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Abstract

A most critical and complex issue with regard to con-
strained devices in the ubiquitous and pervasive comput-
ing setting is secure key exchange. The restrictions moti-
vate the investigation and discussion of alternative solu-
tions. We suggest a low hardware-complexity solution for
authenticated symmetric key exchange, using a Tree Parity
Machine Rekeying Architecture. An authenticated key ex-
change is formulated from within the tree parity machine
interaction concept and requires only few transmissions. It
averts a Man-In-The-Middle attack and the currently known
attacks on the non-numbertheoretic on principle. A key ex-
change can be performed within a few milliseconds, given
typical limited bandwidth wireless communication chan-
nels. A flexible rekeying functionality enables the exploita-
tion of the achievable key exchange rates. Characteristics
of a standard-cell ASIC design realization as IP-core in
0.18u-CMOS technology are evaluated.

1. Introduction

In ubiquitous and pervasive computing scenarios, key
exchange and entity authentication is of major importance
with regard to security. Given a lack of infrastructure, ap-
proaches needing a central authority, like a trust center or
another third trusted party securely providing public keys
as e.g. in ID-based cryptosystems, are penalized.

Handheld devices, smartcards, mobiles or other wireless
communication devices require security concepts to be de-
veloped, in order have privacy and (commercially) exploit
the use of such devices [1]. An extreme example is given by
the RFID-industry, that should have a particular interest be-
cause the secrecy of data is directly linked to the commer-
cial prosperity of their products.

In ubiquitous and pervasive computing applications,
such as sensor networks, RFID-systems or Near Field Com-
munication (NFC), the devices in use as nodes of the net-
work can impose severe size limitations and power con-

sumption constraints. Consequently, the available size for
additional cryptographic hardware components is also lim-
ited [14, 16]. Cryptographic methods with appropriate
computational efficiency, that also consider a certain mes-
sage or protocol overhead, are inevitable.

The exchange of a common secret key over a public
channel is dominated by methods based on number theory
such as RSA. Computational security is based on the diffi-
culty of the discrete logarithm problem as in El Gamal [2],
which is considered as difficult as the factorization problem
of a product of long prime numbers as in RSA [12]. Such
asymmetric algorithms need to perform a lot of computa-
tional intensive arithmetics on typically limited embedded
microcontrollers in the ubiquitous and pervasive comput-
ing setting. Threshold cryptography is still computationally
intensive and a distributed certificate authority does not ad-
dress the resource limitations of devices.

The state-of-the-art, regarding applications in general
embedded systems, is represented by Elliptic Curve Cryp-
tography and the generalization to Hyper-Elliptic Curves
(see e.g. [11]). Without a reduction of the security, these
representations allow to reduce the size of the numbers to
calculate with. Yet, more complex expressions need to be
calculated. Often, a necessary tradeoff between the level of
security and the available resources or computation time
has to be faced. Seeking and investigating alternative ap-
proaches thus remains a challenge for research.

In this paper we suggest to discuss and investigate a
hardware-friendly algorithm for secure symmetric key ex-
change by synchronization of so-called Tree Parity Ma-
chines [4]. We extend the proposed concept to an (en-
tity) authenticated key exchange, that averts a Man-In-The-
Middle attack and the currently known attacks. We employ
and evaluate a small hardware solution presented in [15]
also allowing for short key lifetimes with its flexible rekey-
ing functionality. We focus on the low hardware-complexity
of this IP-Core solution for secure data exchange between
resource-limited devices.



2. Key Exchange by Tree Parity Machines

A symmetric key exchange method based on the fast syn-
chronization of two identically structured interacting Tree
Parity Machines (TPMs) was proposed by Kinzel and Kan-
ter [4, 6]. The principle does not involve large numbers and
principles from number theory, however, Shamir et al. con-
ferred to this interaction over multiple rounds as a grad-
ual type of Diffie-Hellman [7]. Even more related, secret
key agreement based on interaction over a public insecure
channel is discussed under information theoretic aspects by
Maurer [8].

