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Abstract

The goal of steganography is to pass secret messages by disguising them as innocent-looking cover-
texts. Real world stegosystems are often broken because they make invalid assumptions about the
system’s ability to sample covertexts. We examine whether it is possible to weaken this assumption. By
modeling the covertext distribution as a stateful Markov process, we create a sliding scale between real
world and provably secure stegosystems. We also show that insufficient knowledge of past states can
have catastrophic results.
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1 Introduction

The goal of steganography is to pass secret messages by sending innocuous data. The sender may give the
receiver covertexts that are distributed according to a covertext distribution. A covertext is made up of
multiple documents. For example, a digital camera can define a covertext distribution of photographs, in
which pixels, tiles, or even entire pictures can be considered documents. A stegosystem transforms a secret
message, called a hiddentext, into a stegotext that looks like a covertext.

Real-world stegosystems are broken because they make invalid assumptions about the covertext distri-
bution. Often, this is an assumption about an adversary’s lack of knowledge about the distribution. For
example, for a long time, modifying the least significant bits of pixels values in bitmaps was considered a
good idea because these bits looked random. Then Moskowitz, Longdon and Chang [MLC01] showed that
there is a strong correlation between the least significant bit and the most significant bit (see Figures 7-10
in their paper for an instructive example).

Provably secure steganography attacked the problem by quantifying the stegosystem’s need for knowledge.
Anderson and Petitcolas [AP98] observe that every covertext can be compressed to generate a hiddentext.
Therefore, to hide a message, we “decompress” it into a stegotext. Le [Le03] and Le and Kurosawa [LK03]
construct a provably secure compression based stegosystem that assumes both the sender and receiver know
the covertext distribution exactly. Independently, Sallee [Sal03] implemented a compression-based stegosys-
tem for JPEG images that lets the sender and receiver estimate the covertext distribution. Compression-
based schemes need to know the exact probability of every possible covertext.

Cachin [Cac98] proposed using rejection-sampling to generate stegotexts that look like covertexts. A
publicly known hash function assigns a bit value to documents. To send one bit, the stegosystem samples
from the covertext distribution until it selects a document that evaluates to the message XOR K, where K is
a session key both parties derive from their shared secret key. Sending multiple bits requires stringing several
documents together. Cachin’s scheme is secure if the hash function is unbiased. Because the stegosystem
only needs to be able to sample from the covertext distribution, it is known as a black-box stegosystem. This
paper examines the nature of the black-box required for steganography.

Hopper, Langford and von Ahn [HLvA02] improve on Cachin’s results. They give the first rigorous
definition of steganographic security by putting it in terms of computational indistinguishability from the
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covertext distribution. Their stegosystem uses Cachin’s rejection-sampling technique, but generalizes it to
be applicable to any distribution, assuming it (1) has sufficient entropy and (2) can be sampled perfectly
based on prior history. Reyzin and Russell [RR03] improve the robustness and efficiency of the Hopper et
al. scheme. Von Ahn and Hopper [vAH04] create a public-key provably secure stegosystem and Backes and
Cachin [BC05] and Hopper [Hop05] consider chosen covertext attacks. Despite these improvements, the two
assumptions necessary for provably secure steganography remain in the literature. The entropy assumption
appears inherent to the problem. We address the possibility of weakening the sampling assumption.

Some prior work focuses on the performance measures of black-box stegosystems. In particular, there
is the rate of a stegosystem, which measures how many bits of the message you can pack per document
transmitted. There is also the query complexity per document which measures how many times you need to
query the sampler in order to create a document of the stegotext. Notably, Dedic et al. [DIRR05] showed that
if the rate is w, then the query complexity per document is 2w. We do not worry about query complexity,
but rather about the very nature of the sampler at the disposal of a stegosystem, so the underlying question
is very different.

Black-box stegosystems [Cac98, HLvA02, RR03, vAH04, BC05, Hop05] assume that they have access
to an adaptive sampler. The sampler must be able to take an arbitrary history of documents as input and
output a document distributed according to the covertext distribution conditioned on the prior history. For
example, if our covertext distribution consists of images of teddy-bears, and each document is an 8× 8 pixel
tile, then the sampler’s input is the first k − 1 tiles of the image (say, the ears of the teddy bear), and the
output is the kth tile of the image (say, the nose). The stegosystem needs to be able to query the sampler
multiple times on the same input: it continues to sample until it gets a document that corresponds to the
message it wants to hide. The sampler must output many noses that correspond to the same set of ears.

Sampling teddy-bear noses based on teddy-bear ears is an absurd example. We use it because in the real
world there are no known covertext distributions that can be sampled based on history. Our work examines
whether accurate adaptive sampling is really neccessary. We come to the somewhat unsurprising conclusion
that a stegosystem must assume that the sampler it uses is accurate. Our chief contribution is to examine
what it really means to have a bad sampler.

There are many ways to characterize the abilities of a sampler. It can be contextual: given documents
di, . . . , dj−1, dj+1, . . . , dk, it produces possible values for dj . A special case of a context sampler is a his-
tory based sampler: given di, . . . , dj−1, it produces possible values for dj . Since history-based samplers
are sufficient for secure steganography, we limit our examination to those. Past experience has shown that
stegosystems are broken when there is a statistical correlation between documents of the covertext distribu-
tion. For example, the least-significant and most-significant bits in a bitmap are correlated, which leads to
Moskowitz et al’s [MLC01] attack. Therefore, a history-based sampler might make a mistake when it does
not consider some of the history. This means we can characterize a history-based sampler by the length
of history it considers. We call a sampler that considers only some of the history a semi-adaptive sampler,
while one that ignores the history entirely is called non-adaptive.

Semi-adaptive samplers lead us naturally to consider Markov processes. Suppose the actual covertext
distribution is D. The distribution D′ from which a semi-adaptive sampler draws is a Markov process. Since
a stegosystem approximates the distribution it samples, security requires that D and D′ are sufficiently
close. We introduce the concept of an α-memoryless distribution, a distribution that is computationally
indistinguishable from some Markov process of order α. We design the definition of α-memorylessness so
that it is necessary and sufficient for secure black-box steganography with semi-adaptive sampling.

