
A New Efficient Algorithm for Solving Systems of Multivariate
Polynomial Equations

Xijin Tang and Yong Feng

Laboratory for Automated Reasoning and Programming
Chengdu Institute of Computer Applications

Chinese Academy of Sciences
610041 Chengdu, P. R. China
tangxij@mails.gucas.ac.cn

Abstract. The security of many recently proposed cryptosystems is based on the difficulty of solving
large systems of quadratic multivariate polynomial equations. The classical algorithm for solving such
a system is Buchberger’s algorithm for constructing Gröbner bases. Another algorithm for solving such
a system is XL algorithm. For sparse system, Buchberger’s algorithm benefits from sparsity of the
system, but its complexity is impractical and hard to determine. XL could not make a good use of
sparse structure of the system, since XL has no good strategy of choosing the multiply monomials.
In this paper, based on Extended Dixon Resultants, a new algorithm DR is proposed to solve systems of
multivariate polynomial equations. The basic idea of DR is to apply Extended Dixon Resultants method
to system of multivariate polynomial equations, by taking x1 . . . xn−1 as variables and xn as parameter.
The time complexity of DR technique is evaluated, it seems to be polynomial when the system is sparse
and m = n and mixed volume is polynomial. As far as we know, it is the first algorithm which has better
behavior than exhaustive search for some sparse systems over large field. Moreover, DR technique is
compared with Buchberger’s algorithm and XL technique in this paper. It is shown that DR is far more
efficient than Buchberger’s algorithm and XL when m = n. DR is a quite efficient algorithm, it makes
a good use of the sparsity of the sparse system. Besides its efficiency, another advantage of DR is that
its complexity is easy to determine.
Key words: multivariate cryptography, cryptography, polynomial equations over finite field, algebraic
attack, Dixon Resultants, DR.

1 Introduction

Solving systems of multivariate quadratic polynomial equations is a hot topic in cryptology now,
since AES encryption can be described by an extremely sparse overdefined multivariate quadratic
system over GF(28) [8], and a large number of multivariate schemes had been proposed over the
last few years, for example the HFE family [7].

The classical algorithm for solving such a system is Buchberger’s algorithm [3]for construct-
ing Gröbner bases, and its many variants. The algorithm first fixes a monomial order (typically
in lexicographic order), and by computing the S-polynomial of two equations eliminates the top
monomial. This process is repeated until find the Gröbner bases, and then solves the remaining
univariate polynomial equation (e.g., by using Berlekamp’s algorithm over the original or an ex-
tension field). Unfortunately, the degrees of the remaining monomials increase rapidly during the
elimination process, thus the time complexity of the algorithm makes it often impractical even for
a modest number of variables. In the worst case Buchberger’s algorithm is known to run in dou-
ble exponential time, and on average its running time seems to be single exponential. An efficient
variant of this algorithm which we are aware of is F4 [10, 9].

Another algorithm for solving such a system is XL [5]algorithm, and its variants. It was pro-
posed as a technique which can be viewed as a combination of bounded degree Gröbner bases and

linearization. The basic idea of this technique is to generate from each polynomial equation a large
number of higher degree variants by multiplying it with all the possible monomials of some bounded
degree, and then to linearize the expanded system. In [5], the time complexity of the XL technique
was analyzed and they had provided a strong theoretical and practical evidence that the expected
running time of XL technique is:

– Polynomial when the number m of (random) equations is at least εn2, and this for all ε > 0

– Subexponential if m exceeds n even by a small number.

In this paper we are interested in the problem of solving systems of multivariate polynomial
equations in which the number of equation m is equal to the number of variables n, especially the
system that is sparse. We make sure that the system has at least one solution, since systems that
often occur in multivariate cryptographic schemes are of this type.

To solve sparse system, Gröbner base techniques benefits from the sparsity, but its complexity
is still impractical and hard to determine. XL could not make a good use of sparsity of the system,
since XL has no good strategy of choosing the multiply monomials. The complexity of XL is also
impractical.