The particular tree structure has non-overlapping binary

inputs, discrete weights and a single binary output as de-
picted in Fig. la. Their interaction protocol for key ex-
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Figure 1. (a) Tree Parity Machine (TPM). (b)
Exchange of outputs for mutual learning.

change is realized by a mutual adaptation process between
the two parties A and B, not involving large numbers and
methods from number theory.

In the following, we describe the implemented parallel-
weights version using hebbian learning (cf. [4, 7]). Weights
are identical in both TPMs after synchronization. The no-
tation A/B denotes equivalent operations for the parties A
and B. A single A or B denotes an operation which is spe-
cific to one of the parties. The TPM (see Fig. 1a) consists
of K hidden units (1 < k¥ < K) in a single hidden-layer
with non-overlapping inputs (the tree structure) and a sin-
gle unit in the output-layer. Each hidden unit receives dif-
ferent IV inputs (1 < 7 < N), leading to an input field of
size K - N. The vector-components are random variables
with zero mean and unit variance. The output 04/ (t) €
{—1,1}, given bounded weights w,/”(t) € [-L,L] C Z
(from input unit 5 to hidden unit k) and common random
inputs z;(t) € {—1,1}, is calculated by a parity function

of the signs of summations:

K
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The common random inputs can also be kept secret be-
tween the parties, yielding authentication (see Section 3).
o is a party-specific modified sign-function, that defines an
agreement between the two parties on an opposite sign in
case of a sum a,"” (t) € Z of zero.

The so-called bit package variant was chosen for imple-
mentation (cf. [4]). Due to an reduction of (physical) out-
put exchanges by an order of magnitude down to around
a dozen packages, it is advantageous for practical commu-
nication channels with a certain protocol overhead. Par-
ties A and B start with an individual randomly generated
initial weight vector w;:]/ Z(t,) — their secret. After a set
of b > 1 presented inputs, where b denotes the size of
the bit package, the corresponding b TPM outputs (bits)
O4/B(t) are exchanged over the public channel in one

package (see Fig. 1b). The b sequences of hidden states
y.'?(t) € {-1,1} are stored for the subsequent learn-
ing process. A hebbian learning rule is applied to adapt
the weights, using the b outputs and b sequences of hidden
states. They are changed only on an agreement O“(t) =
OF%(t) on the parties’ outputs. Furthermore, only weights
of those hidden units are changed, that agree with this out-
put (O*/2(t) = y/* (t)):
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Updated weights are bound to stay in the maximum
range [—L, L] C Z by reflection onto the boundary values.

In iterating the above procedure, each component of
the weight vectors performs a random walk with reflect-
ing boundaries. This implies a trajectory in a weight space
of (2L + 1)*¥ points. Two corresponding components in
wi;(t) and wy; (t) receive the same random component of
the common input vector x; (). After each bounding oper-
ation, the distance between the components is successively
reduced to zero. Synchrony is achieved when both parties
have learned to produce each other’s outputs. They remain
synchronized (see learning rule Eq. 2) and continue to pro-
duce the same outputs on every commonly given input. This
effect in particular leads to common weight-vectors in both
TPMs in each of the following iterations. These weights
have never been communicated between the two parties and
can be used as a common time-dependent key for encryp-
tion and decryption respectively.

A practical test for synchrony is defined by testing on
successive equal outputs in a sufficiently large number
of iterations t,,;,, such that equal outputs by chance are
excluded. Our investigations/experiments confirmed that
the average synchronization time is distributed and peaked
around 400 for the parameters given in [4].



3. Security and Entity Authentication

For the key exchange protocol without entity authenti-
cation, eavesdropping attacks have concurrently been pro-
posed by Shamir et al. [7] and Kanter, Kinzel et al. [10, 3, 5].
The prevalent definition of a successful attack is having
an 98 percent average overlap with the coefficients of one
party, when parties A and B are already synchronous and
thus successfully finished the key exchange and the commu-
nication. The overlap |w?(¢) - w*/" (t)| is averaged over all
summation units. The authors chose this definition, because
of the strong fluctuations observed in the success probabil-
ity. The attacks in [7, 10, 3, 5] can all be made arbitrar-
ily costly and thus can practically be defeated by simply
increasing the parameter L. The security increases propor-
tional to L? while the probability of a successful attack de-
creases exponentially with L [10]. The approach is thus re-
garded computationally secure with respect to these attacks
for sufficiently large L [13, 5].