We have three results:

1. We analyze what happens to the von Ahn and Hopper public key stegosystem [vAH04] when the
sampler only considers the last α documents of the history. We calculate how inaccuracy in the
sampler translates into insecurity in the stegosystem. Our results show that assuming the covertext
distribution is α-memoryless is neccessary and sufficient for maintaining security.

2. We analyze the security of non-adaptive black-box stegosystems. Independently,1 Petrowski et al. [PKSM]

1We presented preliminary results of this work in August 2004 [LM04].
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implemented a non-adaptive stegosystem for JPEG images, giving empirical evidence that memoryless
distributions exist and can be used for secure steganography.

3. We construct a pathological α-memoryless high-entropy distribution for which black-box steganography
is infeasible if the stegosystem’s sampler considers only the last α−1 documents of the history (under the
discrete logarithm assumption). An efficient adversary can detect any attempt at covert communication
with overwhelming probability.

Organization: Section 2 presents notation and definitions. Section 3 analyzes the von Ahn and Hopper
stegosystem [vAH04] in the context of semi-adaptive sampling. Section 4 examines non-adaptive stegosys-
tems. Section 5 constructs a pathological covertext distribution for which black-box steganography is infea-
sible. Section 6 concludes.

2 Notation

We call a function ν : N→ (0, 1) negligible if for all c > 0 and for all sufficiently large k, ν(k) < 1/kc.
The hiddentext will always be in {0, 1}∗. A covertext is composed of a sequence of documents. Each

document comes from the alphabet A; |A| may be exponential. We denote concatenation with the ◦ operator;
a string s can be parsed to s = s1 ◦ s2 ◦ ... ◦ sn, where |s| = n. The symbol λ denotes the empty string.

We say that a function f : A→ {0, 1} is ε-biased with respect to distribution D if |Pr[d← D : f(d) = 0]− 1/2| <
ε. A ε(k)-biased function is called an unbiased function if ε is a negligible function.2 A covertext distri-
bution that has sufficient minimum entropy for steganography is called always informative (see Hopper et
al [HLvA02] for details).

We write x ← D〈h, n〉 to denote sampling n documents from D conditioned on the prior history h;
D〈h, n〉 defines a distribution over An. A semi-adaptive sampler Dα〈h〉 samples one document from the
distribution D conditioned only on the last α documents of h. For ease of exposition, we introduce the
notation Dα〈h, n〉 to mean generating an n-document string by calling the semi-adaptive samper n times,
each time appending the result to h. This is syntactic sugar; anything that can be done with Dα〈h, n〉 can
be done using only Dα〈h〉.

An α-memoryless distribution is indistinguishable from a Markov process of order α. (A sequence of
random variables X1, . . . , Xn such that for α < i ≤ n, the conditional distribution {Xi | Xi−α, . . . , Xi−1}
is identical to the conditional distribution {Xi | X1, . . . , Xi−1}.) Since we require computational indistin-
guishability, we parameterize everything by k (e.g. Dk, a family of distributions).

Definition 2.1 (α-Memoryless). Let Dk be a family of distributions indexed by a public parameter k and
let Dα

k be the best Markov model of order α that approximates Dk. We define the advantage of an adversary
A against the Markov model as:

Advmem
D,α (A, k) = |Pr[h← Dk〈λ, n(k)− 1〉;x← Dα

k 〈h, 1〉 : A(h ◦ x) = 1]

−Pr[x← Dk〈λ, n(k)〉 : A(x) = 1]|

We let InSecmem
D,α (t, n, k) = maxA∈A(t,n,k) Advmem

D,α (A, k), where A(t, n, k) is the set of all adversaries that run
in time t(k) and get a sample n(k) documents long. We say that Dk is α-memoryless if InSecmem

D,α (t, n, k) ≤
ν(k) for some negligible function ν. Dk is strictly α-memoryless if
InSecmem

D,β (t, n, k) is non-negligible for all β < α.

Remark This property is necessary and sufficient for steganography with semi-adaptive sampling.
2The function f is typically chosen after we fix the distribution (and the security parameter). A universal hash function is

often used in practice.
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2.1 Standard Cryptographic Notions

We define InSecdist
X,Y (t, n, k) as the maximum probability that an adversary can distinguish distribution Xk

from Yk if it runs in time t(k) and gets a n(k) document long sample.

Definition 2.2 (Indistinguishability). Let {Xi} and {Yi} be two families of distributions indexed by a
public parameter k. We say the advantage of an adversary A trying to distinguish X from Y is:

Advdist
X,Y (A, k) = |Pr[x← Xk : A(x) = 1]− Pr[y ← Yk : A(y) = 1]|

InSecdist
X,Y (t, n, k) = maxA∈A(t,n,k) Advdist

X,Y (A, k) where A(t, n, k) is the set of all adversaries that run in t(k)
time and get a challenge string n(k) documents long. We say that X and Y are indistinguishable (X ≈ Y )
if InSecdist

X,Y (t, n, k) ≤ ν(k) for some negligible function ν.

Steganography requires an IND$-CPA cryptosystem whose ciphertext is indistinguishable from random.
InSeccpa

E (t, q, n, k) is the insecurity of cryptosystem E against a chosen plaintext attack by an adversary that
runs in t(k) time, makes q(k) queries and gets responses totaling n(k) bits.

Definition 2.3 (IND$-CPA). Let E = (G, E, D) be a public-key cryptosystem; G generates the public/secret-
key pair, E is the encryption function, and D is the decryption function. Let R be the uniform distribution
over {0, 1}∗ such that ∀m : |R(m)| = |EPK(m)|. The advantage of an adversary A against E in a chosen
plaintext attack (CPA) is:

Advcpa
E (A, k) =

∣∣∣Pr[PK ← G(1k) : AE(PK,·)(PK) = 1]− Pr[AR(·)(PK) = 1]
∣∣∣

We let InSeccpa
E (t, q, n, k) = maxA∈A(t,q,l,k) Advcpa

E (A, k), where A(t, q, l, k) is the set of all adversaries that
run in t(k) time and issue q(k) queries, getting a response totaling n(k) bits. We say that E is indistinguish-
able from random under an adaptive chosen plaintext attack (IND$-CPA) if InSeccpa

E (t, q, n, k) ≤ ν(k) for
some negligible function ν.

