
Improved Integral Cryptanalysis of FOX Block
Cipher1

Wu Wenling, Zhang Wentao, and Feng Dengguo

State Key Laboratory of Information Security, Institute of Software,
Chinese Academy of Sciences, Beijing 100080, P. R. China

E-mail:{wwl}@is.iscas.ac.cn

Abstract. FOX is a new family of block ciphers presented recently,
which is based upon some results on proven security and has high per-
formances on various platforms. In this paper, we construct some distin-
guishers between 3-round FOX and a random permutation of the blocks
space. By using integral attack and collision-searching techniques, the
distinguishers are used to attack on 4, 5, 6 and 7-round of FOX64, 4
and 5-round FOX128. The attack is more efficient than previous in-
tegral attack on FOX. The complexity of improved integral attack is
277.6 on 4-round FOX128, 2205.6 against 5-round FOX128 respectively.
For FOX64, the complexity of improved integral attack is 245.4 on 4-
round FOX64, 2109.4 against 5-round FOX64, 2173.4 against 6-round
FOX64, 2237.4 against 7-round FOX64 respectively. Therefore, 4-round
FOX64/64, 5-round FOX64/128, 6-round FOX64/192, 7-round FOX64/256
and 5-round FOX128/256 are not immune to the attack in this paper.

Key words: Block cipher; FOX; Data complexity; Time complexity;
Integral Cryptanalysis.

1 Introduction

FOX[1] is a new family of block ciphers, which is the result of a joint project with
the company MediaCrypt[2] AG in Zurich, Switzerland. Fox has two versions,
both have a variable number rounds which depends on keysize: the first one
FOX64/k/r has a 64-bit blocksize with a variable key length which is a multiple
of 8 and up to 256 bits. The second one FOX128/k/r uses a 128-bit block-
size with the same possible key lengths. For FOX64 with k=128 and FOX128
with k=256, the designers advise that round number are both 16. The high
level of FOX adopts a modified structure of Lai-Massey Scheme[3], which can be
proven to have good pseudorandomness properties in the Luby-Rackoff paradigm
and decorrelation inheritance properties proposed by Vaudenay[4]. The round
function of FOX uses SPS (Substitution-Permutation-Substitution) structure

1 Supported partially by the National Natural Science Foundation of China under
Grant No. 60373047; the National Basic Research 973 Program of China under
Grant No.2004CB318004;and the National High-technique 863 Program of China
under Grant No.2003AA14403

with three layers of subkey addition, SPS structure has already been proven
to have powerful ability to resist differential and linear cryptanalysis. The de-
sign rationale of diffusion primitives in FOX is presented in Ref.[5]. The key
schedule of FOX is very complex compared with other existing block ciphers,
each subkey of FOX is related to the seed key and it’s very difficult to acquire
information about seed key or other subkeys from some certain subkeys. The
complex key schedule, high-level structure with provable security and power-
ful round function make FOX appear to be a strong block cipher. Since FOX
is a new cipher published last year, all we know about its security analysis
are limited to be the designer’s results and the integral cryptanalysis presented
in Ref.[6]. The security of FOX against differential and linear cryptanalysis is
easy to estimate for the good property of its S-box, SPS transformation and
high level structures. The designers also analyze the security of FOX against
differential-linear cryptanalysis[7,8], boomerang[9] and rectangle attacks[10], trun-
cated and higher-order differentials[11], impossible differentials[12],and partition-
ing cryptanalysis[13,14], algebraic attack[15,16], slide attack[17,18], and related-
cipher attacks[19]. Integral attack[20] is one of the most effective attack method
against AES, which had been used to analyze the security of other ciphers[20,21].
It’s pointed in Ref.[1] that integral attack has a complexity of 272 encryp-
tions against 4-round FOX64, 2136 against 5-round FOX64, 2200 against 6-round
FOX64. The authors also claimed that integral attack has a complexity of 2136

encryptions against 4-round FOX128,and 5-round FOX128 is immune to integral
attack. In this paper, we combine collision technique and integral attack to ana-
lyze the security of FOX. The improved integral attack on FOX is more efficient
than known integral attack. The complexity of our improved integral attack
is 277.6 on 4-round FOX128, 2205.6 against 5-round FOX128 respectively. For
FOX64, the complexity of improved integral attack is 245.4 on 4-round FOX64,
2109.4 against 5-round FOX64, 2173.4 against 6-round FOX64, 2237.4 against 7-
round FOX64 respectively.

This paper is organized as follows: Section 2 briefly introduces the structure
of FOX128. 3-round distinguishers are presented in section 3. In section 4, we
show how to use the 3-round distinguishers to attack 4 and 5 rounds of FOX128.
In section 5, we briefly introduce the attacks on 4,5,6 and 7 rounds of FOX64.
and Section 6 concludes the paper.

