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Abstract

In the paper we present the results which enable to calculate the
nonlinearity of round functions with quite large dimensions e.g.
32 x 32 bhits, which are used in some block ciphers. This can be
applied to improve the resistance of these ciphers against linear
cryptanalysis. The involved method of calculating the
nonlinearity is rested on the notion of multi-dimensional Walsh
transform. At the end we give the application to linear
cryptanalysis of the TGR block cipher.
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1 Introduction

The linear cryptanalysis introduced by Mitsuru Matsui [6] is one of the basis attacks on block
ciphers. The resistance of block cipher against this attack is the main requirement in stating its
security. The notion of nonlinearity of Boolean functions and Boolean mappings (S-boxes)
introduced in [7] and [8, 9] is essential in formulation of linear cryptanalysis. In this paper we
consider the round function of a block cipher consisting of parallel S-boxes which inputs are
concatenated and outputs are xored giving this way the output of the round function. The
problem is to calculate the nonlinearity of such Boolean mapping when the component S-
boxes are quite large, e.g. having 8-bit inputs and 32-bit outputs. In the CAST-like ciphers [1,
2] there was used the round function with four such S-boxes giving the mapping of 32-bit
input and 32-bit output. The resistance of the CAST-like cipher to differential and linear
cryptanalysis was investigated in [5]. At present, it is not possible in a direct way to calculate
the nonlinearity of this round function. In the paper [11] the authors stated, without giving
details, that they had calculated that nonlinearity and gave the numerical result. Following
their suggestions we have proved here Lemma 4.3 and Theorem 4.4 which enable to calculate
the nonlinearity of the function. The basic inspiration was taken from the notion of multi-
dimensional Walsh transform as presented in [3], although its explicit definition is not
presented here since we needed only its special case of separable variables. The examined
round function is a good approximation of that one used in the cipher CAST-256 [2], where in
two cases bitwise addition is replaced by algebraic operations like arithmetic addition and
subtraction modulo 2%. The estimation or the explicit calculation of the nonlinearity of round
function is used to obtain the resistance of the cipher against linear cryptanalysis. The result is
better when we consider the round function as a whole than that one obtained by taking into
account the nonlinear properties of the individual S-boxes.

The paper is organized as follows. In section 2 we present the basic facts on Boolean
functions, their nonlinearity and the fast Walsh transform. The section 3 describes the
substitution boxes and their linear approximation tables. In section 4 there are investigated the
nonlinear properties of the introduced round function. The Lemma 4.2 was given without
proof in [11]. The Lemma 4.3 and Theorem 4.4 seem to be new ones. We have implemented
the method and calculated the nonlinearity of the round function with four S-boxes taken from
CAST-128 confirming the numerical value from [11]. In section 6 we give the application of

our results to the linear cryptanalysis of the block cipher TGR which is a modification of the



hash function Tiger proposed by Anderson and Biham [4] working in the encryption mode.
We have collected in the paper the proofs of facts on linear cryptanalysis and Walsh transform
which are commonly known but in most cases are presented without proofs in the original

papers.

2 Boolean Functions

A Boolean function with m inputs is a mapping f:Z; — Z,, where meN. The Boolean
function f:Z7 — Z, is an affine one when it can be represented as f (X) = amXm @ am-1Xm-1
@ ... ® aixy @ ao, where X = [Xm, Xm-1, ..., Xa]€ Z3 and aie Z,, i = 0, 1, ..., m. The affine
function f is linear when ao = 0.

Let o, be n-dimensional binary vector being the binary representation of an integer i

written in the decimal form, i.e. @,=[0, ..., 0], &,= [0, ..., 0, 1], ..., @, =[1, ... ,1]. Then

1
the binary vector [f(a,), f(a,),..., f(a,, )] is called the truth table of the Boolean function
f:Z; —Z,. The truth table uniquely describes the Boolean function, hence writing f we
mean usually the binary vector representing its truth table.

For a given Boolean function f we define the polar function f(x)=(-1)"* which
takes the values from the set {- 1, 1}.