The pathological covertext distribution we construct in Section 5.1 requires a secure stateless signature
scheme.

Definition 2.4 (Stateless Signature Scheme). A stateless signature scheme Σ = (G, σ, V ) is a triple of
polynomial time algorithms such that:

1. G(1k) is a probabilistic algorithm that generates a k-bit signing key SK and k-bit verification key V K.

2. σ : {0, 1}k ×Mk → {0, 1}p(k) is a probabilitic algorithm that on input σ(SK,m) outputs a p(k) bit
signature on message m using the signing key SK.

3. V : {0, 1}k ×Mk × {0, 1}p(k) → {0, 1} is the standard verification function that takes the verification
key V K, a message m and p(k)-bit signature as input.

Definition 2.5 (Secure Signature Scheme). The advantage of adversary A against the signature scheme
Σ = (G, σ, V ) in an adaptive chosen message attack is:

Advsig
Σ (A, k) = Pr[(SK, V K)← G(1k); (Q, m, s)← Aσ(SK,·)(V K) : V (V K, s,m) = 1 and m 6∈ Q]

(The adversary A must honestly record all of its queries to σ(SK, ·) on the query tape Q.)
We let InSecsig

Σ (t, q, k) = maxA∈A(t,q,k) Advsig
Σ (A, k), where A(t, q, k) is the set of all adversaries that

run in time t(k) and make q(k) queries to σ(SK, ·). We say that Σ is a secure signature scheme if
InSecsig

Σ (t, q, k) ≤ ν(k) for some negligible function ν.

Goldreich [Gol04] shows that stateless signature schemes exist if one-way functions exist. It is also
known that the discrete logarithm assumption implies one-way functions. Therefore, the discrete logarithm
assumption also implies the existence of stateless signature schemes. We let DL(t, k) be the maximum
probability that any algorithm running in time t(k) can solve the discrete logarithm problem:
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Definition 2.6 (Discrete Logarithm Assumption). Let G be a group of order p, where p is a k-bit
prime, and let g be a generator of G. The advantage of an adversary A in computing the discrete log is:

Advdl
G(A, k) = Pr[x← Zp; y ← A(gx, G, g, p) : gy = gx]

Let DL(t, k) = maxA∈A(t,k) Advdl
G(A, k), where A(t, k) is the set of all adversaries that run in time t(k).

The discrete logarithm assumption states that for certain G, DL(t, k) ≤ ν(k) for some negligible function ν.

2.2 Steganographic Notions

The following definitions are either standard or come from von Ahn and Hopper [vAH04]. We assume that
all adversaries are probabilistic polynomial-time Turing machines. However, the distributions we work with
are arbitrary and may act as arbitrarily powerful adversaries.

The standard specification [vAH04] of a public-key stegosystem is:

Definition 2.7 (Public Key Stegosystem). A public key stegosystem is the triple S = (SG, SE, SD).
SG(1k) generates a key-pair (SK, PK). SE(PK, m) takes the public key PK and a message m ∈ {0, 1}∗,
and returns some stegotext s. SD(SK, s) takes the secret key SK and stegotext s and returns a hiddentext
m. For all m ∈ {0, 1}∗, the probability that SD(SK,SE(PK, m)) fails to recover m should be negligible.

Von Ahn and Hopper [vAH04] define the security of a public-key stegosystem against a chosen hiddentext
attack. An adversary A queries an oracle with hiddentexts. The oracle responds either with stegotexts
generated by SE(PK, ·) or with covertexts of the appropriate length, generated by D∗(·). A should not be
able to distinguish the two cases.

Definition 2.8 (SS-CHA). The advantage of an adversary A against a public-key stegosystem S =
(SG, SE, SD) in a chosen hiddentext attack (CHA) is:

Advcha
S,D(A, k) =

∣∣∣Pr[PK ← SG(1k) : A
SED(PK,·),D
k = 1]− Pr[AD∗(·),D

k = 1]
∣∣∣

We let InSeccha
S,D(t, q, n, k) = maxA∈A(t,q,n,k) Advcha

S,D(A, k) where A(t, q, n, k) is the set of all adversaries
that run in t(k) time, make q(k) queries and get responses totaling n(k) bits. A stegosystem is considered
secure against a chosen hiddentext attack (SS-CHA) if InSeccha

S,D(t, q, n, k) ≤ ν(k) for some negligible function
ν.

Remark We restrict the usual definition of security. Typically, the adversary is allowed to query the
stegosystem with any history and message. In our model, we assume that an adaptive sampler does not
exist. A stegosystem that is secure against such an attack is an adaptive sampler (see Hopper [Hop04]
Section 3.3.2). We force the adversary to always query the stegosystem with history λ (the empty string).

3 Semi-adaptive stegosystem

In this section we examine what happens to the von Ahn and Hopper [vAH04] public-key stegosystem when
we replace the adaptive sampling oracle with a semi-adaptive one. We show that if the oracle samples based
on the last α documents of the history, then an α-memoryless distribution is necessary and sufficent for
maintaining security.

3.1 The vAH04 Stegosystem with Semi-adaptive Sampling

The von Ahn and Hopper stegosystem [vAH04] (Construction 2 in their paper) is a public-key provably
secure stegosystem. It uses an IND$-CPA public-key cryptosystem E = (G, EPK , DSK) and a publicly
known function f : Σ → {0, 1} that is ε-biased with respect to the covertext distribution Dk. The encoder
first encrypts the message using EPK . Next, for each bit b of ciphertext, the encoder samples the covertext
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distribution until it gets a document d such that f(d) = b. The encoder appends all of the resulting
documents together to form the stegotext. The decoder extracts the ciphertext by evaluating f on every
document of the stegotext and then decrypts the ciphertext. For the reader’s convenience, we reprint the von
Ahn and Hopper stegosystem using our notation; the encoder is defined in Algorithm 3.1 and the decoder is
in Algorithm 3.2.