The latest attack, which does not seem to be affected by
an increase of L (but still by an increase of K') uses sev-
eral coordinated and communicating TPMs [5]. A success-
ful attack according to the definition given above could be
achieved with a probability of 0.5. The success probabil-
ity of achieving a 99 percent average overlap drops down
to 0.25. However, an attacker does not know, which of the
K - N components of the coefficients (the key) are correct.
In currently used symmetric encryption algorithms, the flip-
ping of a single bit only already leads to a complete failure
in decryption. Due to the only partial knowledge of an at-
tacker on the final key, an added or included privacy ampli-
fication through hashing can further significantly decrease
this knowledge and increase the secrecy of the final key
(compare e.g. [8]) and also the security of the trajectory
mode. It increases the entropy of the keys and destroys par-
tial knowledge an attacker might have gained on the key
from the known attacks.

Note that all of the existing attacks refer to a non-
authenticated key exchange, in which also Man-in-the-
middle attacks are possible. Given an appropriate mech-
anism for entity authentication, e.g. as explained in the
following, and the application of a privacy amplifica-
tion step, an appropriate level of security is provided at
least for some applications in embedded security.

The structure of the network, the involved computations
producing the output O*/”(¢) (Eq. 1), the adaptation-rule
(Eq. 2) and especially the common inputs z;(t) are pub-
lic in the original formulation. The only secrets involved are
the different initial weights w;{” (t,) of the two parties. If
they were not secret, the resulting keys could simply be cal-
culated (by an adversary), because all further computations
are completely deterministic. An extension to include au-

thentication into the key exchange protocol is derived from

the observation, that two parties A and B which do not have
the same input vectors

Vt: z*(t) # z°(t) 3)

cannot synchronize. Note, that the aim of the two-party-
system is to learn each other’s outputs on commonly given
inputs. Lacking common inputs, the two parties are try-
ing to learn completely different mappings between inputs
x*/5(t) and outputs O*/% (t). Consequently, the two parties
cannot synchronize, there will not be time-dependent equal
weights w*/® (t) and thus no exchange of a key. This again
is exactly the service one would want to restrict only to au-
thorized parties by employing any other explicit authentica-
tion using some common information.

For demonstration we consider the distance d at time
t between two weight-vectors as their normalized sum of
absolute differences. We observe the development of dis-
tance d(w*(t), w?(t)) € [0, 1] over time for different off-
sets (Vt: z*(t) = z®(t + A), A € N) in the (pseudo-
random) input-sequence and for completely different input-
sequences. Fig. 2 depicts, that the distance between two par-
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Figure 2. Distance d vs. the number of
iterations ¢ for different offsets in the inputs.

ties that do not possess the same inputs remains fluctuating
and never decreases towards zero. We also investigated dif-
ferent offsets with the same qualitative outcome. Two par-
ties with completely different inputs (although not realis-
tic given a concrete and publicly known Linear Feedback
Shift Registers (LFSR) as pseudo random number genera-
tor) show the same qualitative behavior. Two parties having
the same inputs (offset zero) soon decrease their distance
and synchronize.

The random walks with reflecting boundaries performed
by the weights in the iterative process now make uncorre-
lated moves and moves in the wrong direction. Two cor-
responding components wy; (t) and wy; (t) now receive a



different random component xz;(t) of their (differing) in-
put vectors (cf. Eq. 1). The distance between the compo-
nents is thus no longer successively reduced to zero after
each bounding operation and the two parties diverge.