We denote wt(a) the Hamming weight of the binary vector a = [am, am-1, ..., a1]€ Z;',
which is the number of ones in a, i.e. wt(a) :Zm:ai . For given two vectors a, be Z;' their

i=1

Hamming distance is defined as the number of places where the coordinates of these vectors
are different, i.e. d(a, b) = wt(a @ b). For given two Boolean functions f,g:Z — Z,, their
Hamming distance is defined as the number of places at which are different their truth tables,

e d(f, g) = #{xe ZI'[ f(x) = g0} =wt(f ® g) = > f (x) ® g(x) , where wt(f @ g) is the

xeZy

Hamming weight of the function f & g.



Lemma?2.1

Let f,g:Z7 > Z,, then

d(f,g)=2""-1 Y f(§(x).

XeZ

N3

Proof
Let f =[a,a,,...a,.]1, §=[b,b,,..,b,,] and p. — the number of places where a; = b;,
p- —the number of places where a; = b;.

We can write

DI =p,—p =p.—p +(p.—p)=p.+p —p -p =2"-2p,
xeZy jffﬂ_/

hence

> f0§()=2"-2p.,

XeZy
2p =2"- Y F(x)§(x),
XeZy
p=21=1 3 F (0§,
xeZy

which is the thesis of the Lemma.

The real function of u e Z defined as

W(f)(u)= 2 f(x)- (1"

m
XeZ,

is called the Walsh transform of the function f, where f:Z7 - R.

The Walsh transform of the polar function f atthe point u is denoted W(f)(u) or V\7(f)(u) .

Lemma 2.2
For a Boolean function f :Z; — Z, and an affine function A,¢(x) =a - x ® c, where

aeZ,,ceZ, we have

d(f,A)=2Q" - (-)'W(f)@).



Proof

Using Lemma 2.1 one has

d(f,A)=2""-1Y F0A(0=2"" =1 3 F()(-1)* =

xeZy xeZy

=" S )P =2 -3 3 (D) (D) =

xeZy xeZy

=2" 3 (D) Y FOD™ =2 3 ()W (F)(@) = 4 (2" - (=)W ()(a)).

xeZy

[
Lemma 2.3
For a real constant ¢ and a real function f defined on a finite domain D one has
miDn{c— f(x),c+ f(x)}zc—man|f (X))
Proof
M =miDn{c— f(x),c+f(x)} <
oBoc-fX)=Mvec+f(X)=M]A[V,,c-fF(X)2Mac+ f(X)>2M]=
o f)=c-Mv-fxX)=c-M]A[V,, f(X)<c-M Ar-f(X)<c-M]=
=B [f=c-M]a[v,, [f()|<c-M]e
<:>manf(x)|:c—M <:>c—man|f(x)|:M.
[

The nonlinearity of a Boolean function f :Z; — Z, is defined as
NL, =min #{XEZQ‘ | f(X) ;ta-x@c},
a,c
where ae Z;,c e Z,. The nonlinearity of the Boolean function is its Hamming distance to the

nearest affine function.

Lemma 2.4

Let f:Z7 > Z,, then

NL, =2 - smaxW(f)(a)].



Proof

NL, =m;l;l#{XeZ?| f(x);ta-x@c}:m;rn)d(f,Ad’C):m;p{d(f,Aavo),d(f,Aﬁyl)}z(*).

cezZ, ceZ,

Using Lemma 2.2 one has

()= minth (2" - (-3 (F)(@). 2" - (YW (@)=
- g?{zm-l —1W(f)(a), 2" +%W(f)(a)}= (**)

and Lemma 2.3 gives

() =27~ max{iw (F)(a) = 2" - 3 maxiw (f)(a)|.

The effective method of calculating the nonlinearity of a Boolean function f must

involve the fast calculating of the Walsh transform W ( f ).