Algorithm 3.1: Encode
Input: Public key PK, message m, number of times to sample T
step 1: Encrypt message

c← EPK(m) ;

step 2: Stegocode ciphertext
parse c as c1 ◦ c2 ◦ ... ◦ cn ;
h← ε ;
for j ← 1 to n do

i← 1 ;
repeat

sj ← Dα
k 〈h, 1〉, increment i ;

until f(sj) = cj or i > T ;
h← h ◦ sj ;

end
s← s1 ◦ s2 ◦ ... ◦ sn ;

return s ;

Algorithm 3.2: Decode
Input: Secret key SK, stegotext s
step 1: Extract ciphertext

c← f(s1) ◦ f(s2) ◦ ... ◦ f(sn) ;

step 2: Decrypt message
m← DSK(c) ;

return m

For the remainder of Section 3, we will refer to the von Ahn and Hopper stegosystem as S = (SG, SE, SD)
and assume that Dk is the covertext distribution. We define a length function L : Z→ Z that calculates the
length of a cipherphertext for a message m: L(|m|) = |EPK(m)|. Von Ahn and Hopper [vAH04] prove that
their stegosystem is secure:

Theorem 3.1 ([vAH04]). If Dk is an always informative distribution and f is ε-biased on Dk, then:

InSeccha
S,Dk

(t, q, n, k) ≤ InSeccpa
E (t + O(kn), q, n, k) + L(n)ε

Remark What Theorem 3.1 really states is that the output of S is indistinguishable from the distribution
represented by its covertext oracle.

S uses a perfect sampler. We now consider the stegosystem T = (TG, TE, TD)3 that functions identically
to S, except that its only access to Dk is via Dα

k , an oracle that only considers the last α documents of the
history. The main result of this section is the proof that T is correct and that T is secure if and only if Dk

is α-memoryless.
3As a mneumonic device, think of S as the stegosystem with a Standard sampler and T as having a sampler that considers

only the Tail of the history.
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3.2 Analysis of T
Lemma 3.2. Assume that Dk is an always informative α-memoryless distribution and f is an ε-biased
function on Dk. For all hiddentexts m ∈ {0, 1}∗, the probability that T fails to encode m is negligible:

Pr[(PK, SK)← TG(1k); s← TE(PK, m);m′ ← TD(SK, s) : m′ 6= m]

≤ L(|m|)(1/2 + ε + InSecmem
D,α (O(1),L(|m|), k))k

Proof. Suppose that f is β-biased on Dα
k for some value of β. The probability that the stegocoder fails to

encode a single bit is at most (1/2 + β)k. Therefore, the probability that the stegocoder fails to correctly to
encode the entire ciphertext is at most L(|m|)(1/2 + β)k.

We calculate |ε−β| by creating an adversary A to distinguish Dk from Dα
k . A gets a challenge string h◦x

of length at most L(|m|) where h ← Dk〈λ, n(k) − 1〉 and x is either generated by Dk〈h, 1〉 or Dα
k 〈h, 1〉. A

calculates f(x) and outputs the result. A’s advantage is |ε− β| ≤ InSecmem
D,α (O(1),L(|m|), k). We substitute

for β to get the final result.

Remark We note that T may still be correct if Dk is not α-memoryless (as long as f is unbiased). Also,
decryption errors can be dealt with in a straightforward manner; details are omitted.

Theorem 3.3. If Dk is an always informative α-memoryless distribution and f is ε-biased, then T is
SS-CHA secure:

InSeccha
T ,D(t, q, n, k) ≤ InSeccpa

E (t + O(kn), q, n, k) + nInSecmem
D,α (t + O(n), n, k) + L(n)ε

Proof. Let Dk be an always informative α-memoryless distribution and f be ε-biased. By construction of
T , we have:

InSeccha
T ,Dk

(t, q, n, k) = InSeccha
S,Dα

k
(t, q, n, k) + InSecdist

Dk,Dα
k
(t, n, k)

We know from Theorem 3.1 that:

InSeccha
S,Dα

k
(t, q, n, k) ≤ InSeccpa

E (t + O(kn), q, n, k) + L(n)ε

To finish calculating the insecurity of T we need to determine the advantage of an adversary distinguishing
Dk from Dα

k . We create a series of hybrid distributions H0,H1, . . . ,Hn, where Hi outputs i times from Dk

and n−i times from Dα
k . Hi differs from Hi+1 only in position i+1. Suppose an adversary A can distinguish

Hi from Hi+1 based on a single sample. In that case we can create an adversary B to attack Dα
k . B gets an

i + 1 document long challenge h. B calls h′ ← Dα
k 〈h, n− i− 1〉, then passes h ◦ h′ to A. B outputs the same

answer as A. Since B transforms samples from Dα
k into samples from Hi and samples from Dk into samples

from Hi+1, Advmem
D,α (B, k) = Advdist

Hi,Hi+1
(A, k). Suppose A runs in time t and gets samples of length n. B

gets a sample of length i and uses t + O(n− i− 1) time to generate h′ and run A on h ◦ h′. As a result,

InSecdist
Hi,Hi+1

(t, n, k) ≤ InSecmem
D,α (t + O(n− i− 1), i, k)

By definition, Dk = H0 and Dα
k = Hn. Adding up the probabilities of distinguishing the hybrid distributions,

we get that:

InSecdist
Dk,Dα

k
(t, n, k) ≤

n−1∑
i=0

InSecmem
D,α (t + O(n− i− 1), i, k)

≤ nInSecmem
D,α (t + O(n), n, k)

We substitute the above expression for InSecdist
Dk,Dα

k
(t, n, k) and Theorem 3.1 to get the result in Theorem 3.3.
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Theorem 3.4. Let Dk be an always informative distribution and f an ε biased function on D. If Dk is not
α-memoryless then T is not a SS-CHA secure stegosystem. Specifically:

InSeccha
T ,Dk

(t + O(1), 1, n, k) ≥ InSecmem
D,α (t, n, k)− InSeccpa

E (t + O(kn), 1, n, k)− nε

Proof. Assume Dk is not α-memoryless. By definition, there exists an adversary A such that Advmem
D,α (A, k)

is non-negligible. Let A run in time t and require a challenge sample of length n. We use A to create an
adversary B that can tell whether it is querying an oracle representing T or Dk. B will ask its oracle for a
single covertext of length n and pass the output to A. B will output whatever A outputs. B’s advantage
in distinguishing T from Dk is at least as much as A’s advantage in distinguishing Dα

k from Dk minus the
probability of distinguishing T from Dα

k :

Advcha
T ,Dk

(B, k) ≥ Advmem
D,α (A, k)− InSeccha

T ,Dα
k
(t, 1, n, k)

Using Theorem 3.1, we get:

Advcha
T ,Dk

(B, k) ≥ Advmem
D,α (A, k)− InSeccpa

E (t + O(kn), 1, n, k)− nε

B runs in time t + O(1) and gets 1 challenge string of length n, therefore:

InSeccha
S,Dk

(t + O(1), 1, n, k)

≥ InSecmem
D,α (t, n, k)− InSeccpa

E (t + O(kn), 1, n, k)− nε

This means that if Dk is not α-memoryless, then there exists an adversary that can launch a successful
SS-CHA attack on T with non-negligible probability.