2 Description of FOX

The different members of FOX family are denoted as follows:

Name Block size Key size Round number
FOX64 64 128 16
FOX128 64 128 16
FOX64/k/r 64 k r
FOX128/k/r 128 k r

In FOX64/k/r and FOX128/k/r, the round number r must satisfy 12 ≤ r ≤ 255,

while the key length k must satisfy 0 ≤ k ≤ 256, with k multiple of 8. Due to
space limitation, we only introduce FOX128 briefly. Details are shown in Ref.[1]

2.1 Round Function f64

The round function f64 consists of three main parts: a substitution part denoted
sigma8, a diffusion part denoted MU8, and a round key addition part (see
Fig.1). Formally, the i-th round function f64i takes a 64-bit input Xi

(64) =
Xi

0(8)||Xi
1(8)|| · · · ||Xi

7(8), a 128-bit round key RKi
(128) = RK0i

(64)||RK1i
(64) and

returns

Y i
(64) = Y i

0(8)|| · · · ||Xi
7(8) = sigma8(MU8(sigma8(Xi

(64)⊕RK0i
(64)))⊕RK1i

(64))⊕RK0i
(64).

The mapping sigma8 consists of 8 parallel computations of a non-linear bijective
mapping(see the table in Ref.[1]). MU8 considers an input (Z0(8)|| · · · ||Z7(8)) as a
vector (Z0(8)|| · · · ||Z7(8))

T over GF (28) and multiply it with a matrix to obtain an
output vector of the same size. The matrix is the following:

0
BBBBBBBBBB@

1 1 1 1 1 1 1 a
1 a b c d e f 1
a b c d e f 1 1
b c d e f 1 a 1
c d e f 1 a b 1
d e f 1 a b c 1
e f 1 a b c d 1
f 1 a b c d e 1

1
CCCCCCCCCCA

where a = α + 1, b = α7 + α, c = α, d = α2, e = α7 + α6 + α5 + α4 + α3 + α2

and f = α6 + α5 + α4 + α3 + α2 + α. α is a root of the irreducible polynomial m(x) =
x8 + x7 + x6 + x5 + x4 + x3 + 1.

2.2 Encryption of FOX128

FOX128 is the 15-times iteration of round transformation elmor128, followed by the
application of last round transformation called elmid128. elmor128, illustrated in
Fig.2, is built as an Extended Lai-Massey scheme combined with with two orthomor-
phisms or.

The i-th round transformation—elmor128 transforms a 128-bit input
LLi

(32)||LRi
(32)||RLi

(32)||RRi
(32) and a 128-bit round key RKi

(128) in a 128-bit out-

put LLi+1
(32)||LRi+1

(32)||RLi+1
(32)||RRi+1

(32). Let LLi
(32) ⊕ LRi

(32)||RLi
(32) ⊕ RRi

(32) = Xi
(64) =

Xi
0(8)||Xi

1(8)|| · · · ||Xi
7(8)) and f64i(Xi

(64), RKi
(128)) = φL||φR. Then,

LLi+1
(32)||LRi+1

(32)||RLi+1
(32)||RRi+1

(32) = or(LLi
(32)⊕φL)||LRi

(32)⊕φL||or(RLi
(32)⊕φR)||RRi

(32)⊕φR.

The elmid128 function is a slightly modified version of elmor128, namely the
two transformations or are replaced by two identity transformation.

The transformation or is a function taking a 32-bit input X(32) = X0(16)||X1(16)

and returning a 32-bit output Y(32) = Y0(16)||Y1(16) which is in fact a one-round Feistel

0(8)

i

X
1(8)

i

X
2(8)

i

X
3(8)

i

X
4(8)

i

X
5(8)

i

X
6(8)

i

X
7(8)

i

X

S S S S S S S S

 MU8

S

0(8)

i

Y
1(8)

i

Y
2(8)

i

Y
3(8)

i

Y
4(8)

i

Y
5(8)

i

Y
6(8)

i

Y
7(8)

i

Y

S S S S S S S

(64)
0

i

RK

(64)
0

i

RK

(64)
1

i

RK

Fig. 1. The i-th Round Function of FOX128

(32)

i

LL
(32)

i

LR
(32)

i

RL
(32)

i

RR

 f64
i

or

1

(32)

i

LL 1

(32)

i

LR
1

(32)

i

RL
1

(32)

i

RR

or

(128)

i

RK

Fig. 2. The i-th Round Transformation—elmor128

scheme with the identity function as round function; it is defined as Y0(16)||Y1(16) =
X1(16)||(X0(16) ⊕X1(16))

The encryption C128 by FOX128 of a 128-bit plaintext P128 is defined as

C128 = elmid128(elmor128(. . . (elmor128(P128, RK1
(128)), . . . , RK15

(128))RK16
(128))

where RK1
(128), . . . , RK16

(128) are round subkeys produced by the key schedule algo-
rithm out of the user key. In this paper, subkeys are assumed to be independent of
each other. So we omit the key schedule of FOX in this paper.