The non-synchronization in the case of no common in-
puts, therefore enables us to incorporate authentication by
keeping the common (pseudo-random) inputs x*/2(t) se-
cret between the two parties in addition to their individual
secret (random) initial weights w*/ 2 (t,). There are 2KV —1
possible common inputs as second initial secrets, which is a
large enough practical amount for the parameters as chosen
in [4] that makes brute force attacks computationally very
expensive. Even more, a Man-In-The-Middle attack and the
currently known attacks [7, 6] all using TPMs are averted on
principal by this entity authentication, because it suppresses
the necessary synchronization. It is important to note, that
such a second secret in this symmetric principle does not
represent any principal disadvantage, because a basic com-
mon information is always also necessary in other authenti-
cation protocols (cf. [9]) and is already necessary to avert a
Man-In-The-Middle attack alone.

4. TPM Rekeying Architectures

With respect to a hardware implementation (see [15]
for more details), note that only signs and bounded inte-
gers are processed within the algorithm. The result of the
outer product in Eq. 1 can be realized without multiplica-
tion. The product within the sum is only changing the sign
of the weight. Thus, the most complex structure to be im-
plemented is an adder. The branches are only based on a test
for the sign or a test on equality to zero, also easily done in
hardware.

Furthermore, only sign-operations and additions are
present in the learning rule (Eq. 2), well suited for a hard-
ware implementation. The amount of registers needed for
storage increases in the bit package variant, finally impos-
ing a tradeoff area vs. speed. Equal (pseudo-)random inputs
are realized by equally initialized LFSR or a Cyclic Re-
dundancy Code (CRC). Different (secret) initial weights
can either be fixed (device-specific), or they can be pro-
vided by an additional application-specific device or by a
thermal noise device. The synchronization criterion basi-
cally comprises a counter.

The Tree Parity Machine Rekeying Architectures (TPM-
RAs) [15] are functionally separated into two main struc-
tures. One structure essentially comprises the Key Hand-
shake and Bit Package Control. The other structure contains
the TPM Unit and its control state machine. As described
in Section 2, we implemented the bit package generaliza-
tion of the protocol (cf. [4]). The overall structure of the
TPMRAs is shown in Fig. 3a. It consists of three functional
blocks: a Key Handshake and Bit Package Control, the TPM
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Figure 3. (a) Basic TPM Rekeying Architec-
ture. (b) Internal structure of the TPM Unit.

unit and a Watchdog timer. The Watchdog timer supervises
the number of interactions needed for a key-exchange be-
tween two parties. If there is no synchronization within a
specific time (remember that the synchronization time is
distributed), a signal (sync_error) indicates a synchro-
nization error. It is programmable for variable average syn-
chronization times subject to the chosen TPM structure.

The Key Handshake and Bit Package Control handles
the key transmission with an encryption unit and the bit
package exchange process with the other party. It accom-
plishes the bit packaging by partitioning the parity bits
from the TPM unit in tighter bit slices. Due to different
computation cycles between two key exchange parties, the
rekeying procedure employs a key request (reg_key), a
key changed (key_cha) and a key commit (key_com)
handshake protocol (see Fig.3a). A key is handed over
via the internal bus (Key) to an encryption unit when
the synchronization process is finished. For our applica-
tion domain we choose a fixed bit package length of 32 bit



(Bit Package). The bit package exchange process uses a
simple request/acknowledge handshake protocol (BP .ack,
BP_req).

The TPM unit comprises the logic for the TPM struc-
ture, such as the logic for calculating the parity bits as ex-
plained in Section 2. It consists of the TPM control, a CRC-
generator, a Parity Computation unit and a Weight Adjust-
ment unit. A register bank holds the data for the hidden
unit and the weights of the network as shown in Fig. 3b.
The TPM control is realized as simple finite state machine
(FSM) which executes the initialization of the TPM and the
learning process with the bit package from the other party.
The Parity Computation unit calculates the summation and
the parity bit (Eq. 1). The weight adjustment unit accom-
plishes the learning rule (Eq. 2). The CRC random gener-
ator generates the pseudo random bits for the inputs of the
TPM. It is initialized by a vector which is equal for both par-
ties. For the purpose of entity authentication, only the initial
value would have to be kept secret.