Remark The above proof would probably work for any black-box stegosystem. However, because it is
unclear how to deal with a stegosystem that somehow uses outside information (or how to rule out this
possibility), we limit our analysis to the stegosystem T .

4 Non-Adaptive Stegosystems

In this section, we show how to apply public-key black-box steganography as proposed by von Ahn and
Hopper [vAH04] to real world covertext distributions. (Independently, Petrowski et. al. [PKSM] implemented
a similar system for JPEG images, but their work had no security analysis.) The key insight is that multiple
digital photographs of a still scene are almost but not completely identical. We can break up each image
into 8× 8 pixel tiles. A cryptographic hash function assigns a value to each tile. The stegosystem choses the
appropriate tiles to create a composite photo that encodes the secret message. The scheme assumes each
8× 8 pixel tile is independent of its neighbors.

This stegosystem is equivalent to using D0
k to sample Dk and assuming that the covertext distribution is

0-memoryless, as shown in Algorithm 4.1. Non-adaptive steganography can be applied to any digital image
format, TCP timestamp intervals, etc.

The analysis of Algorithm 4.1 follows directly from Section 3. Correctness: The probability that the
stegosystem fails to encode a hiddentext m is: L(|m|)(1/2 + ε + InSecmem

D,0 (O(1),L(|m|), k))k. Security:
Algorithm 4.1 is secure if and only if D is 0-memoryless: an independent, but not necessarily identically
distributed, sequence of random variables.

5 Pathological Covertext Distribution

In this section, we construct a pathological strictly α-memoryless distribution and prove that no computa-
tionally bounded algorithm can use it to hide messages without access to Dα

k . The distribution will publish
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Algorithm 4.1: Non-adaptive stegosystem

Input: Public key PK, message m, T covertexts x(1), . . . , x(T ) (each covertext x(i) is of length
|EPKm|)

step 1: Encrypt message
c← EPK(m) ;

step 2: Stegocode ciphertext
parse c as c1 ◦ c2 ◦ ... ◦ cn ;
for j ← 1 to n do

i← 1 ;
repeat

sj ← x
(i)
j , increment i ;

until f(sj) = cj or i > T ;
end
s← s1 ◦ s2 ◦ ... ◦ sn ;

return s ;

a verification key that can be used by anyone to check if a covertext is legitimate. The probability that
steganography will be detected is 1− ν(k).

We give a stegosystem a list of covertexts generated by D〈λ, ·〉 and access to Dα−1〈·, 1〉, a semi-adaptive
oracle with insufficient memory. For example, a stegosystem might store a database of photographs (this
corresponds to D〈λ, ·〉) and maintain an internal Markov model about pixel color distributions based on the
8 adjacent pixels (this corresponds to Dα−1〈·, 1〉, where α − 1 = 8). We show that any stegotext produced
by a stegosystem is really just a quote of a covertext in its database.

5.1 The Distribution

Our goal is to devise a covertext distribution where (1) each document depends on only the α documents
that came before it (so it is α-memoryless); (2) a stegosystem cannot by itself compute the ith document di

in a legitimate covertext; finally (3) it is very unlikely that the output of Dα−1〈h, 1〉 is a valid continuation
of the last α documents of h.

The first construction that comes to mind is to make each document be a concatenation of a random
number ri and a signature on the previous α random numbers: σi = σ(ri−α, . . . , ri). This will meet
requirements (1) and (2). There is a subtle problem with this as far as requirement (3) is concerned.
Suppose we are given α− 1 documents rn−α+1σn−α+1, . . . , rn−1σn−1. The signatures σn−α+1, . . . , σn−1 can
leak partial information about the value rn−α. As a result, Dα−1〈·, 1〉, even though not explicitly given
dn−α, may nevertheless calculate rn−α and compute the correct signature σn = σ(rn−α, . . . , rn).

In order to fix this problem, we need to construct a signature function σ for which the following prop-
erty holds: We fix a sequence of 2α − 1 integers r1, . . . , r2α−1. Then the sequence of α − 1 documents
rα+1σα+1, . . . , r2α−1σ2α−1 should be information theoretically independent of rα. This property ensures
that Dα−1 cannot learn rα and so will be unable to compute the correct signature σ2α based on the previous
α documents of h, as required by (3) above.

Consider the following hash function h : Zα
p → G, where p is a k-bit prime and G is a group of order p.

The hash function hp,G,g1,...,gα+1 is parameterized by p, G and α + 1 generators of G: g1, . . . , gα+1. (We will
omit the subscript of h in the future). On input (r1, . . . , rα+1) ∈ Zα+1

p the hash function returns:

h(r1, r2, . . . , rα+1)
.= gr1

1 · g
r2
2 · · · · · g

rα+1
α+1

The hash function h has the information hiding property that we need because it reveals only a linear
combination of its inputs (see the proof of Lemma 5.7 in Section 5.2).
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We now formalize the above discussion. We show how to modify a secure stateless signature scheme
to use h and prove the result is secure under the discrete logarithm assumption. Then we construct our
pathological distribution.

Construction 5.1. Let Σ′ = (G′, σ′, V ′) be a secure stateless signature scheme that takes messages in
{0, 1}2k and outputs signatures in {0, 1}p(k). We use (G′, σ′, V ′) and the hash function h to construct a new
stateless signature scheme Σ = (G, σ, V ). We let G = G′.