3 3-Round Distinguishers

Choose plaintexts P(128) = LL1
(32)||LR1

(32)||RL1
(32)||RR1

(32) as follows:

LL1
(32) = LR1

(32) = c||c||c||c, RL1
(32) = RR1

(32) = c||c||c||x.

where x take values in {0, 1}8, c is a constant in {0, 1}8. Thus, the input of the first
round function f641 is X1

(64) = 0||0 . . . ||0. Let f641(0||0 . . . ||0) = (a0||a1 . . . a7), where

ai(0 ≤ i ≤ 7) are entirely determined by round subkey RK1
(128), so ai(0 ≤ i ≤ 7) are

constants when the user key is fixed. Then the output of the 1st round can be written
as follows:

LL2
(32) = a2 ⊕ c||a3 ⊕ c||a0 ⊕ a2||a1 ⊕ a3,

LR2
(32) = a0 ⊕ c||a1 ⊕ c||a2 ⊕ c||a3 ⊕ c,

RL2
(32) = a6 ⊕ c||a7 ⊕ x||a4 ⊕ a6||a5 ⊕ a7 ⊕ x⊕ c,

LR2
(32) = a4 ⊕ c||a5 ⊕ c||a6 ⊕ c||a7 ⊕ x,

Therefore, the input of the 2nd round function f642 is the following: X2
(64) =

X2
0(8)||X2

1(8) . . . ||X2
7(8).

X2
0(8) = a0 ⊕ a2, X2

4(8) = a4 ⊕ a6,

X2
1(8) = a1 ⊕ a3, X2

5(8) = a5 ⊕ a7 ⊕ c⊕ x,

X2
2(8) = a0 ⊕ c, X2

6(8) = a4 ⊕ c,

X2
3(8) = a1 ⊕ c, X2

7(8) = a5 ⊕ c.

Let f642(X2
(64)) = (y0||y1 . . . y7), then the output of the 2nd round can be written

as follows:

LL3
(32) = y2 ⊕ a0 ⊕ a2||y3 ⊕ a1 ⊕ a3||y0 ⊕ y2 ⊕ a0 ⊕ c||y1 ⊕ y3 ⊕ a1 ⊕ c,

LR3
(32) = y0 ⊕ a0 ⊕ c||y1 ⊕ a1 ⊕ c||y2 ⊕ a2 ⊕ c||y3 ⊕ a3 ⊕ c,

RL3
(32) = y6 ⊕ a4 ⊕ a6||y7 ⊕ a5 ⊕ a7 ⊕ c⊕ x||y4 ⊕ y6 ⊕ a4 ⊕ c||y5 ⊕ y7 ⊕ a5 ⊕ c,

RR2
(32) = y4 ⊕ a4 ⊕ c||y5 ⊕ a5 ⊕ c||y6 ⊕ a6 ⊕ c||y7 ⊕ a7 ⊕ x.

So the input of the 3rd round function f643 is the following: X3
(64) = X3

0(8)||X3
1(8) . . . ||X3

7(8).

0 || 0 || 0 || 0

0 || 0 || 0 || 0

 f64
1

 f64
2

f64
3

or

or

or

0 1 2 3

4 5 6 7

|| || ||

|| || ||

a a a a

a a a a

0 1 2 3

4 5 6 7

|| || ||

|| || ||

y y y y

y y y y

0 2 1 3 0 1

4 6 5 7 4 5

||

|| ||

|| ||

||

a a a a a c a c

a a a a c x a c a c

0 2 2 1 3 3 0 0 2 1 1 3

4 6 6 5 7 7 4 4 6 5 5 7

|| ||

|| ||

||

||

y y a c y y a c y a a y a a

y y a c y y a x y a a y x a a c

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
|| || || || || || || || || || || ||u u u u u u u u v v v v v v v v

|| || || || || || || || || || || ||c c c c c c c c c c c x c c c x

Fig. 3. 3-Round Distinguishers of FOX128

X3
0(8) = y0 ⊕ y2 ⊕ a2 ⊕ c, X3

4(8) = y4 ⊕ y6 ⊕ a6 ⊕ c,

X3
1(8) = y1 ⊕ y3 ⊕ a3 ⊕ c, X3

5(8) = y5 ⊕ y7 ⊕ a7 ⊕ x,

X3
2(8) = y0 ⊕ a0 ⊕ a2, X3

6(8) = y4 ⊕ a4 ⊕ a6,

X3
3(8) = y1 ⊕ a1 ⊕ a3, X3

7(8) = y5 ⊕ x⊕ a5 ⊕ a7.