The Walsh-Hadamard matrix is defined as

Hm: Hm—l Hm—l ’
H -1 _Hm—l

where m=1, 2,3, ... and Hp=1; which can be written as
m = H1 ® Hp,

1 1
where H, :L J and ® denotes the Kronecker product, e.g. for

b, b
B a, a, B b1 2 3
A_aa’ B=|b, b, b
> b, by by
we have
b,A b,A bA
aB a,B
A®B:{ } B®A=|b,A b,A bA|
a,B a,B
b,A b;A DbyA

One can observe that the Walsh-Hadamard matrix is a symmetric one: H, =H. .

m



Lemma 2.5
Hm :[(_1)u»V]’
where u,veZ3, U= [Um, Una, -, U1], V = [Vm, V-1, ..., V1] and u=a,, v=a,, the indexes i, ]

=0,1,.. 2" -1 indicate the row and the column of the matrix Hy,.

Proof (by induction)

_1\00 _1\01 1 1
Letm=1, then u,veZ, and [(—1)”'”]: =0 (D) = =H,.
(__1)10 (__1)11 1 __1
Let us assume the thesis of the Lemma is true form =1, 2, ..., k. Then for m =k + 1 we have
1 1 oy
Hea=H®H = ®[-1"],
where u,v e Z%, u = [Ug, U, ..., Us], V = [Vi, Vict, .., Va].
We calculate
1 1 oy _10 _luv _10 _1UN
H,. :{ }®[(_1) ]{( PIED™T (D' )w]}:
1 -1 EDIED™T GDIIED™

_ [<—1>““‘““ ("] (—1)“%1[(—1)””]} -
(=1) %Y (=) (=D [(=1)*] '

where u, ,,V,,, € Z, indicates the sub-matrices of the matrix Hy.1. Hence
(*) =[(=D) "Vt = [(=1)"'], where u”, v e Z§™ and U’ = [Uke1, Uk, Ukt -..y Us], V7 = [Vist,

Vi, Vk-1, ..., V1]. This implies that the thesis is true for arbitrary m > 1.
[ |

Lemma 2.6

The Walsh transform of the function f :Z} — R can be represented as

W(f)=f- Hp.

Proof

From the definition of the Walsh transform we have

W(f)(u)= D f(x)-(-)"* = f -h,, where h, =[(-1)"*,(-D)"* ..., () "] .

m
XeZ,



Let us notice that [h, ,h, ....h, 1 is the symmetric matrix [(-1)"™'], where i, j=0, 1, ...,
2"-1 are the row number and the column number of this matrix. Since [h, ,h, ,...h, 1=
=[(-1)""'], hence Lemma 2.5 gives [h, ,h, ....h, 1=H_, so h, is the i-th column (and

also the i-th row since the matrix is symmetric) of the Walsh-Hadamard matrix Hn,,. Hence the
vector containing all values of the Walsh transform of the function f for the succeeding

arguments U =ay,a,,...,a,,  isequalto W(f)=f-[h, .h, ,...h, J=F-H_.

2741

[
Lemma 2.7
For arbitrary X, yeR one has
max{|x+ y|,[x - y[} =[x +y|-
Proof
Let us notice that for x and y of the same sign it is |x+ y| >|x - y|, in the opposite case
X+ y|<|x—y|. Let us consider the cases:
1) If x,y >0, then max{|x+ yh|x- y|}:|x+ yl=x+y=[x+]y.
2) If x,y<0, then max{|x+ y||x— y|}: X+ y[==(x+y)=(=x)+(=y) =[x +|y].
3) If x>0,y<0,then max{|x+ vl [x- y|}:|x— y|=x—y=x+(=y)=|x+|yl.
4) If x<0,y>0, then max{|x+ yl[x- y|}: X=y|==(x=y)=(=x)+y=[x|+]y|.
[

Let f:Z; — Z, be a Boolean function and f its polar form. Let f[i_,_” represents the
truth table of f for the inputs from 0; to a;. Then the Lemma 2.6 gives

; H
[0..2m % g7 '[2mt, om 71]] ) H

A

W(f)=f -H_=f

m [0..2m"-1] "

>

m-1

—h

Hm:[ Hm_l }:[Wo +W1on _Wl]'

- Hm—l

m-1

A ~

where Wy = f -Hpp and Wy = f - Hm-1. This way to calculate the Walsh

[0...2™*-1] [2™...2™ -]

transform of the function f : 27 > {-1,1} it is sufficient to know the transforms Wy, W, of

A

the functions f,, f,: 2" —{-1,1}, where f =[f,, f].