The signature function σ : {0, 1}k × (Z∗
p)

α+1 → {0, 1}p(k):

σ(SK, r1 ◦ · · · ◦ rα+1) = σ′(SK, h(r1, . . . , rα+1))

The verification function V : {0, 1}k × (Z∗
p)

α+1 × {0, 1}p(k) → {0, 1}:

V (V K, s, r1 ◦ · · · ◦ rα+1) = V ′(V K, s, h(r1, . . . , rα+1))

We further define σ on input from (Z∗
p)

β, where β < α+1 as follows: σ(r1, . . . , rβ) = σ′(h(0, . . . , 0, r1, . . . , rβ)).
V extends in the obvious way.

Lemma 5.2. Σ = (G, σ, V ) from Construction 5.1 is a secure signature scheme under the discrete logarithm
assumption:

InSecsig
Σ (t, q, k) ≤ InSecsig

Σ′(t + O(q), q, k) + DL(t + O(q), k)

Proof. Suppose there exists an adversary A such that Advsig
Σ (A, k) is non-negligible. Then we can construct

an algorithm B that will either break the security of Σ′ = (G, σ′, V ′) or calculate discreet logs. B will get the
public verification key V K and invoke A(V K). Whenever A queries σ(·) with r1 ◦ · · · ◦ rα+1 B will intercept
the message. B will calculate u = h(r1, . . . , rα+1). Then B will query σ′(·) with the input rα+1 ◦ u and send
the response to A. Eventually, with probability Advsig

Σ (A, k) A will output a new message m1 ◦ · · · ◦mα+1

and a valid signature s. B will take the output of A and output the message mα+1 ◦ h(m1, . . . ,mα+1) and
the signature s. V will accept the output of B if V ′ accepts the output of A. Assuming that A succeeded in
forging, we have two cases we need to examine:

1. B has not previously queried σ with the message mα+1 ◦ h(m1, . . . ,mα+1). In this case, B has made
a successful forgery.

2. A has made a previous query r1◦· · ·◦rα+1 = mα+1◦h(m1, . . . ,mα+1 but r1◦· · ·◦rα+1 6= m1◦· · ·mα+1.
Then we can use well know techniques to calculate discrete logarithms.

As a result, Advsig
Σ (A, k) ≤ Advsig

Σ′(B, k) + DL(t + O(q), k). So InSecsig
Σ (t, q, k) ≤ InSecsig

Σ′(t + O(q), q, k) +
DL(t + O(q), k).

We use the signature scheme from Construction 5.1 to construct a distribution DV K over the alphabet
{Z∗

p × {0, 1}poly(k)}∗, where p is a k bit prime and poly(k) is the length of a signature in Σ. Each document
consists of an element in Z∗

p and a signature on the previous α + 1 elements.

Construction 5.3 (Pathological Distribution DV K). Let Σ = (G, σ, V ) be a secure stateless signature
scheme from Construction 5.1. We use G to generate the keys (SK, V K) and index distribution DV K via
the public verification key. If di is the ith document, then di = riσ(SK, ri−α ◦ · · · ◦ ri), where ri is chosen
randomly from Zp. The output of DV K〈λ, n〉 looks like:

DV K〈λ, n〉 →r1σ(SK, r1)
◦ r2σ(SK, r1 ◦ r2) ◦ · · ·
· · · ◦ rα+1σ(SK, r1 ◦ r2 ◦ · · · ◦ rα+1) ◦ · · ·
· · · ◦ rnσ(SK, rn−α ◦ · · · ◦ rn)

We define σn = σ(SK, rn−α, . . . , rn).
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Definition 5.4 (Γ). Suppose we query DV K〈λ, n〉 q times and record the result on tape Q. We define the
probability that any one sequence r1, . . . , rd appears two or more times in Q as Γ(d, n, q, k).

Lemma 5.5. Γ(d, n, q, k) is a negligible function in k.

Proof. We make a rough estimate of the value of Γ(d, n, q, k). |Z∗
p| = p − 1 ≥ 2k−1. Therefore, there are

at least 2k−1 possibilities for each document. We choose the first one at random. The probability that the
second document matches the first is at most 1/2k−1. The probability that the ith document matches any
of the previous i− 1 documents is at most (i− 1)/2k−1. Since we sample qn documents, the probability of
a match is at most

1
2k−1

qn−1∑
i=1

i =
1

2k−1
· qn

2
= qn2−k

This is a very rough estimate; the probability would be even lower if we took d into account.

5.2 Pathology of the Distribution

We now show that any computationally bounded stegosystem for DV K is guaranteed to be caught with
overwhelming probability.

Theorem 5.6. Let S be an arbitrary probabilistic polynomial time stegosystem for distribution DV K that has
a database of q1 covertexts of length n generated by DV K〈λ, ·〉 and is allowed to make q2 queries to Dα−1

V K 〈·, 1〉.
Suppose it takes S time t to generate a stegotext of length N > α. Then there exists an adversary that can
distinguish S from DV K with probability 1 − ν(k), for a negligible function ν. The adversary uses only the
verification key V K and q1 +1 samples from the oracle of length N each; it runs in time O((t+N)(q1 +1)).

Remark The stegosystem needs to forge signatures if it wants to generate more than q1 distinct stegotexts.
All the adversary does is examine the q1 + 1 samples it gets for duplicates and/or invalid signatures.

We will prove Theorem 5.6 in three steps. First we will construct an oracle D∗α−1
V K that is information

theoretically indistinguishable from Dα−1
V K 〈·, 1〉. Then we will show that a stegosystem whose only resource

is D∗α−1
V K cannot create stegotexts longer than α with more than negligible probability. Finally, we will

augment the stegosystem by giving it access to DV K〈λ, ·〉 and prove Theorem 5.6 by showing that it still
cannot generate new stegotexts.