By observing the high-level structure of FOX128, we get

or−1(LL4
(32))⊕ LR4

(32) = X3
0(8)||X3

1(8)||X3
2(8)||X3

3(8),

or−1(RL4
(32))⊕RR4

(32) = X3
4(8)||X3

5(8)||X3
6(8)||X3

7(8).

From the definition of or−1, we have

or−1(LL4
(32)) = LL4

0(8) ⊕ LL4
2(8)||LL4

1(8) ⊕ LL4
3(8)||LL4

0(8)||LL4
1(8),

or−1(RL4
(32)) = RL4

0(8) ⊕RL4
2(8)||RL4

1(8) ⊕RL4
3(8)||RL4

0(8)||RL4
1(8),

Thus,we have the following from the above equations.

LL4
0(8) ⊕ LL4

2(8) ⊕ LR4
0(8) = y0 ⊕ y2 ⊕ a2 ⊕ c,

LL4
1(8) ⊕ LL4

3(8) ⊕ LR4
1(8) = y1 ⊕ y3 ⊕ a3 ⊕ c,

LL4
0(8) ⊕ LR4

2(8) = y0 ⊕ a0 ⊕ a2,

LL4
1(8) ⊕ LR4

3(8) = y1 ⊕ a1 ⊕ a3,

RL4
0(8) ⊕RL4

2(8) ⊕RR4
0(8) = y4 ⊕ y6 ⊕ a6 ⊕ c,

RL4
1(8) ⊕RL4

3(8) ⊕RR4
1(8) = y5 ⊕ y7 ⊕ a7 ⊕ x,

RL4
0(8) ⊕RR4

2(8) = y4 ⊕ a4 ⊕ a6,

RL4
1(8) ⊕RR4

3(8) = y5 ⊕ x⊕ a5 ⊕ a7.

Further we have the following:

LL4
2(8) ⊕ LR4

0(8) ⊕ LR4
2(8) = y2 ⊕ a0 ⊕ c,

LL4
3(8) ⊕ LR4

1(8) ⊕ LR4
3(8) = y3 ⊕ a1 ⊕ c,

LL4
0(8) ⊕ LR4

2(8) = y0 ⊕ a0 ⊕ a2,

LL4
1(8) ⊕ LR4

3(8) = y1 ⊕ a1 ⊕ a3,

RL4
2(8) ⊕RR4

0(8) ⊕RR4
2(8) = y6 ⊕ a4 ⊕ c,

RL4
3(8) ⊕RR4

1(8) ⊕RR4
3(8) = y7 ⊕ a5,

RL4
0(8) ⊕RR4

2(8) = y4 ⊕ a4 ⊕ a6,

Now we analyze the property of yi(0 ≤ i ≤ 7). Let y = s(x⊕a5⊕a7⊕c⊕RK02
0(8)),

then yi = s(y⊕ bi)⊕RK02
i(8), here bi(0 ≤ i ≤ 7) are entirely determined by ai(0 ≤ i ≤

7), c and RK2
(128), so bi(0 ≤ i ≤ 7) are constants when the user key is fixed.

Because s is a permutation, y = s(x⊕ a5 ⊕ a7 ⊕ c⊕RK02
0(8)) differs when x takes

different values and the user key is fixed. As a consequence, yi = s(y⊕bi)⊕RK02
i(8) will

have different values when x takes different values and the user key is fixed. Thus, from
the above discussion we know that LL4

2(8)⊕LR4
0(8)⊕LR4

2(8), LL4
3(8)⊕LR4

1(8)⊕LR4
3(8),

LL4
0(8)⊕LR4

2(8), LL4
1(8)⊕LR4

3(8), RL4
2(8)⊕RR4

0(8)⊕RR4
2(8), RL4

3(8)⊕RR4
1(8)⊕RR4

3(8)

and RL4
0(8) ⊕ RR4

2(8) each will have different values when x takes different values.
Therefore we get the following theorem.