Dixon Resultant [1, 2] method is widely used in algebraic geometry and automated reasoning, it
has good efficiency and easy determined complexity. For sparse systems, Dixon Resultant naturally
make a good use of the sparsity of the system, its efficiency is extremely well to solve such systems.

In this paper, we propose a new efficient algorithm DR to solve systems of multivariate poly-
nomial equations. The basic idea of DR is to apply Extended Dixon Resultants method to system
of multivariate polynomial equations.

In the next section we give the preliminaries - the Dixon Resultant method, KSY method, mixed
volume, and MQ problem. In section 3, we give the detailed description of DR.

After given a toy example of DR in section 4, we divide the MQ problems into three types
in section 5, and give the corresponding experiment resultants. In section 6, we evaluate the time
complexity of the DR technique and provide strong theoretical and practical evidence that the
expected running time of this technique is:

– Polynomial when m = n and the system is sparse and system’s mixed volume is polynomial ;

– 2ω×n when m = n and the system is sparse and system’s mixed volume is exponential ;

– Cω×n when m = n and the system is general. When n increases, C → 4.

Where ω = 3 in the usual gauss reduction algorithms, and ω = 2.3766 in improved algorithms.

Moreover, We compare DR technique with Buchberger’s algorithm and XL in section 7. We will
show that DR is far more efficient than Buchberger’s algorithm and XL when m = n, no mater the
system is sparse or not. We conclude this paper in the last section.

2 Preliminary

2.1 Dixon method and KSY method

Let F = {p1(x1, x2, · · · , xn), · · · , pn+1(x1, x2, · · · , xn)} be the set of n+1 generic ndegree poly-
nomials in n variables. One determinant is formed as follows:

∆(x1, · · · , xn, α1, · · · , αn) =

∣∣∣∣∣∣∣∣∣∣

p1(x1, x2, · · · , xn) · · · pn(x1, x2, · · · , xn)
p1(α1, x2, · · · , xn) · · · pn(α1, x2, · · · , xn)
p1(α1, α2, · · · , xn) · · · pn(α1, α2, · · · , xn)

· · · · · · · · ·
p1(α1, α2, · · · , αn) · · · pn(α1, α2, · · · , αn)

∣∣∣∣∣∣∣∣∣∣

Accordingly, one can get following polynomial:

δ(x1, · · · , xn, α1, · · · , αn) =
∆(x1, · · · , xn, α1, · · · , αn)

(x1 − α1) · · · (xn − αn)

The above polynomial δ is defined as the Dixon polynomial. The Dixon polynomial vanishes at
any common zero of F , no matter what the values of α1, · · · , αn are. Hence, all the coefficients of
the various power products of α1, · · · , αn in the Dixon polynomial vanish. We have polynomials in
x1, x2, · · · , xn which are coefficients of the power products of α1, · · · , αn in δ, denoted by ε′. If one
views each power product of x1, · · · , xn as a new variable vi (i = 1, · · · , s), one can get a system of
s homogeneous linear equations in s variables:

ε ≡ D(v1, v2, · · · , vs)T = (0, 0, · · · , 0)T ,

where s is the number of power products of x1, · · · , xn, Matrix D is called Dixon matrix and
its determinant Dixon Resultant. Vanishing of the Dixon Resultant is a necessary condition
for polynomials to have an affine zero. However, The Dixon’s matrix is often singular, yielding
no information for the polynomials. So, Deepak Kapur, Tushar Saxena and Lu Yang provided an
approach (KSY method) to deal with Dixon Resultant being identically zero.

Given a set of any arbitrary polynomials, construct ∆, δ and the set of linear equations ε from
Dixon polynomial as before, except that ε may have less than or equal to s equations in less than or
equal to s variables. We still call it Dixon matrix D which may be an s1 × s2 matrix, where s1 ≤ s
and s2 ≤ s. A set of constraints C on the variables x1, · · · , xn of the form x1 6= 0∧ · · · ∧ xn 6= 0 are
given. Let the i-th column of the Dixon matrix be denoted by mi and monom(mi) the monomial
corresponding to mi. Also, for given a set of constraints C, let nvcol(C) denote the set of all columns
mi such that C ⇒ monom(mi) 6= 0.