Algorithm 5.1: D ∗α−1
V K 〈·, 1〉 with oracle access to σ(SK, ·)

Input: history: h = r1σ1, . . . , ◦rn−1σn−1

If the history is more than α− 1 documents long, D∗α−1
V K randomly chooses r̂n and r̂n−α

and signs the result.
if n < α then return DV K〈h, 1〉 ;
else

r̂n ← Random ;
r̂n−α ← Random ;
û← h(r̂n−α, rn−α+1, . . . , rn−1, r̂n) ;
σ̂n ← σ(û) ;

end
return r̂nσ̂n ;
We use x̂ to signify that the value of x was assigned by D ∗α−1

V K 〈·, 1〉

Lemma 5.7. Consider D ∗α−1
V K 〈·, 1〉 (Algorithm 5.1). D ∗α−1

V K 〈·, 1〉 = Dα−1
V K 〈·, 1〉.
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Proof. If the input to D ∗α−1
V K 〈·, 1〉 represents the full history, its output is, by definition of DV K , identical

to Dα−1
V K 〈·, 1〉. We consider the case that rn−α+1σn−α−1 ◦ · · · ◦ rn−1σn−1 does not represent the full history.

D ∗α−1
V K 〈·, 1〉 needs to generate rnσn. By definition of DV K , the value of rn is independent of everything that

came before, so D ∗α−1
V K 〈·, 1〉 can generate a random r̂n. The value σn is more complicated; it depends on

rn−α, . . . , rn. Of these α + 1 values, only the last α are known. The oracle D ∗α−1
V K 〈·, 1〉 needs to calculate

rn−α.
Assume for the moment that Dα−1

V K 〈·, 1〉 is computationally unbounded. We need to show that it can
do no better than D ∗α−1

V K 〈·, 1〉 at guessing rn−α. Suppose that Dα−1
V K 〈·, 1〉 can extract from a signature σx

the values rx and ux = h(rx−α, . . . , rx). In addition, suppose Dα−1
V K 〈·, 1〉 can solve the discrete logarithm

problem for some generator g. Then for each gi used to compute the hash function h, Dα−1
V K 〈·, 1〉 can find

an xi such that gxi = gi. From this, Dα−1
V K 〈·, 1〉 can perform the following computation:

un−1 = g
rn−α−1
1 · grn−α

2 · · · · · grn−1
α+1 = gx1rn−α−1 · gx2rn−α · · · · · gxα+1rn−1

logg un−1 = x1rn−α−1 + x2rn−α + · · ·+ xα+1rn−1

Since Dα−1
V K 〈·, 1〉 knows xi, logg un−1 and rn−α+1, . . . , rn−1, it can calculate a value y1 such that x1rn−α−1 +

x2rn−α = y1. Via similar manipulations, it can establish a series of linear equations:

x1rn−α−1 + x2rn−α = y1

x1rn−α−2 + x2rn−α−1 + x3rn−α = y2

...
x1rn−2α+1 + · · ·+ xαrn−α = yα−1

Dα−1
V K 〈·, 1〉 now has a series of α − 1 linear equations with α variables (rn−2α+1, . . . , rn−α). Algebraically,

every value for rn−α is equally likely. The value of rn−α is information theoretically independent of the view
of Dα−1

V K 〈·, 1〉. This means that if the oracle D ∗α−1
V K 〈·, 1〉 chooses a random value for rn−α, its output will

be information theoretically indistinguishable from Dα−1
V K 〈·, 1〉.

Lemma 5.8. DV K is strictly α-memoryless.

Proof. By Construction 5.3, each document rnσn depends on exactly α documents that came before it.
Therefore, DV K is α-memoryless. We now show DV K is strictly α-memoryless. We construct an adversary
A that gets an α+1 document covertext d = r1σ1◦· · ·◦rα+1σα+1. The first α documents of d were generated
by d1 ← DV K〈λ, α〉. The last document was generated by calling either DV K〈d1, 1〉 or D ∗α−1

SK 〈d1, 1〉; A’s
goal is to destinguish between the two cases. A uses the verification key V K to verify the signature in the
last document and outputs 1 if it is legitimate, 0 otherwise. If d was generated by DV K〈λ, α + 1〉 then A
outputs 1 with probability 1. If it was generated with the help of D∗α−1

SK 〈d1, 1〉, A outputs 1 with probability
InSecsig

Σ (t, q, l, α + 1, k) where t(k) is the running time of D ∗α−1
SK 〈d1, 1〉 and q(k) is the number of queries

of total length l(k) it makes. So Advmem
DV K ,α−1(A, k) = 1 − InSecsig

Σ (t, q, l, α + 1, k), which is clearly non-
negligible. Using information theory, we know that ∀β < α, Dβ

V K〈·, 1〉 cannot approximate DV K better than
Dα−1

V K 〈·, 1〉. This means that DV K is strictly α-memoryless.

Lemma 5.9. Let S be any stegosystem that has oracle access to Dα−1
V K 〈·, 1〉, but with no direct access to DV K

- i.e. S does not know SK and has no oracle access to σ(SK, ·). Suppose it takes S t time and q queries to
Dα−1

V K 〈·, 1〉 to output a stegotext s = r1σ1 ◦ · · ·◦rnσn of length n > α. Then there exists an efficient adversary
that can distinguish S from DV K with overwhelming probability using only one text sample of length α and
running in time O(t):

InSeccha
S,DV K

(t, 1, α + 1, k) ≥ 1− InSecsig
Σ (t + O(1), q, k)−DL(t + O(q), k)

Furthermore, ∀i > α, the probability that an arbitrary signature σi is valid is at most:

InSecsig
Σ (t + O(1), q, k) + DL(t + O(q), k)
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Proof. Assume we have a secure stegosystem S with no direct access to DV K . We construct an adversary A
that uses S to forge signatures or calculate discrete logs. A tells S to generate a single stegotext of any length
n > α. While S is working, A intercepts all of S’s queries to Dα−1

V K 〈·, 1〉 and redirects them to D ∗α−1
V K 〈·, 1〉.

Finally, S outputs a stegotext s = r1σ1 ◦ r2σ2 ◦ · · · ◦ rnσn.
Choose any i > α. We have three cases to consider:

1. If σi is not a valid signature on ri−α ◦ · · · ◦ ri then the stegosystem is insecure. The probability that
this happens is InSeccha

S (t + O(1), 1, n, k).

2. If σi is a valid signature on ri−α ◦ · · · ◦ ri and it was not generated by D ∗α−1
V K 〈·, 1〉 then S violated the

security of Σ. The probability that this happens is InSecsig
Σ (t + O(1), q, k).