Theorem 1. Let P(128) = LL1
(32)||LR1

(32)||RL1
(32)||RR1

(32) and P ∗(128) = LL1∗
(32)||LR1∗

(32)||
RL1∗

(32)||RR1∗
(32) be two plaintexts of 3-round FOX128, C(128) = LL4

(32)||LR4
(32)||RL4

(32)||RR4
(32)

and C∗(128) = LL4∗
(32)||LR4∗

(32)||RL4∗
(32)||RR4∗

(32) be the corresponding ciphertexts. RRi(8)(0 6
i 6 7) denotes the (i+1)th byte of RR(32). If LL1

(32) = LR1
(32) = LL1∗

(32) = LR1∗
(32), RL1

(32) =

RR1
(32), RL1∗

(32) = RR1∗
(32), RR1

i(8) = RR1∗
i(8)(i = 0, 1, 2), RR1

3(8) 6= RR1∗
3(8), then C(128)

and C∗(128) satisfy the following inequalities:

LL4
2(8) ⊕ LR4

0(8) ⊕ LR4
2(8) 6= LL4∗

2(8) ⊕ LR4∗
0(8) ⊕ LR4∗

2(8), (1)

LL4
3(8) ⊕ LR4

1(8) ⊕ LR4
3(8) 6= LL4∗

3(8) ⊕ LR4∗
1(8) ⊕ LR4∗

3(8) (2)

LL4
0(8) ⊕ LR4

2(8) 6= LL4∗
0(8) ⊕ LR4∗

2(8) (3)

LL4
1(8) ⊕ LR4

3(8) 6= LL4∗
1(8) ⊕ LR4∗

3(8) (4)

RL4
2(8) ⊕RR4

0(8) ⊕RR4
2(8) 6= RL4∗

2(8) ⊕RR4∗
0(8) ⊕RR4∗

2(8) (5)

RL4
3(8) ⊕RR4

1(8) ⊕RR4
3(8) 6= RL4∗

3(8) ⊕RR4∗
1(8) ⊕RR4∗

3(8) (6)

RL4
0(8) ⊕RR4

2(8) 6= RL4∗
0(8) ⊕RR4∗

2(8) (7)

From the above discussion, we have RL4
1(8) ⊕ RR4

3(8) = y5 ⊕ x ⊕ a5 ⊕ a7, and y5

will have different values when x take different values. So we can get the following
Corollary, which is similar to the integral distinguisher presented in Ref.[1] and Ref.[6].

Corollary 1. Let Pj(128) = LLj1
(32)||LRj1

(32)||RLj1
(32)||RRj1

(32)(0 ≤ j ≤ 255) be 256

plaintexts of 3-round FOX128, Cj(128) = LLj4
(32)||LRj4

(32)||RLj4
(32)||RRj4

(32) be the cor-

responding ciphertexts. If LLj1
(32) = LRj1

(32), RLj1
(32) = RLj1

(32), RLji(8)(i = 0, 1, 2)
are constants, and LRj3(8) take all possible values between 0 and 255, then Cj(128)(0 ≤
j ≤ 255) satisfy:

255M
j=0

(RLj4
1(8) ⊕RRj4

3(8)) = 0 (8)

4 Attacks on Reduced-Round FOX128

4.1 Attacking 4-round FOX128

This section explains the attack on 4-round FOX128 in detail. The last round omit the
or transformation. First we recover 72 bits subkey RK04

(64) and RK14
0(8).

Choose plaintext P(128) = LL1
(32)||LR1

(32)||RL1
(32)||RR1

(32), and let C(128) = LL5
(32)||

LR5
(32)||RL5

(32)||RR5
(32) be the corresponding ciphertext. The input of the fourth round

function f644 is LL5
(32) ⊕ LR5

(32)||RL5
(32) ⊕ RR5

(32), and we can calculate the value of

LL4
2(8) ⊕ LR4

2(8) because LL4
2(8) ⊕ LR4

2(8) = LL5
2(8) ⊕ LR5

2(8). If we guess the value

of LR4
0(8), then we can guess LL4

2(8) ⊕ LR4
2(8) ⊕ LR4

0(8). From the structure of f644,

it is known that the value of LR4
0(8) is entirely determined by the input LL5

(32) ⊕
LR5

(32)||RL5
(32) ⊕RR5

(32) and subkey RK04
(64), RK14

0(8). Thus using the inequality (1)

of Theorem 1 , we construct the following algorithm to recover RK04
(64) and RK14

0(8).

Algorithm 1
Step1, Choose 166 plaintexts Pj(128) = LLj1

(32)||LRj1
(32)||RLj1

(32)||RRj1
(32)(0 ≤

j ≤ 165) as follows:

LLj1
(32) = (c||c||c||c),

LRj1
(32) = (c||c||c||c),

RLj1
(32) = (c||c||c||j),

RRj1
(32) = (c||c||c||j).

where c is a constant, 0 ≤ j ≤ 165. The corresponding ciphertexts are Cj(128) =
LLj5

(32)||LRj5
(32)||RLj5

(32)||RRj5
(32).