To speed up the calculation of the Walsh transform one can create in the computer
memory the matrix W4 having dimension p x g, where p = 2% = 65536, q = 2* = 16, which
has rows indexed by the successive 16-bit vectors f*,i=0, ..., 65535 (being the truth tables
of Boolean functions of 4 variables) and the columns are indexed by the successive 4-bit
vectors a; (j =0, .., 15). The (i, j)-entry of the matrix W4 is the value of Walsh transform
W(fi“)(aj) . To calculate the Walsh transform of the function f°:Z3 — {1, 1}, its truth table
is divided into two halves which are the truth tables of the functions f.", fj4 75 >{-11}.
Then we calculate W(fs)(k) =W4(i,k) +W4(j,k) and W(fs)(k +16) =W 4(i,k) -W4(j,k),
where k = 0, ..., 15. We follow in a similar way for function having more inputs, e.g. to
calculate W(fs) we divide the truth table of function having 6 inputs into two truth tables of
functions having 5 inputs and in turn into four truth tables of 4-input functions.

If we calculate W(f) = [W, +W,, W, —W,] to obtain the nonlinearity of f, then from

Lemma 2.4 we need magg’\N(fA)(u)‘ and from Lemma 2.7 we can in the last step of calculation

ueZ,

of Walsh transform limit to take the maximum over the elements of |W, | +|W, |.

3 Substitution Boxes

A substitution box of dimension mxn is a transformation S:Z7 — Z,, where m, ne N. The
substitution box S can be considered as a collection of its coordinates n Boolean functions, i.e.
S = [fn, fo-1, ..., f1], where f,:Z7 > Z,.

The nonlinearity of substitution box S:Z7 — Z} is defined as

NL, = mbin NL, s,

where b e Z)\{0}, b = [by, by, ..., b1] and NLys is nonlinearity of the Boolean function
bS = bn fn@ bn_]_ fn_]_ @ e @ b]_ f]_.
For a given substitution box S:Z7 — Z5 it is defined the linear approximation table

which elements are

LAT, (a,b) =#{x e 2 |a-x=b-S(x) |- 2",



where ae Z7,b € Z; \{0}.

Lemma 3.1
For a substitution box S:Z7 — Z) we have
LATs(a, b)=2"'-d(@-x, b-S),
where ae Z3,b € Z; \{0}.

Proof

LAT,(a,b)=#{xe Z7 |a-x=b-S(x)}-2"* =2" —#{x e Z]' [a-x £ b-S(X) |- 2" =
=2"'_d(a-x,b-S).

Lemma 3.2

For a substitution box S:ZJ — Z one has

NL, =2"" - m%x| LAT, (a,b)|,

where ae Z7,b € Z; \{0}.

Proof

NL; = min NL, s = min #ixezl |b-S(x)#a-x®c)
= min #xeZl [b-S(X)za-xvh-S(x)#a-x®1)=

= min {d(b-S,a-x),d(b-S,a-x®1} = min {d(-s,a-x),2" —d(b-S,a-x)}=
= 2"+ min {d(b-s,a-x)-2"1 2" —d(b-S,a-x)}= (*)

From Lemma 3.1 and next from Lemma 2.3 we obtain

(*)=2""+ rgibn {~ LAT,(a,b), LAT, (a,b)} = 2" - rr;abx|LATs (a,b)| .

By the linear approximation of a substitution box S:ZJ — Z, we mean the equation
a-x=b-S(x),
where ae Z; ,b e Z, \{0}. Let p be the probability of satisfying this equation for given a and
b, itis

10



#{XGZ§ |a-x=b-S(x)}
2" '

Then

p_l _ |#{x eZyla-x=b- S(x)}—zm*l| _|LAT(a,b)
2| | 2" | 2"
has a meaning of efficiency of the linear approximation of substitution box S:Z7 — Z7.