5. Results and Evaluation

We employ parameterizable serial and semi-parallel
TPM Rekeying Architectures as designed in [15]. In the
serial architecture, the hidden-unit summation is per-
formed by Time Devision Multiple Access (TDMA) of
an L-bit adder, while the semi-parallel form uses TDMA
of six L-bit adders in parallel. A standard cell ASIC pro-
totype realization was build to verify the suitability
of the TPMRA as IP-Core in devices with limited re-
sources in the ubiquitous and pervasive computing set-
ting. The underlying process was a 0.18y six-layer CMOS
process with 1.8V supply voltage based on the UMC l[i-
brary.

The linear complexity of the protocol scales with the size
K -N of the TPM structure, which defines the size K - N - L
of the key. We chose K = 3, amaximal N = 49 and L = 4,
leading to a key size of up to 588 bit. The details of the
TPMRA implementations (key length, serial or semi/fully-
parallel realization) must be chosen with respect to the tar-
get environment, including the used parameters, the timing,
the available channel capacity and the available chip-area,
of course. As already investigated in [15], the area (Fig. 4a)
of the TPMRA realizations scales approximately linear due
to the linear complexity of the adders and ranges around
one square-millimeter for the investigated key sizes. Note,
that most of the area is consumed by the bit packaging, be-
cause of the necessary storage of the inputs for the adaption
(see Section 4).

Here we additionally established the throughput (i.e.
keys per second) for the serial TPMRA subject to the av-
erage synchronization time of 400 iterations in Fig. 4b.
Four real communication channels and their bandwidths
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Figure 4. Post-synthesis results for chip-area
(logic) vs. key length (a) and (b) average key
exchange rate vs. key length.

were chosen and the chosen log-scale allows to still see
the small difference regarding the throughput for Bluetooth
and NFC in comparison to WLAN and PCI (for compar-
ison). For every protocol, we used the minimum available
packet length due to our bit packages of 32 bit: (PCI 32
bit burst mode), WLAN 801.11g 512 bit, Bluetooth 190 bit
and a Near Field Communication channel 64 bit. A com-
parison among the different communication channels indi-
cates different slopes of the calculated (approximately lin-
ear) throughput characteristics. They denote the rising influ-
ence of the bit packaging calculations at smaller key lengths
for channels of higher bandwidth such as WLAN (or PCI).



Thus, the slope of the WLAN throughput characteristic is
significantly higher than for Bluetooth and NFC. As ex-
pected, the influence of the channel bandwidth significantly
determines the performance of the key exchange protocol.
Obviously, the bottleneck is the underlying communication-
bus. Given a high-speed communication channel, the pro-
posed key exchange and rekeying in the kHz-range allows
us to use rather weak encryption algorithms (cf. Section 3),
as the security may rely on fast rekeying and the short key
lifetimes. Of course, sophisticated encryption algorithms
like AES or 3-DES can also be used.

6. Summary and Outlook

In the context of ubiquitous and pervasive computing and
its special restrictions we promote the discussion of alterna-
tive security solutions. A method for authenticated symmet-
ric key exchange for devices with severely limited resources
based on Tree Parity Machine Rekeying Architectures [15]
was suggested.

The silicon area of the used architectures lie within a
square-millimeter and allow to exchange keys of practical
sizes within milliseconds. The proposed exchange also al-
lows for efficient rekeying schemes and short key lifetimes.
The authenticated exchange of one 588 bit key on aver-
age demands to transmit 400 bit in 13 Bit Packages of 32
bit each. An implementation in general embedded systems
can be done with only small overhead. Thus we suggest
it as an IP-core for (wireless) computing devices of lim-
ited resources and even more in moderate security scenar-
i0s. The currently known attacks are successful only with a
certain probability and all refer to a non-authenticated key
exchange. The proposed entity authentication defeats these
attacks on principle.

A future fully serial realization of the architecture will
use TDMA of a single hidden unit. This further decreases
the silicon area consumption but at the cost of an increase in
necessary cycles for one output bit. This is a favorable de-
sign given low-bandwidth communication channels. Secure
group communication in a broadcast or multicast and thus
key exchange between multiple parties is also possible us-
ing several strategies currently under investigation. An ef-
ficient authentication and key management is needed here,
due to frequent key exchanges on join or leave actions. The
integration into concrete devices and its practical evaluation
is also subject to future work.
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