Let F be a set of n + 1 polynomials with parameter coefficients and D the Dixon matrix of F .
Let N1 be the set of all s1 × (s2 − 1) matrices obtained from D by deleting a column which is an
element of nvcol(C). Let φ : a1, · · · , am → Q be a mapping which gives values to the parameters
from the algebraic closure of field of rational number Q. φ(F),φ(D), and φ(N1) are the results of
substituting those values for the parameters in F ,D and N1 respectively. Finally, let R={Y |Y is
an r × r nonsingular submatrix of D} it holds that[2]

Theorem 1. If ∃X ∈ N1 s.t. rank(X) < rank(D) then for all Y ∈ R, φ(det(Y)) vanishes if φ(F)
has a common affine zero which satisfies C.

According to theorem 1, one can obtain an algorithm as follows: Check if ∃X ∈ N1 s.t. rank(X) <
rank(D), which is called RSC criteria. If this is true, any element of R is called KSY Dixon
Matrix, then the determinant of KSY Dixon Matrix called Extended Dixon Resultant gives
the required polynomial. However, this algorithm is not efficient. Kapur et al. [2] provided another
algorithm to perform the check, obtain an element of R and compute its determinant.

Algorithm 1 Compute Extended Dixon Resultant as follows:

Step 1: Set up the s1 × s2 Dixon matrix D of F .
Step 2: Solve the matrix equation Dw̄ = 0̄, where w̄ = (w1, · · · , ws2)

T .
Step 3: Find out if there exists a wi in w̄ such that wi = 0 and also C ⇒ monom(mi) 6= 0.
If such a wi exists then compute Drow and return the product of all the pivots of Drow.

Step 4: Else,return failure.

2.2 Mixed Volume

The convex hull of the support of a polynomial f is called its Newton polytope, and will be
denoted as N (f). One can relate the Newton polytopes of a polynomial system to the number of
its roots.

Definition 1. ([12, 13]).The mixed volume function µ(Q1, . . . ,Qd), where Qi is convex hull, is a
unique function which is multilinear with respect to the Minkowski sum and scaling operations, and
is defined to have the multilinear property

µ(Q1, . . . , aQ′k + bQ′′
k , . . . ,Qd) = a µ(Q1, . . . ,Q′k, . . . , Qd) + b µ(Q1, . . . ,Q′′

k , . . . ,Qd)

to ensure uniqueness, µ(Q, . . . ,Q) = d!V ol(Q), where V ol() is the Euclidean volume of the
polytope .

2.3 MQ problem

In this paper we consider the problem of solving a system of m multivariate quadratic equations
with n variables over a finite field GF (q). The input variables are denoted by xi and belong to
GF (q). The equations are denoted by li and are quadratic, which may include linear and constant
terms. The system to solve will be:

A =





l1(x1, x2, . . . , xn) = 0
.
.
.

lm(x1, x2, . . . , xn) = 0

Given m,n, q, we call MQ the problem of finding one (not necessarily all) solution to such a system
chosen at random.

3 DR Algorithm

The algorithm DR (which stands for Dixon Resultants) applies Extended Dixon Resultants
method to system of multivariate polynomial equations by taking x1 . . . xn−1 as variables and the
xn as parameter. For Dixon Resultants method requires that the number of equations should be
equal to the number of variables plus one, so DR algorithm will be efficient to solve MQ problem
with m = n, but DR could also be applied to overdefined system of multivariate polynomial
equations. As shown later, DR could get all the common solutions in most cases.