Let ps denotes the probability of best linear approximation, it means that one for which the

_1‘

efficiency > has the biggest value.

Ps

Lemma 3.3 (Lee et al. [5])

For a substitution box S:Z3 — Z; itis

1‘_ 2" — NL

pﬂ _E om

Proof

By definition

1‘ max|LAT (a,b)|

Py 3= o and by the Lemma 3.2 we have

NLg =2™* - m%x| LAT, (a,b)|, hence m%x| LAT; (a,b)| = 2" - NL; and

o 4
)
_ TQ%X| LAT (a, b)| _ 2m—1 _ NLS

2" 2m '

4 The Nonlinearity of the Round Function
Let F:Z5" — Z) be a transformation such that

F(X) = F(Xk Xty -+ey X1) = S1(X1) @ Sz(X2) @ ... D Si(Xw),
where S, :Z7 > Z5,i=1,2,..,k and S; = [fin, fin-1, ..., fial, fi; 2y >7,,j=1,2,..,n.

11
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\ 4

Figure 4.1: The structure of F round function.

Similarly to substitution boxes it is defined the nonlinearity of the transformation
F:Z" > 27):

NL =minNL, (4.1)

where b e Z; \{0}, b = [by, by, ..., b1], F=[Fy, Foog, oo, Fil, F 125" > Z,,
Fi(x) = Fi(Xk, Xic1, ..., X1) = f1, j(X1) © f2, j(X2) @ ... @ fi j(X«) and NLp.r is nonlinearity of the
Boolean function b-F = byF,® bp1F1 @ ... @ byF;.

Lemma 4.1 (Piling-Up Lemma, Matsui [6])

Let Xi, Xz, ..., Xn be independent binary random variables, where n > 2 and let
P{X;i=0}=pi, P{Xi=1}=1-p; for i=1,2,..,n Then

P{X, ®X,®..0X, =0}=1+2""T](p,-H) =1+2"" &,
i=1 i=1

where p,=1+¢, —3<¢ <

[T

Proof (by induction)
Letn =2, then

P{X,® X, =0}=P{X, = X,}=P{X, =0,X, =0}+P{X, =1, X, =1} =
= PP, +(1_ pl)(l_ pz) = (%""91)(%""92)+(%_‘91)(%_52) =

12



TE, T 5E FEE, T —5E —TE TEE, =

26,6, =3 +2(p, —3)(P, —3)-

Let us assume the thesis of the Lemma is true forn =2, 3, ..., k. Then for n =k + 1 we have
P{X,®X,®...X, ® X,,, =0}=
=P{X,®X,®...X, =0,X,,,=0}+P{X,®X,®D...X, =L X, ,=1}=

K k
(527102 oo [1-2-2 T - Do -
i=1 i=1
K K
(% +2'T] gij@ + &) + (% -2 Sij(% — &) =
i=1 i=1

+
+

IS N

k k+1 k k+1
1 1 k-2 k-1 1 1 k-2 k-1 _
+t+56, 12 H5i+2 H5i+z—55k+l—2 H5i+2 Hei =
i=1 i=1 i=1 i=1

K+1 k+1

=%+2kH‘9i :%+2kH(pi -3)
it i1

The calculation above implies that the thesis is true for n > 2.

The following lemma is a generalization of the result given without proof by Youssef,
Chen and Tavares in [11].

Lemma 4.2

k
NLg > 2" -2 J(2"" - NLg ).

i=1

Proof
Let us take the linear approximation of the transformation F :
a-x = b-F(x),
where a e Z",b € Z; \{0}, in other words
Xy @ axxy @ ... @ aXx = bS1(X1) @ bSy(x2) @ ... ® bSk(Xy).
Let ps denotes the probability of the linear approximation of transformation F having the best

ka—l _ NLF
2km '
Let us consider generalization of the above approximation, it is
aiXy @ axxy @ ... @ aXx = b1S1(X1) @ baSy(X2) @ ... D bSk(Xk),

efficiency, then by Lemma 3.3 we have |p, -4 =

13



where a, € Z;,b, € Z;\{0}. Let p, denotes the probability of generalized approximation
having the best efficiency. Then ‘pﬂ —%‘ < ‘ p, —%‘, since in the worst case we can take b, = b,

