vz that will make the dummy verifier output an acceptance to tivirenment.
Finally, in the remaining case we have argued in H7 that weagaro extract a witness if 11 is
acceptable and this extraction procedure is carried outtkyxas it is done bys. ThereforeS can
submit this witness tF ;7 k.

In conclusion, H8 is perfectly indistinguishable from tldeal process. Our path from HO to SIM
shows us that HO and SIM are indistinguishable.

O
Theorem 7 The UC NIZK argument in Figure 4 is perfect zero-knowledge.

Proof. We start by describing the simulatsf'® = (SVC, SY¢). SVC runshk «— Kstat(1%); (ck,tk) «
Kcom(1%); (pk, sk) « Kpseudo(1%); (o, 7) «+— K(1%). LetS = (hk, ck, pk, o). SV outputs(Z, 7).

Consider nextS, that is given a circuitC on which to simulate a UC NIZK argumeibl for satis-
fiability. It generates keys for the one-time signature sehévk, sk) «— Ksign(1¥). Then generates
a statistically hiding commitment < com,,(0). It simulates a proofr for the statement thatc has
been correctly formed and contains a withesso C'(w) = 1 asw « So(%, 7, x). Finally, it creates a
one-time signature on everything— sign,, (C, vk, ¢, 7). It outputs the simulated UC NIZK argument
I = (vk,c,m,s).

Perfect zero-knowledge of the NIZK proof implies that fdradversariesd we have

Pr [2 — KUC(1F) : APE)(T) = 1} — Pr [(2,7) — KUC(1k) ; APSCGmo)(3) = 1]

where PS is an oracle that on inglt, 7, C, w) outputsf ai | ur e if C(w) = 0 and otherwise creates a UC
NIZK argumentll = (vk, ¢, 7, s) by following the provers algorithm for creating:, ¢, s but simulating
the NIZK proofr.

Next, we argue that for all adversaridswe have

Pr |(Z,7) — SYO(14) : APSGm(3) = 1] = Pr (2, 7) e KUO(1F) : A5G (3) = 1]

whereS’ (3, 7, C, w) checks thaC'(w) = 1 and in that case returi$ — Sy (%, 7, C).
The only difference in the two oracld3S andS’ is the message inside the commitmenHowever,
since the commitment scheme is perfectly hiding, this do¢simange the distributions.
O

Corollary 8 Bilinear groups as described in Section 3 for which the den subgroup assumption
holds imply the existence of a non-interactive perfect -kexmwledge protocol that securely realizes

JTNIZK-

Proof. The assumption implies the existence of strong one-timeasiges since one-way functions suffice
for constructing those. The existence of one-way functadas suffices for the construction of tag-based
simulation sound trapdoor commitments. The BGN-crypttesyscan be set up both as a cryptosystem
and as a perfectly hiding commitment scheme, and the supgtecision assumption says that the two
types of keys cannot be distinguished. The BGN-cryptosys$tas pseudorandom ciphertexts, since we

21

can sample random element frdeghand cannot distinguish a full ordérfrom a small orde#. Finally,
as we saw in Section 4.2 we can construct a NIZK proof with Bbpeover state reconstruction from
the subgroup decision assumption. According to Theorenuggng all these parts into the UC NIZK
argument construction in 4 gives us a protocol that secuealyzes? vz k.

As already mentioned the BGN-cryptosystem set up with aoierh is perfectly hiding. It follows
from the proof of Theorem 4 that using the NIZK proof with a siated common reference stringyives
us a perfect zero-knowledge argument. Theorem 7 then tefteat the UC NIZK argument is perfect
zero-knowledge.

U

References

[AH87]

[BCS6]

[BCCS8]

[BDMP91]

[BFM88]

[BGNO5]

[Can01]

[CKOS01]

[CLOS02]

[DDNOO]

[DDO*01]

William Aiello and Johan Hastad. Perfect zero-kredge languages can be recognized in
two rounds. InProceedings of FOCS '8pages 439-448, 1987.

Gilles Brassard and Claude Crepeau. Non-traresttiansfer of confidence: A perfect zero-
knowledge interactive protocol for sat and beyondPiaceedings of FOCS '8pages 188—
195, 1986.

Gilles Brassard, David Chaum, and Claude Crepé&éinimum disclosure proofs of knowl-
edge.JCS$37(2):156-189, 1988.

Manuel Blum, Alfredo De Santis, Silvio Micali, an@iuseppe Persiano. Noninteractive
zero-knowledgeSIAM Jornal of Computatiar20(6):1084-1118, 1991.

Manuel Blum, Paul Feldman, and Silvio Micali. Nonteractive zero-knowledge and its
applications. Irproceedings of STOC '8pages 103—-112, 1988.

Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluathhgnf formulas on ciphertexts. In
proceedings of TCC 'Q%ages 325-341, 2005.

Ran Canetti. Universally composable security: Avrparadigm for cryptographic pro-
tocols. In proceedings of FOCS ’'Qlpages 136-145, 2001. Full paper available at
http://eprint.iacr.org/ 2000/ 067.

Giovanni Di Crescenzo, Jonathan Katz, Rafail @stky, and Adam Smith. Efficient and
non-interactive non-malleable commitment. groceedings of EUROCRYPT 'Odages 40—
59, 2001.

Ran Canetti, Yehuda Lindell, Rafail Ostrovskydahmit Sahai. Universally composable
two-party and multi-party secure computation.pioceedings of STOC '0pages 494-503,
2002. Full paper available &t t p: / / eprint.i acr. org/ 2002/ 140.

Danny Dolev, Cynthia Dwork, and Moni Naor. Non-nedble cryptographySIAM J. of
Computing 30(2):391-437, 2000. Earlier version at STOC '91.

Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ossioy Giuseppe Persiano, and Amit
Sahai. Robust non-interactive zero knowledgeprisceedings of CRYPTO '01, LNCS series,
volume 2139pages 566-598, 2001.

22

[DDPY98] Alfredo De Santis, Giovanni Di Crescenzo, Giusepersiano, and Moti Yung. Image density

[DGO3]

[DIO9S]

[FLS90]

[For87]

[GL8Y]

[GMYO03]

[GOP98]

[Gro04]

[Gro05]

[GSV99]

[KP98]

[MY04]

[Ost91]

[PS05]

is complete for non-interactive-szk. fmoceedings of ICALP '98, LNCS series, volume 1443
pages 784—795, 1998.

lvan Damgard and Jens Groth. Non-interactive angable non-malleable commitment
schemes. Iiproceedings of STOC 'Qpages 426—-437, 2003.

Giovanni Di Crescenzo, Yvail Ishai, and Rafail Qstsky. Non-interactive and non-malleable
commitment. Inproceedings of STOC '98pages 141-150, 1998.

Uriel Feige, Dror Lapidot, and Adi Shamir. Multipf®n-interactive zero knowledge proofs
based on a single random string.droceedings of FOCS '9@ages 308—-317, 1990.

Lance Fortnow. The complexity of perfect zero-kteadge. InProceedings of STOC '87
pages 204—-209, 1987.

Oded Goldreich and Leonid A. Levin. A hard-core pide for all one-way functions. In
proceedings of STOC '8pages 25-32, 1989.

Juan A. Garay, Philip D. MacKenzie, and Ke Yang. &tgthening zero-knowledge protocols
using signatures. lproceedings of EUROCRYPT 03, LNCS series, volume ,26&8@es
177-194, 2003. Full paper availabledtt p: / / eprint. i acr. org/ 2003/ 037.

Oded Goldreich, Rafail Ostrovsky, and Erez Petr&dmputational complexity and knowl-
edge complexitySIAM J. Comput.27:1116-1141, 1998.

Jens Groth. Honest verifier zero-knowledge argusepplied. Dissertation Series DS-04-3,
BRICS, 2004. PhD thesis. xii+119 pp.

Jens Groth. Cryptography in subgroupsZgf In proceedings of TCC '05, LNCS series,
volume 3378pages 50-65, 2005.

Oded Goldreich, Amit Sahai, and Salil P. Vadhan. Gtatistical zero knowledge be made
non-interactive? or on the relationship of szk and niszk. CRYPTO '99, LNCS series,
volume 1666pages 467-484, 1999.

Joe Kilian and Erez Petrank. An efficient noninteraeczero-knowledge proof system for np
with general assumptiondournal of Cryptology11(1):1-27, 1998.

Philip D. MacKenzie and Ke Yang. On simulation-soummdpdoor commitments. Ipro-
ceedings of EUROCRYPT '04, LNCS series, volume 30&jes 382—-400, 2004. Full paper
available aht tp: //eprint.iacr.org/ 2003/ 252.

Rafail Ostrovsky. One-way functions, hard on agergroblems, and statistical zero-
knowledge proofs. IrProceedings of Structure in Complexity Theory Conferepeges
133-138, 1991.

Rafael Pass and Abhi Shelat. Characterizing narantive zero-knowledge in the public
and secret parameter models.phoceedings of CRYPTO 05, LNCS seyi2805.

23

[Sah99] Amit Sahai. Non-malleable non-interactive zenowledge and adaptive chosen-ciphertext
security. Inproceedings of FOCS '9®ages 543-553, 1999.

[SV03] Amit Sahai and Salil Vadhan. A complete problem fatistical zero knowledgelournal of
the ACM (JACM)50(2):196-249, 2003.

24