Let A denotes a system of multivariate quadratic equations, with m = n, all xi,i=1..n is over
GF (q). (a1, a2, . . . an) ∈ GF (q)n denotes a common solution of A. Let V (A) denotes all common
solutions of A. Let πk,k=1..n denote a projection operator, πk((a1, a2, . . . an)) = ak.

Algorithm 2 DR
Input: A system A of m multivariate quadratic equations with n variables over a finite field

GF (q), and m = n.
Output: At least one common solution of the input system.
step 1. Taking x1 . . . xn−1 as variables and xn as parameter, Computer the Dixon matrix of A;
step 2. Run subprogram RSC to check RSC Criteria and select rows and columns that needed

for constructing KSY Dixon Matrix;
step 3. Construct the KSY Dixon Matrix;
step 4. Compute the determinant of the KSY Dixon Matrix;
step 5. Solve the equation gotten in step 4 over GF (q)(e.g., with Berlekamp’s algorithm). There

may be several roots, the set of these roots is called s;
step 6. For each root of xn, substitute it to the KSY Dixon Matrix gotten in step 3, then solve

the linear equation to find the values of all the other monomials, in particular for all the other
variables xi.

step 7. If fail to find a common solution of A in step 6, let s = {0, p(used in subprogram RSC)},
run step 6.

Algorithm 3 RSC
Input: A Dixon Matrix M of dimension s1 × s2.
Output: The rows and columns that needed for constructing the KSY Dixon Matrix.
step 1. Substitute a random value p in GF (q) for xn in the Dixon matrix;
step 2. Perform gauss elimination on the matrix gotten in step 1, assume the result is M ′ and

the rank of M ′ is r;
step 3. If M ′ is a square and full rank matrix then return all the rows and columns in M ;
step 4. For each column m of matrix M ′ do

construct a submatrix Ms of M ′ of dimension s1 × (s2 − 1) by deleting m;
if rank of Ms < r then break this loop;

step 5. If step 3 finds a submatrix Ms, whose rank is less than r
then

choose the columns needed for constructing a r × r submatrix of M ′ and whose rank is r;
transpose M ′ and perform gauss elimination, then choose the rows needed for constructing
a r × r submatrix of M ′ and whose rank is r;
return the rows and columns;

else
goto step 1.

Remark 1: In most cases of MQ problem, the RSC criteria always holds. If it does not hold,
our algorithm will fail, but in our large number of stimulations we have not met this situation.

Remark 2: We adopt the original KSY Dixon Resultants computation algorithm in RSC, our
algorithm makes a good use of the efficiency of numeric computation, new algorithm is more efficient
than the original algorithm.

Remark 3: In step 4 of algorithm RSC, we construct the submatrix by the matrix after
gauss elimination, so we need a little computation to reduce the matrix to row echelon form. The
complexity of this Guass elimination is quite less than O(s1 × (s2 − 1)× (s2 − 1)).

Remark 4: If we only want to find one common solution of system A, when we fail in algorithm
RSC step 4, we could return to algorithm DR and omit step 3, step 4, step 5, straightly let s = {p}
and run step 6. Because the RSC criteria always holds, when we failed in algorithm RSC step 4, it
means p ∈ πn(V (A)).

Remark 5: In practice, it is found that by running the following step instead of step 4,step 5
and step 6 in algorithm DR, computation time could be reduced.

step 4&5&6: for each value p in GF (q) do
substitute p for xn in KSY Dixon Matrix and we get M ′;
compute thedeterminant of M ′, if determinant = 0 then recover other variables;

The reason is that the numeric computation is far more efficient than symbolic computation.
We guess it will hold over GF (pk). If this also holds in GF (pk), we could replace step 4,step 5 and
step 6 in algorithm DR with step 4&5&6.

The Correctness of DR Algorithm:
In our stimulation, the RSC criteria always holds, and the column that corresponds to the

monomial 1 = x0
1x

0
2... of the Dixon matrix is usually not a linear combination of the remaining

ones, so usually there is no constrain on the common solutions that DR gets. If monomial 1 is not
satisfies, there are quite many columns satisfies RSC criteria. By this fact, we could minimize our
constrain, in most cases, we could minimize the constrains with no constrain on xn. If we can’t
make this, we could simply add 0 into s.