= ... = by = b. Let us transform the generalized approximation to the form

aiXy @ b1S;(X1) @ axxa @ bySy(X2) @ ... D axk D bySk(xk) = 0.
We assume that X; = axi @ b;Si(xj) are independent binary random variables having the
probability distribution P{X; = 0} = p;, P{Xi = 1} = 1 — p;i. This assumption is very natural
since p; are the probabilities of linear approximation of independent substitutions boxes S;. By

Lemma 4.1 we have

K
P=P{X,®X,®...® X, =0}=1+2[[(p, -,

i=1

k
p-3=2"]]|pi-4.
i=1

If we take the approximations of substitutions boxes having the best efficiency, which

probabilities are equal p, ,p, ,..., p, respectively, then
k
Zkll_ll‘pﬂi _%‘ :‘py _%"

Since ‘pﬁ —%‘ s‘py —%‘, hence &s 2k‘1]L[‘pﬁi —l‘
i=1

2km 2
and consequently

2

NLF > 2km—l _ 2k(m+1)—1]j‘ pﬁi _i‘ )

By Lemma 3.3 we obtain

NL. > 2km—1 _ 2k(m+l)—1 : 1 2km—1 _ 2k(m+1)_1 k 2m—1 — NLSi B

k(2™ —2NLg :
— 2km—1 _ 2k(m+1)1H[—3|} — 2km—1 _ 2k(m+1)fl—k(m+l) H (2m _ 2N|_Si ) =

m+1
i=1 2 i=1

K K
=2 1@ -2NLg ) =2 =2 T (2™ - NLs ).

i=1 i=1

14



Lemma 4.3
W(b-F)(u) =W (b-S,)u)W (b-S,)(u,)..W(b-S)(u,),

where u = [Uk, Uk, ..., U1].

Proof

Since b-F = ann @® bn—an—l D..P blFl for F= [Fn, Foi, ..., Fl], F. :ka —>7Z,,
j 2 2

Fi(x) = Fij(Xi, X1, ..., X1) = f1,j(X1) D f2,j(%2) © ... @ fi j(X),

we have

b-F(x) = byFn(X) @ bp_1Fn-1(X) @ ... ® biFa(X) =

= bn( fra(X1) @ fon(X2) @ ... @ fin(Xk)) @ bnoa( fin-1(X1) @ fon-1(X2) @ ... @ fun1 (X)) @ ... ©
bi( fr1(X1) @ f21(%2) @ ... @ fia(xy)) =

= bp frn(X1) @ bpa fip-a(X1) @ ... @ by fra(x1) &

@ bnfan(X2) @ bpgfon-1(X2) @ ... D b1fr1(X2) @ ... ®

® b ficn(Xk) @ b fcn-1(X) @ ... @ by fiea(Xi) = b-S1(X1) @ b-Sy(X2) @ ... ® b-Sk(Xk)

Then

W (b-F)(u) = Z(_l)b-F(x) (~1)"* = Z(_1)b~<s1(x1)®sz(xz)@..@sk(xk)) L

xeZkm X=[Xy Xyg e Xe ]
X, €25

— z z z(_1)b-Sl(xl)e-)b-Sz(xz)@..@b-sk(xk)(_1)urxl@uz»xz@...@uk-xk —

m m m
X€Zy Xy 1€Zy X,€Zy

— z (_l)b‘51(xl)(_1)'~‘1‘x1 Z (_l)b'sz(xz)(_l)uz‘xz Z(_l)b'sk(xk)(_l)uk'xk =

X, €2 X,€Z X €2y

=W (b-S,)(u )W (b-S,)(u,)...W (b-S,)(u,).