Step2, For each possible value of RK04
(64)||RK14

0(8), first compute the first byte

Y j4
0(8) of f644(LLj5

(32) ⊕ LRj5
(32)||RLj5

(32) ⊕RRj5
(32)), and then compute

4j = Y j4
0(8) ⊕ LLj5

2(8) ⊕ LRj5
2(8) ⊕ LRj5

0(8).

Check if there ia a collision among 4j . If so, discard the value of RK04
(64)||RK14

0(8).

Otherwise, output RK04
(64)||RK14

0(8).

Step3, From the output values of RK04
(64)||RK14

0(8) in Step2, choose some other
plaintexts, and repeat Step2.

The probability of at least one collision occurs when we throw 166 balls into 256

buckets at random is larger than 1− e−166(166−1)/2×28 ≥ 1− 2−76. So the probability
of passing the test of Step 2 is less than2−76. Because the right subkey candidates
must pass the test of Step2, the number of subkey candidates passing Step2 is about
1 + (272× 2−76) ≈ 1.06. Then, only two plaintexts are needed in Step3. The data com-
plexity of this attack is about 168 chosen plaintexts. And the main time complexity
of Algorithm 2 is in step2, the time of computing each 4j is less than 1-round
encryption, so the time complexity is less than 272 × 168/4 ≈ 42× 272 encryptions.

Next we recover RK14
1(8). The steps are very similar to Algorithm1, except

RK04
(64) is known here. So the number of candidates is 28, only 64 chosen plaintexts

are needed(we can use the data in Algorithm 1 again). Using the inequality (2) in
Theorem 1, we can recover RK14

1(8) by computing

4j = Y j4
1(8) ⊕ LLj5

3(8) ⊕ LRj5
3(8) ⊕ LRj5

1(8).

and the attack requires 28 × 64/4 = 212 encryptions.

Knowing RK04
(64) and RK14

0(8), using inequality (3) in Theorem 1 and the plain-

texts chosen in Algorithm 1, we can recover RK14
2(8) by computing

4j = Y j4
0(8) ⊕ Y j4

2(8) ⊕ LLj5
0(8) ⊕ LRj5

2(8)

and the attack requires 212 encryptions.

Similarly, knowing RK04
(64) and RK14

1(8), using inequality (4) in Theorem 1 and

the plaintexts chosen in Algorithm 1, we can recover RK14
3(8) by computing

4j = Y j4
1(8) ⊕ Y j4

3(8) ⊕ LLj5
1(8) ⊕ LRj5

3(8)

and the attack requires 212 encryptions.

Furthermore,using inequality (5) in Theorem 1 and the plaintexts chosen in Algo-
rithm 1, we can recover RK14

4(8) by computing

4j = Y j4
4(8) ⊕RLj5

2(8) ⊕RRj5
2(8) ⊕RRj5

0(8)

and the attack requires 212 encryptions.

And using inequality (6) in Theorem 1 and the plaintexts chosen in Algorithm
1, we can recover RK14

5(8) by computing

4j = Y j4
5(8) ⊕RLj5

3(8) ⊕RRj5
3(8) ⊕RRj5

1(8)

and the attack requires 212 encryptions.

Knowing RK04
(64) and RK14

4(8), using iinequality(7) in Theorem 1 and the plain-

texts chosen in Algorithm 1, we can recover RK14
6(8) by computing

4j = Y j4
4(8) ⊕RLj5

0(8) ⊕ Y j5
6(8) ⊕RRj5

2(8)

and the attack requires 212 encryptions.

We can’t use similar approach to recover RK14
7(8), fortunately integral technique

can be used here. Knowing RK04
(64)) and RK14

5(8), using equation (8) in Theorem 1,we

can construct the following algorithm to recover RK14
7(8).

Algorithm 2
Step1, Choose 256 plaintexts Pj(128) = LLj1

(32)||LRj1
(32)||RLj1

(32)||RRj1
(32)(0 ≤

j ≤ 122) as follows:

LLj1
(32) = (c||c||c||c),

LRj1
(32) = (c||c||c||c),

RLj1
(32) = (c||c||c||j),

RRj1
(32) = (c||c||c||j).

where c is a constant, 0 ≤ j ≤ 255. The corresponding ciphertexts are Cj(128) =
LLj5

(32)||LRj5
(32)||RLj5

(32)||RRj5
(32).

Step2, For each possible value of RK14
7(8), first compute Y j4

7(8), and then compute

∆ =

255M
j=0

(RL5
1(8) ⊕RR5

3(8) ⊕ Y j4
5(8) ⊕ Y j4

7(8)).

Check if ∆ = 0. If not, discard the value of RK14
7(8), Otherwise, output RK14

7(8).