In algorithm RSC step 4, if p ∈ πn(V (A)) , the RSC check may fail or not. If we fail in the
check, we assign another value to xn, and go on our algorithm, we could get all of πn(V (A)). If we
don’t fail in the check, we may omit the p. To attack this problem, we could simply add p into s.

Making a summary of all the discussions above, we could come to a conclusion that DR algorithm
could get all common solution of A in most cases.

4 A Toy Example of DR

Consider the following problem of solving:
xi,i=1..5 ∈ GF (127)

A =





l1 : 9x1 + 37x3 + 17x1x2 + 120x2x3 + 18x3x5 + 58x2
4 + 87 = 0

l2 : 46x1 + 43x3 + 117x5 + 43x1x2 + 93x1x3 + 61x3x4 + 48 = 0
l3 : 32x1x2 + 54x1x4 + 56x2x3 + 93x3x5 + 60x2

5 + 45 = 0
l4 : 124x1 + 93x1x3 + 78x1x4 + 45x1x5 + 39x2x3 + 38x2x4 + 46 = 0
l5 : 27x2 + 95x2x5 + 85x2

3 + 74x3x4 + 46x3x5 + 77x4x5 + 66 = 0

Computing A′s Dixon Matrix we get 23× 23 matrix, its determinant is identically zero.
In subprogram RSC we assign 19 to xn, we find the RSC criteria holds with only constructing

one submatirx by deleting the last column. Then we select the following columns: 1, 2, 3, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 and the following rows: 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 23.

In step 3, we get a 20× 20 matrix. in step 4, we compute the determinant of the matrix gotten
in step 3 then we have

88+75x5 +22x2
5 +15x3

5 +47x4
5 +98x5

5 +64x2
57+99x6

5 +67x7
5 +108x8

5 +126x9
5 +69x10

5 +29x11
5 +

53x12
5 +51x13

5 +57x14
5 +102x15

5 +69x16
5 +118x17

5 +124x18
5 +107x19

5 +11x20
5 +68x21

5 +44x22
5 +100x23

5 +
63x24

5 + 34x25
5 + 72x26

5 + 47x28
5 + 110x29

5 + 17x30
5

After solving the above equation over GF (127), we get 4 solutions 5,10,20,108. Then by recov-
ering other variables we get 2 common solutions [x1 = 1, x2 = 2, x3 = 3, x4 = 4, x5 = 5], [x1 =
93, x2 = 100, x3 = 23, x4 = 54, x5 = 20].

5 Experimental Results on DR

5.1 Experimental results with general MQ problem

In this part of experiment, we solve MQ problem that is randomly generated by randpoly
command in Maple, and we make sure it has at least one common solution.

Table 1. DR over GF (127) for general MQ problem

n 3 4 5 6 7 8

m 3 4 5 6 7 8

terms 9 14 19 24 28 30

mixed volume 8 14 26 54 124 254

M (5,5) (14,14) (41,38) (113,109) (236,222) (406,430)

M ′ (5,5) (12,12) (29,29) (71,71) (150,150) (278,278)

Legend:

n: number of variables

m: number of equations

terms:number of monomials

mixed volume: mixed volume of the MQ problem to be solved

M : the matrix size of Dixon Matrix

M ′: the matrix size of KSY Dixon matrix

5.2 Experimental results with sparse MQ problem

As we know, mixed volume is a key factor in the size of resultant matrix. According to the way
the sparse MQ problems’ mixed volume increase, we divide them into two types.

– type A: the mixed volume is polynomial;
– type B: the mixed volume is exponential.

Type A In this part of experiment, we give a series of example of type A, each li has the form
li = xi +x(i mod n)+1×x((i+1) mod n)+1 + bi, and we make sure it has at least one common solution.
For example, when n = 3, the system to be solved may equal to {x1 + x2 × x3 + 4, x2 + x3 × x1 +
114, x3 + x1 × x2 + 106}.