Theorem 4.4

k
N, =2 = 2"TT(2"" = NL,) -

i=1

Proof

By Lemma 2.4 NL, , =2"" —%makx’\/\? (b- F)(u)‘ and by Lemma 4.3
uesz

W (b F)(u) =W (b-S,)u)W (b-S,)(u,)..W(b-S)(u,),

hence

15



NLp =27 =4 max W (b-S)u)W (b-S,)(u,).. W (b-S,)(u,)|=

u=(uy Uy _g,.-Uy)

=2 — £ max\¥ (b-S,)(uy)| maxpi (b-S,)(u,)|...maxp (b- S, )(u,)|.

Since NL, =2"" —%max’\/\A/ (b- Si)(u)‘, it means maxM (b- Si)(u)‘ =2"-2NL, ,
I uezy uezy i

and consequently

k k
NLb,F — 2km—1 _%H(Zm _ ZNLb.sl ) — 2km—1 _ 2k—1H(2m—l _ NLb.sl ) ]
i=1

i=1

The above theorem has been used to calculate in the special cases the nonlinearity of

the function F according to the formula (4.1).

5 The TGR Algorithm

The TGR algorithm is a block cipher which works on 128-bit blocks and uses 256-bit keys.
The general scheme of the cipher TGR is shown in the Figure 5.1. The 128-bit plaintext P is
transformed to the 128-bit ciphertext C in three passes (r = 1, 2, 3) each consisting of eight
rounds (j=0,1, ..., 7).

The passes use the 256-bit keys K, obtained from the main 256-bit key K using the key
schedule algorithm Key sch. We have K; = Key_sch(K_1), where Ky = K. Each key K; is
divided into eight 32-bit subkeys k. j, which are used in the corresponding j-th round of the r-
th pass. The first use of Key_sch has as an input the main key K = (ko, k1, k2, K3, Ka, ks, ke, k7)
and gives as an output the key Ky = (K10, K11, K12, K13, K1.4, K15, K16, K1.7) used in the first pass.
Next we have as an input to Key_sch the key K; and we get as an output K, = (K0, K2.1, K22,
K3, ka4, K25, Kog, ko7) and analogously for Ks = (kso, K31, K32, K33, K34, K35, K36, K37). The
Key_sch is described by the formulae shown in Figure 5.2. Operations like + and — are just an
addition and a subtraction modulo 2 respectively, @ is a bitwise sum modulo 2, ~ denotes a
bitwise negation, << and >> are bitwise shifts left and right respectively (the loosing bits are
complemented by zeros), <<< and >>> are bitwise rotations left and right respectively.

The 128-bit input to the j-th round of the r-th pass is divided into four 32-bit blocks
denoted (A, j, Br,j, Cr,j, Dr,j) and the 128-bit output of this round is denoted (A’ j, B’y j, Cr,j,
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D’ j). The structure of the round is depicted in the Figure 5.3. The S-boxes Si, Sy, Ss, Ss are

taken from the CAST-256 cipher [2] and operation Rot is the data-dependent rotation function

just taken from the RC6 cipher [10] as shown in Figure 5.4.

in [4].

The TGR design is based on the hash function Tiger proposed by Anderson and Biham

P
fzs

fs

fs

fs
C

Figure 5.1. The scheme of the TGR encryption algorithm.

ko := ko — (k7 @ ((~ke) <<< 11) ® Oxa5a5a5a5b)

Pass1 |[¢——>“—

Ky

Pass2 |[e——“—1

K>

Pass3 |e—ox— |

Ks

256 / K

Key _sch

\ 4

Key _sch

\ 4

Key _sch

ks 1= k3 = (k2 @ ((~k1) >>>13))

k1 = k1 @ ko
ko 1= ko + ki
k4 = k4 @ k3
ks := ks + ky
ke := ke — (ks ® ((~ka) >>7))
k7 = k7 @ ks
ko := ko + k7
ke 1= ke — (Ko @ ((~k7) << 5))
k2 = kz @ k1
ks := ks + ks
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Ka
Ks
Ke
ky
Ko
¢l
ko
ks
Ka
ks
Ks
ky

= kg — (ks @ ((~ko) <<< 11))

= k5@k4
=Kkg + ks

= k7 — (ke © ((~ks) >>>13))

= ko @ k7
=ki + ko
= ke = (ki @ ((~ko) >> 7))
= k3 @ kz
=ks + ks
1= ks — (ks @ ((~ks) << 5))
= k6 @ k5
=ky + kg

Figure 5.2. The key schedule algorithm Key_sch.