Step3, From the output values of RK14
7(8) in Step2, choose another group of plain-

texts, and repeat Step2 until the key candidate is unique.

Wrong values will pass step2 successfully with probability 2−8. Thus Algorithm 2
requires about 29 chosen plaintexts, and the time complexity is about 29 × 28/4 = 215

encryptions. The data in Algorithm 1 can be repeatedly used here again, so the
data complexity for recovering RK4

(128)) is about 29, and the time complexity is about

42× 272 + 6× 212 + 215.
Now we have recovered RK4

(128) using 29 chosen plaintexts and 42×272+6×212+215

encryptions. By decrypting the 4th round, we can recover RK3
(128), the time complexity

is less than 273 + 6 × 212 + 215. Similarly, we can recover RK2
(128)) and RK1

(128)), the

time complexity are both less than 273 + 6 × 212 + 215. Therefore, the attack on the
4-round FOX128 requires 29 chosen plaintexts and about 277.6 encryptions.

4.2 Attacking 5-round FOX128

We could extend the previous attack on 5-round FOX128, using a key exhaustive
search on the fifth subkey RK5

(128). The attack requires 2205.6 encryptions, which is
less expensive than a key exhaustive search.

5 Attacks on Reduced-Round FOX64

Similar to FOX128, we can get the following theorem for FOX64.

Theorem 2. Let P(64) = L1
(32)||R1

(32) and P ∗(64) = L1∗
(32)||R1∗

(32) be two plaintexts of

3-round FOX64,C(64) = L4
(32)||R4

(32) and C∗(64) = L4∗
(32)||R4∗

(32) be the corresponding

ciphertexts, Li(8) denotes the (i + 1)th byte of L(32), If L1
(32) = R1

(32), L
1∗
(32) = R1∗

(32),

and L1
i(8) = L1∗

i(8)(i = 0, 1, 2),L1
3(8) 6= L1∗

3(8), then C(64) and C∗(64) satisfy:

L4
2(8) ⊕R4

2(8) ⊕R4
0(8) 6= L4∗

2(8) ⊕R4∗
2(8) ⊕R4∗

0(8), (9)

L4
3(8) ⊕R4

3(8) ⊕R4
1(8) 6= L4∗

3(8) ⊕R4∗
3(8) ⊕R4∗

1(8) (10)

L4
0(8) ⊕R4

2(8) 6= L4∗
0(8) ⊕R4∗

2(8) (11)

Corollary 2. Let Pj(64) = Lj1
(32)||Rj1

(32)(0 ≤ j ≤ 255) be 256 plaintexts of 3-round

FOX64, Cj(64) = Lj4
(32)||Rj4

(32) be the corresponding ciphertexts, If Lj1
(32) = Rj1

(32),
Lji(8)(i = 0, 1, 2) are constants, and Lj3(8) take all possible values between 0 and 255,
then Cj(64)(0 ≤ j ≤ 255) satisfy:

255M
j=0

(Lj4
1(8) ⊕Rj4

3(8)) = 0 (12)

Using Theorem 2 and Corollary 2, we can construct the Algorithms similar
to those in Section 4, and get four subkeys of 4-round FOX64. The attack requires

less than 29 chosen plaintexts, and the time complexity is about 245.4 4-round FOX64
encryptions.

Similarly, we can get subkeys of 5(6, 7)-round FOX64 just through guessing the
overall key bits behind the fourth round, then using the attack procedure for 4-round
FOX64. The time complexity on 5,6 and 7-round FOX64 is about 2109.4, 2173.4 and
2237.4 respectively.

6 Concluding remarks

Since FOX is a new cipher published last year, all we know about its security analysis
are limited to be the designer’s results[1] and Ref.[6]. In this paper, we combine collision
technique and integral attack to analyze the security of FOX. The improved integral at-
tack on FOX is more efficient than known integral attacks. The complexity of improved
integral attack is 277.6 on 4-round FOX128, 2205.6 against 5-round FOX128 respec-
tively. For FOX64, the complexity of improved integral attack is about 245.4 on 4-round
FOX64, 2109.4 against 5-round FOX64, 2173.4 against 6-round FOX64, 2237.4 against
7-round FOX64 respectively. Our results also show that 4-round FOX64/64, 5-round
FOX64/128, 6-round FOX64/192 ,7-round FOX64/256 and 5-round FOX128/256 are
not immune to improved integral attack in this paper.

There are some mistakes about the integral cryptanalysis in Ref.[6], so we only
compare the performance of known integral attacks on FOX in Ref.[1] and that of this
paper in the following table.