Table 2. DR over GF (127) for sparse MQ problem of type A (notations as for Table 1)

n 3 4 5 6 7 8 9 10 11 12

m 3 4 5 6 7 8 9 10 11 12

terms 7 9 11 13 15 17 19 21 23 25

mixed volume 5 6 12 17 30 46 77 122 200 321

M (2,2) (4,4) (7,7) (12,12) (20,20) (33,33) (54,54) (88,88) (143,143) (232,232)

M ′ (2,2) (4,4) (7,7) (12,12) (20,20) (33,33) (54,54) (88,88) (143,143) (232,232)

Type B In this part of experiment, we give a series of example of type B, each li has the form
li = xi +x(i mod n)+1 +x((i+1) mod n)+1

2 +bi, and we make sure it has at least one common solution.
For example, when n = 3, the system to be solved may equal to {x1 + x2 + x32 + 25, x2 + x3 +
x12 + 119, x3 + x1 + x22 + 116}.

Table 3. DR over GF (127) for sparse MQ problem of type B(notations as for Table 1)

n 3 4 5 6 7 8 9 10 11

m 3 4 5 6 7 8 9 10 11

terms 7 9 11 13 15 17 19 21 23

mixed volume 8 16 32 64 128 256 512 1024 2048

M (4,4) (8,8) (16,16) (32,32) (64,64) (128,128) (256,256) (512,512) (1024,1024)

M ′ (4,4) (8,8) (16,16) (32,32) (64,64) (128,128) (256,256) (512,512) (1024,1024)

6 Complexity Evaluation of DR

The complexity of DR depends on the Dixon matrix size. We assign a random value p to xn

in step 1 of RSC, if p /∈ πn(V (A)), we may perform Gauss elimination on Dixon matrix twice and
on KSY Dixon matrix serval times(the time is dependent on the root number we got in step 5).
if p ∈ πn(V (A)) we usually need perform three times Gauss elimination on Dixon matrix and on

KSY Dixon matrix serval times , for the possibility of first p ∈ πn(V (A))
∧

second p ∈ πn(V (A))
is really low, less than 5

127 × 4
127 (we usually could find less than 5 solutions of equation gotten

in step 4). It is known that, the complexity of usual Gauss reduction algorithm is n3 on matrix
of dimension n × n, and n2.3766 in improved algorithms. The Dixon matrix generated in DR is a
approximate square matrix. So the complexity of DR is at least min(s1, s2)

ω, where ω = 3 in the
usual gauss reduction algorithms, and ω = 2.3766 in improved algorithms.

When the MQ problem is full – all possible monomials occurred in every original equation, from
the the construction of the Dixon Matrix, we could find the Dixon matrix size is equal to the number
of terms in polynomial

∏n−1
i=1 (

∑i
j=1(1 + xj)). The the number of terms in

∏n−1
i=1 (

∑i
j=1(1 + xj)) is

(2×n)!
n!×(n+1)! , so the Dixon Matrix size is (2×n)!

n!×(n+1)! . Assume f(x) = (2×x)!
x!×(x+1)! , then f(x+1)

f(x) = 2 2 x+1
x+2 , and

limx→∞(22 x+1
x+2) = 4, so the Dixon matrix size is always less than 4n. What’s more, we would not

reach the worst situation. Since if the system to be solved is full, we could perform a Gauss-Jordan
Elimination on it, by that we could eliminate n− 1 terms in every original equation li.

For general MQ problem, Dixon matrix’s size is less than or equal to (2×n)!
n!×(n+1)! . Transforming

the equation into Cn form, we get that the Dixon matrix size is Cn, C → 4.

C ≈





2 n = 1..8,
3 n = 9..22,
3.5 n = 22..80,
4 n > 80.