32

Dr'j

32
\ 4 32
EB‘+ er

Al',j Bl’,j Cl‘,j
32 32 32

v 32

— |«

\ 4

—% +
Rot [ ¢—»
32 32 32
v v v
A’r,j B’r,j C,r,j

32

32

v
D’I’,j

Figure 5.3. The j-th round of the r-th pass of the encryption algorithm.
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X

l

y := x <<< [((d-(2d+1) mod 2%) <<< 5) & Ox1F] |&——

l

y

Figure 5.4. The data-dependent rotation function Rot.

The TGR decryption algorithm is obtained by taking the inversion of the TGR encryption
algorithm (suitable modification of the round function and opposite order of the subkeys).

6 Resistance of TGR to Linear Cryptanalysis

It has been stated in [5] that the best linear approximation of a cipher, satisfied with the

probability p, is bounded as follows:

, (6.1)

where « is the number of S-box linear approximations involved in the linear approximation

of the cipher and p, represents the probability of the best S-box linear approximation (among

all the a S-box linear approximations). In every round of the block cipher TGR there are
involved two 16x32-bit S-boxes each consisting of two 8x32-bit S-boxes taken from the
CAST-256. The linear approximation of a block cipher is based on the assumption of
independent round keys such that the linear expressions approximating the S-boxes are
independent. The sequence of approximations of the round functions (involving
approximations of the S-boxes) results in the overall linear expression for the cipher.
According to [6] the number of known plaintexts required to almost sure deduction of some

bits of the round keys is approximately equal to

N =

p

(6.2)
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It was shown in [5] (see Lemma 3.3 above) that the probability p, is given by

P —— _Z—m, (6.3)

1‘_ 2™ NL,.

where m is the number of input bits of the S-box and NL_.. is minimal nonlinearity of the S-

n

boxes involved in the approximation of the cipher. In our case of TGR cipher we have m = 16
and using Theorem 4.4 we have calculated NL_, being 28736 for the 16x32-bit S-box built

from the substitution boxes S; and S, taken from the CAST-256 cipher. The best linear
approximation of TGR cipher appears to be constructed using two round characteristics when
in each round it is approximated the left one 16x32-bit S-box (see Figure 5.3) and the
arithmetic addition and subtraction are replaced by xor operation and the data-dependent
rotation is neglected. These characteristics are not iterative ones. When calculating (6.3) with

our data we obtain

1024

1‘ 63
and putting « =24 in (6.1) we have

P, —% <0.725545-107%.

From (6.2) we get that the number of required plaintexts to perform the linear cryptanalysis is

N, >1.8996-10* ~ 2'¥

which is much more that the number 22

of all available plaintexts.

If we perform such analysis, when in each two round characteristic there are
approximated two 8x32-bit substitution boxes S; and S, having nonlinearity 74, we get that
the required number of plaintexts is greater than 2'%%. It shows that we obtain the better
resistance of the cipher to linear cryptanalysis when considering bigger S-boxes in the round
function confirming this way the observation made by Youssef et al. in [11].

Let us consider the TGR cipher reduced to two passes, i.e. 16 rounds. Performing the
linear cryptanalysis as described above we get the following data. In the first case of 16x32-
bit S-boxes, there are then o =16 S-box linear approximations involved in the approximation
of the cipher and it is required more than 2% plaintexts which is an unrealistic amount. In the
second case of 8x32-bit S-boxes, there are then « =32 S-box linear approximations involved

in the approximation of the cipher and it is required more than 2% plaintexts. We can
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conclude that TGR algorithm has a one pass (8 rounds) of the security margin with respect to

the linear cryptanalysis.
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