3. If σi is a valid signature that was generated by D∗α−1
V K 〈·, 1〉 then we use S and D∗α−1

V K 〈·, 1〉 to calculate
discrete logarithms. The idea is that while D∗α−1

V K 〈·, 1〉 only needs to know g
rn−α

1 to generate signature
σn, S needs to output rn−α in the clear as part of the stegotext.

Algorithm 5.2: D ∗ ∗α−1
V K 〈·, 1〉 with oracle access to σ(SK, ·)

Input: history: r1σ1, . . . , ◦rn−1σn−1

if n < α then return DV K〈h, 1〉 ;
else

r̂n ← Random ;
r̂ ← Random ;

û← y · gr̂ · h(1, rn−α+1, . . . , rn−1, r̂n) ;
σ̂n ← σ(û) ;

end
return r̂nσ̂n ;
D ∗ ∗α−1

V K 〈h, 1〉 is almost identical to D ∗α−1
V K 〈h, 1〉. We highlighted the differences.

We set up a reduction algorithm that uses the stegosystem as a black box and controls the actions of
Dα−1

V K 〈·, 1〉. The reduction would get a challenge string y = gx, where g is a generator of the group G
and x is unknown. Next, the reduction would ask the stegosystem to generate a stegotext. Whenever
the stegosystem queries Dα−1

V K 〈·, 1〉, the reduction would redirect the call to D ∗∗α−1
V K 〈·, 1〉. Algorithm 5

shows how D∗∗α−1
V K 〈·, 1〉 inserts y into every signature. D∗∗α−1

V K 〈·, 1〉 ensures that the returned signature
σ̂n is valid only if rn−α = logg (y · gr̂) = logg (gx+r̂) = x + r̂, where r̂ is chosen by D ∗ ∗α−1

V K 〈·, 1〉. Since
the signature σi is generated by D ∗ ∗α−1

V K 〈·, 1〉, we know that si−α = x + r̂. The reduction outputs
si−α − r̂, thereby calculating the discrete logarithm. As a result, the probability that this case occurs
is DL(t + O(q), q, k).

Based on our case analysis, we see that InSeccha
S,DV K

(t, 1, n, k) ≥ 1−InSecsig
Σ (t+O(1), q, k)−DL(t+O(q), k).

Substituting n = α + 1 proves the first part of the lemma. Furthermore, we’ve shown that ∀i ≥ 1, the
probability that an arbitrary signature σi is valid is at most InSecsig

Σ (t + O(1), q, k) + DL(t + O(q), k).

Theorem 5.6. Assume a stegosystem S has a database of q1 covertexts generated by DV K〈λ, n〉 and the
ability to query Dα−1

V K 〈·, 1〉 q2 times. We can create an adversary A that distinguishes the output of DV K

from S. A gets V K as input and permission to query a mystery oracle that is either DV K or S. A will ask
its oracle to generate q1 +1 covertexts of length N . A outputs 1 if the oracle returns any duplicate covertexts
or any invalid covertexts. If the oracle is DV K〈λ, ·〉, then A outputs 1 with probability Γ(N,N, q1 + 1, k)
(the probability that duplicate covertexts occur). We examine what happens when the oracle is S.
S can use its covertext database to generate stegotexts. Each covertext of length n can generate at most

1 valid stegotext of length N (the stegosystem can take an N document prefix). The stegosystem cannot
take an arbitrary substring of a covertext because it would have to forge a signature on the new first integer
and the α dummy arguments.
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S gives A a list of q1 + 1 stegotexts: s(1), . . . , s(q1+1). Each stegotext s(i) can be parsed as r
(i)
1 σ

(i)
1 ◦ · · · ◦

r
(i)
N σ

(i)
N . S can easily create q1 distinct stegotexts from its covertext dictionary. We examine how S generates

the q1 + 1st stegotext. There are 3 cases:

1. S has generated a new message signature pair that is not in the covertext database and that did not
come from Dα−1

V K 〈·, 1〉. Then S has broken the security of the signature scheme Σ. S ran in (q1 + 1)t
time and made nq1 + q2 queries to σ(SK, ·) (via its queries to DV K〈λ, ·〉 and Dα−1

V K 〈·, 1〉). Therefore,
this case occurs with probability at most InSecsig

Σ ((q1 + 1)t, nq1 + q2, k).

2. S used a signature generated by Dα−1
V K 〈·, 1〉. By Lemma 5.9, we know that ∀i, j > α, S can use

Dα−1
V K 〈·, 1〉 to generate a valid σ

(i)
j with probability at most InSecsig

Σ (t+O(1), q2, k)+DL(t+O(q2), k).
Therefore, the probability that this case occurs is the total number of such signatures (N −α)(q1 + 1)
times the probability that any particular one was generated by Dα−1

V K 〈·, 1〉. This gives a total probability
of: (N − α)(q1 + 1)(InSecsig

Σ (t + O(1), q2, k) + DL(t + O(q2), k))

3. The covertext database contains two sequences of α integers, thus letting S cut and paste two quotes.
This occurs with probability Γ(α, n, q2, k) (see Definition 5.4).

Adding up the probabilities from the case analysis above, we get that

Advcha
S,DV K

(A, k) ≥ 1− Γ(N,N, q1 + 1, k)− InSecsig
Σ ((q1 + 1)t, nq1 + q2, k)

− (N − α)(q1 + 1)(InSecsig
Σ (t + O(1), q2, k) + DL(t + O(q2), k))

− Γ(α, n, q2, k)

A runs in O((t+N)(q1+1)) time and makes q1+1 queries of total length N(q1+1). Therefore, InSeccha
S,DV K

(O((t+
N)(q1 + 1)), q1 + 1, N(q1 + 1)) ≥ Advcha

S,DV K
(A, k) ≥ 1 − ν(k) for the negligible function ν defined above.

This gives us the lower bound of 1− ν(k) on the insecurity of S.

6 Conclusion

Our results link current theoretical research to real world stegosystems. We show that a stegosystem must
assume that its approximation of the covertext distribution is correct. A slight error, or a missed correlation,
can lead to almost certain detection. It is impossible to leverage incomplete or incorrect information to
somehow create properly distributed covertexts. However, our work shows how to test the accuracy of the
information a stegosystem does have. From our definition of α-memoryless, we see that all a stegosystem
needs is a sampler that can generate a single document correctly based on a randomly chosen covertext.
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