When the system is sparse the Dixon matrix size depends on the structure of the problem.
Our stimulations show that when the mixed volume is polynomial, the Dixon matrix size is prob-
ably polynomial too. When the mixed volume is exponential, the Dixon matrix size is probably
exponential too, and the Dixon matrix size is equal to 2n.

Making a summarize of the discussion above, we could except running time of DR is:

– Polynomial when m = n and the system is sparse and system’s mixed volume is polynomial;
– 2ω×n when m = n and the system is sparse and system’s mixed volume is exponential;
– Cω×n when m = n and the system is general, C → 4;

Where ω = 3 in the usual gauss reduction algorithms, and ω = 2.3766 in improved algorithms.

7 Comparison Between DR and Other Algorithm

7.1 comparison between DR and Buchberger’s algorithm

For the complexity of Buchberger’s algorithm is hard to determine, and no value could identify
the scale of it, we just compare the time DR and Buchberger’s algorithm taken to solve same
problem randomly generated by Maple. We used two algorithms for constructing Gröbner bases,
one is GroebnerBasis command in Maple 9.5, which uses classical Buchberger’s algorithm, the
another is slimgb command in Singular 3.0 [11], which uses a variant of F4. DR is implemented
in Maple 9.5. Computations are on Intel P4 1.4G , 256Mb RAM.

Table 4. comparison between DR and Buchberger’s algorithm (1)

general
n 3 4 5 6 7 8
m 3 4 5 6 7 8
terms 9 14 16 22 28 30
DR 1.32 1.61 6.5 43.39 118.6 557.75
G1 0.29 269.52 > 3600 ? ? ?
G2 < 0.01 0.13 971.02 ? ? ?

Table 5. comparison between DR and Buchberger’s algorithm (2)

sparse of type A sparse of type B
n 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11
m 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11
terms 7 9 11 13 15 17 19 21 23 25 7 9 11 13 15 17 19 21 23
DR 0.20 0.28 0.30 0.35 0.86 1.80 4.22 9.25 21.51 51.05 0.19 0.31 0.45 1.42 4.65 15.86 94.45 406.20 1593.25
G1 0.03 0.03 0.25 1.36 1.39 114.42 > 7200 ? ? ? 0.02 0.19 1.00 11.58 ? ? ? ? ?
G2 < 0.01 < 0.01 < 0.01 < 0.01 0.02 0.07 3.80 1489.23 > 18000 ? < 0.01 < 0.01 0.01 0.05 0.75 320.56 4421.42 ? ?

Legend:

DR: the seconds DR taken

G1: the seconds that Buchberger’s Gröbner bases algorithm taken in Maple 9.5

G2: the seconds that F4 algorithm taken in Singular 3.0

?: the time is too long or run out of memory, we don’t know the exact time

7.2 Comparison between DR and XL

We compare the matrix size between DR and FXL(a variant of XL), for both DR’s and XL’s
complexity depends on the matrix size. We terminate FXL once the rank of matrix is equal to the
number of columns, since when that condition is reached we could get a equation in xn, then solve
it and recover other variables just like in DR.

Table 6. comparison between DR and XL (1)

general
n 3 4 5 6 7 8
m 3 4 5 6 7 8
terms 9 14 16 22 28 30
M (5,5) (13,14) (32,32) (65,72) (224,179) (406,330)

M′ (5,5) (12,12) (25,25) (52,52) (130,130) (278,278)
FXL (18,15) (80,56) (127,125) (1512,792) (?) (?)

Legend:

FXL: the matrix size of FXL

?: the matrix size is too large, we don’t know the exact size

Table 7. comparison between DR and XL (2)

sparse of type A
n 3 4 5 6 7 8 9 10 11 12
m 3 4 5 6 7 8 9 10 11 12
terms 7 9 11 13 15 17 19 21 23 25
M (2,2) (4,4) (7,7) (12,12) (20,20) (33,33) (54,54) (88,88) (143,143) (232,232)

M′ (2,2) (4,4) (7,7) (12,12) (20,20) (33,33) (54,54) (88,88) (143,143) (232,232)
FXL (9,9) (16,15) (75,57) (126,100) (588,392) (960,661) (?) (?) (?) (?)