Name round Time Notes

FOX64 4 272 Ref.[1]

FOX64 4 245.4 this paper

FOX64 5 2136 Ref.[1]

FOX64 5 2109.4 this paper

FOX64 6 2200 Ref.[1]

FOX64 6 2173.4 this paper

FOX64 7 2237.4 this paper

FOX128 4 2136 Ref.[1]

FOX128 4 277.6 this paper

FOX128 5 2205.6 this paper

References

1. P.Junod and S. Vaudenay, ”FOX: a new Family of Block Ciphers,” Selected Areas
in Cryptography-SAC 2004,LNCS 2595, pp.131-146,Springer-Verlag.
FOX Specifications Version 1.2 appeared on http://crypto.junod.info

2. Mediacrypt AG. http://www.mediacrypt.com
3. X.Lai and J. Massey, ”A proposal for a new block encryption standard,” Advances

in Cryptology-EUROCRYPT’90, LNCS 473,pp.389-404,Springer-Verlag.
4. S.Vaudenay, ”On the Lai-Massey scheme,” Advances in Cryptology-

ASIACRYPT’99, LNCS 1716, pp.8-19,Springer-Verlag.
5. P.Junod and S. Vaudenay,”Perfect diffusion primitives for block ciphers—building

efficient MDS matrices”, Selected Areas in Cryptography-SAC 2004,LNCS 2595,
pp.131-146,Springer-Verlag.

6. Marine Minier, ”An integral cryptanalysis against a five rounds version of FOX”,
Western European Workshop on Research in Crpytography - WEWoRC, July 05-07,
Leuven, Belgium, 2005.

7. K.Lanford and E.Hellman,”Differential-linear cryptanalysis”,Advances in
Cryptology-CRYPTO’94,LNCS 893, pp.17-25,Springer-Verlag.

8. E.Biham, A.Biryukov, and A.Shamir, ”Enhancing differential-linaer cryptanalysis,”
Advances in Cryptology-ASIACRYPT’02, LNCS 2501, pp.254-266,Springer-Verlag,

9. D.Wagner, ”The boomerang attack”,Fast Software Encryption-FSE’99, LNCS
1636,pp.157-170,Springer-Verlag.

10. E.Biham,O.Dunkelman,and N.Keller,”The rectangle attack-rectangling the Ser-
pent”, Advances in Cryptology-EUROCRYPT’01, LNCS 2045,pp.340-357,Springer-
Verlag.

11. L.Knudsen, ”Truncated and higher order differentials,” Fast Software Encryption-
FSE’95, LNCS 2595,pp.196-211,Springer-Verlag.

12. E.Biham, A.Biryukov, and A.Shamir,”Cryptanalysis of Skipjack reduced
to 31 rounds using impossible differentials”, Advances in Cryptology-
EUROCRYPT’99,LNCS 2595, pp.12-23,Springer-Verlag.

13. C.Harpes and J.Massey, ”Partitioning cryptanalysis”,Fast Software Encryption-
FSE’97, LNCS 1267,pp.13-27,Springer-Verlag.

14. T.Jakobsen and L.Knudsen,”The interpolation attack against block ciphers”, Fast
Software Encryption-FSE’99, LNCS 1267,pp.28-40,Springer-Verlag.

15. N. Courtois and J. Pieprzyk, ”Cryptanalysis of block ciphers with overdefined sys-
tems of equations”, Advances in Cryptology-ASIACRYPT’02, LNCS 2595, pp.267-
287,Springer-Verlag.

16. S.Murphy and M.Robshaw,”Comments on the security of the AES and the XSL
technique”,Electronic Letters,39(1):36-38.2003.

17. A. Biryukov and D.Wagner, ”Slide attacks,” Fast Software Encryption-FSE’99,
LNCS 1636, pp.245-259,Springer-Verlag.

18. A. Biryukov and D.Wagner, ” Advanced slide attacks,” Advances in Cryptology-
EUROCRYPT’00, LNCS 1807,pp.589-606,Springer-Verlag.

19. H.Wu,”Related-cipher attacks”, Information and Communications Security,ICICS
2002,LNCS 2513, pp.447-455,Springer-Verlag.

20. L. Knudsen and D. wagner, ”Integral cryptanalysis(extended abstract)” Fast Soft-
ware Encryption-FSE2002,LNCS 2595, pp.112-127,Springer-Verlag.

21. Y.Yeom, S.Park, and I. Kim, ”On the security of Camellia against the square
attack,” Fast Software Encryption-FSE’02,LNCS 2356, Springer-Verlag 2002,pp.89-
99.

22. Y.Yeom, I. Park, and I. Kim, ”A study of Integral type cryptanalysis on Camellia,”
The 2003 Symposium on Cryptography and Information Security-SCIS’03.