Table 8. comparison between DR and XL (3)

sparse of type B
n 3 4 5 6 7 8 9 10 11
m 3 4 5 6 7 8 9 10 11
terms 7 9 11 13 15 17 19 21 23
mixed volume 8 16 32 64 128 256 512 1024 2048
M (4,4) (8,8) (16,16) (32,32) (64,64) (128,128) (256,256) (512,512) (1024,1024)

M′ (4,4) (8,8) (16,16) (32,32) (64,64) (128,128) (256,256) (512,512) (1024,1024)
FXL (18,15) (80,56) (350,210) (1512,792) (?) (?) (?) (?) (?)

8 Conclusion

In this paper, we propose a new algorithm DR for solving systems of multivariate polynomial
equations based on Extended Dixon Resultant. DR is a quite efficient algorithm, especially for the
spare MQ problem, because it make a good of the sparsity of the sparse system. The running time
seems to be polynomial when the system is sparse and m = n and mixed volume is polynomial.
As far as we konw, DR is the first algorithm which we known has better behavior than exhaustive
search for sparse system of type A over large field. However in many practical cases, the best known
algorithms are still close to exhaustive search over large field.

Finally besides DR’s efficiency, another advantage of DR is that its complexity is easy to de-
termine. Unlike XL and Buchberger’s algorithm, before starting computation, we could anticipate
the time it would take.

References

1. Dixon, A. L., The eliminant of three quantics in two independent variables. Proc. London Mathematical Society,
6:468-478, 1908.

2. Deepak Kapur, Tushar Saxena, and Lu Yang. Algebraic and geometric reasoning using dixon resultants. In ACM
ISSAC 94, pages 99–107, Oxford, England, 1994.

3. B. Buchberger, Grobner bases: An Algorithmic method in Polynomial Ideal theory, in Multidimensional Systems
Theory, N.K. Bose, cd., D. Reidel Publishing Co., 1985.

4. Nicolas Courtois. Algebraic attacks over GF(2k), application to hfe challenge 2 and sflash-v2. PKC 2004, springer,
pages 201–217, 2004.

5. Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir. Efficient algorithms for solving overdefined
systems of multivariate polynomial equations. Lecture Notes in Computer Science, EUROCRYPT, pages 392–407,
2000.

6. Deepak Kapur. Automated geometric reasoning: Dixon resultants, gröbner bases, and characteristic sets. Auto-
mated Deduction in Geometry, International Workshop on Automated Deduction in Geometry, Toulouse, France,
September 27-29, 1996, Selected Papers, Springer, pages 1–36, 1996.

7. Jacques Patarin. Hidden fields equations (HFE) and isomorphisms of polynomials (IP): Two new families of
asymmetric algorithms. EUROCRYPT, pages 33–48, 1996.

8. Sean Murphy, Matthew J.B. Robshaw, Essential Algebraic Structure within the AES, Lecture Notes in Computer
Science, Volume 2442, pages 1 - 16, Jan 2002

9. J.-C. Faugeere, A New Efficient Algorithm for Computing Gröbner Bases without Reduction to Zero (F5), Pro-
ceedings of ISSAC 2002, pages 75-83, ACM Press 2002.

10. J.-C. Faugere, A New Efficient Algorithm for Computing Gröbner Bases (F4), Journal of Pure and Applied
Algebra, 139 (1999), pages 61-88.

11. G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 3.0. A Computer Algebra System for Polynomial Com-
putations. Centre for Computer Algebra, University of Kaiserslautern (2001). http://www.singular.uni-kl.de.

12. Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V., Discriminants, Resultants and Multidimensional Determinants.
first edition. Birkhauser, Boston 1994.

13. Cox, D., Little, J., OShea, D., Using Algebraic Geometry. first edition. Springer-Verlag, New York 1998.

