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Abstract. The ability to link two different sightings of the same Radio
Frequency Identification (RFID) tag enables invasions of privacy. The
problem is aggravated when an item, and the tag attached to it, changes
hands during the course of its lifetime. After such an ownership transfer,
the new owner should be able to read the tag but the old owner should
not.
We address these issues through an RFID pseudonym protocol. Each
time it is queried, the RFID tag emits a different pseudonym using a
pseudo-random function. Without consent of a special Trusted Center
that shares secrets with the tag, it is infeasible to map the pseudonym to
the tag’s real identity. We present a scheme for RFID pseudonyms that
works with legacy, untrusted readers, requires only one message from tag
to reader, and is scalable: decoding tag pseudonyms takes work logarith-
mic in the number of tags. Our scheme further allows for time-limited

delegation, so that we can give an RFID reader the power to disam-
biguate a limited number of pseudonyms without further help from the
Trusted Center. We show how RFID pseudonyms facilitate the transfer
of ownership of RFID tags between mutually distrustful parties.
Our scheme requires only limited cryptographic functionality from the
tag: we need a pseudo-random function (PRF) and the ability to update
tag state or to generate random numbers. Tag storage and communica-
tion requirements are modest: we give example parameters for a deploy-
ment of one million tags in which each tag stores only 128 bits, makes 6
PRF evaluations, and sends 158 bits each time it is read.
Keywords: RFID, privacy, pseudonym protocol, cryptography.

1 Introduction

Radio Frequency Identification (RFID) technology holds great promise, but it
also raises significant privacy concerns. The term RFID represents a family of
emerging technologies that enable object identification without physical or visual
contact. The main idea is to give a unique identity to every object by attaching
a tag. A tag is a small chip, with an antenna, that stores a unique ID and other
information which can be sent to a reading device. The reading device uses a
database to link the tag ID with information about the object it is attached to.

Today’s RFID systems do not authenticate the tag, so it is easy for an at-
tacker to impersonate other tags. However, future systems will need to provide
a way for readers to authenticate tags and prevent such impersonation attacks.



The other main concern in RFID systems is the privacy of the user. Today,
tags can be read remotely and invisibly by any reader. This leads to unwanted
consequences, such as the surreptitious tracking of objects and people through
time and space. For instance, any party could use the RFID tags to track people’s
movements without authorization, since the ability to recognize an RFID tag
allows for tracking items, and by extension, the people associated with them. A
future protocol should prevent unauthorized readers from violating the privacy
of users.

Some of the early work in this area has proposed protocols for mutual authen-
tication between the tag and the reader [8, 5]. Mutual authentication protects
privacy, because the tag can insist that the reader authenticate itself and prove
it is authorized before releasing the tag identity. However, mutual authentication
is overkill for many RFID applications, because in most cases we simply want to
know the tag’s identity, and mutual authentication incurs an unnecessarily high
performance overhead. Moreover, these mutual authentication schemes cannot
be used with existing readers and would require upgrading the communication
protocol of all RFID readers. It would be better to have solutions that are com-
patible with legacy readers.

We propose a cryptographic scheme that protects privacy while retaining
many of the legitimate benefits of current RFID technology. The main idea is
to introduce an RFID pseudonym scheme and to use a Trusted Center (TC)
to enforce the desired privacy policy and limit which readers may read each
tag. Each time the tag is read, it generates a new pseudonym and sends this
pseudonym to the reader. The Trusted Center is able to decode this pseudonym
and obtain the tag’s identity. Well-connected readers can simply contact the
Trusted Center and request that the pseudonym be decoded (if allowed by the
privacy policy). In addition, we provide mechanisms so that the decoding can be
performed anywhere in the network, enabling us to support legacy readers and
disconnected operation.

Our scheme provides two new features not seen in prior RFID protocols,
namely time-limited delegation and ownership transfer. Delegation enables a
reader to decode a particular tag’s pseudonyms without any further assistance
from the Trusted Center, by transferring the secrets associated with that tag
to the reader. Time-limited delegation allows to provide a controlled form of
delegation, where the reader receives only the ability to recognize the next q
pseudonyms for this tag (where q can be chosen arbitrarily). We can use time-
limited delegation to reduce the exposure if an adversary breaks into the reader:
instead of losing the secrets for all tags for all time, we lose only what was
delegated to that particular reader. Delegation also gives us a way to tolerate
poor quality network connections between the reader and Trusted Center, since
the reader does not need network access once it has received its delegated secrets.
Finally, we show how to use delegation to help Alice and Bob, who both trust
the same Trusted Center but do not trust each other, securely transfer an RFID-
tagged item from one to the other. After the transfer, Bob has assurance that
Alice can no longer read the RFID tag on the item, even though she could before.



Our methods for ownership transfer require minimal or no online interaction by
the Trusted Center itself.

We present two versions of our scheme. The first version stores a counter on
the tag and provides all of the features discussed so far. For tags that do not
support any form of writable non-volatile state, we also design a second version
that requires only a random number generator and read-only state. However, this
second version does not support time-limited delegation or ownership transfer.

Our scheme seems to be practical. It can leverage the existing infrastructure
of readers. The tag need only provide support for symmetric-key cryptography
and either a counter or a random number generator. These requirements ap-
pear to be reasonable for a large class of RFID applications, including many
deployments that have already raised significant privacy concerns.

2 Towards a Secure RFID Tag Protocol

We begin by outlining the features our protocol is designed to provide and some
of the key challenges in achieving these goals.

Pseudonyms. Our main goal is to allow authorized readers to identify and au-
thenticate the RFID tag, while preventing unauthorized readers from determin-
ing anything about the identity of tags they interact with. One possible approach
would be to require readers to authenticate themselves to the tag before they are
allowed to read its contents; however, this would require changing the commu-
nication protocol between tags and readers, and thus would mean that existing
readers would have to be replaced. Therefore, our approach is to build a RFID
pseudonym protocol [7]. In our scheme, the RFID tag replies with a unique
pseudonym that changes each time it is queried. The pseudonym is generated
based on some secret key that is stored on the tag and known to authorized
readers, so that authorized readers can identify the tag. However, without that
secret, the pseudonym provides no information about the tag’s identity. In par-
ticular, pseudonyms are unlinkable, so that unauthorized readers will be unable
to tell if two pseudonyms came from the same tag. In this way, possession of the
secret key controls the ability to link sightings of the same tag.

The tag-reader protocol is very simple: the reader interrogates the tag, and
the tag responds with its current pseudonym. Our use of pseudonyms allows the
scheme to be compatible with legacy readers, because the reader does not need
to know anything about the way that pseudonyms are generated or decoded.
Instead, the reader can forward the pseudonym it received to some other entity,
and that other entity can recover the tag’s identity from the pseudonym.

Privacy. It is important to be able to specify a privacy policy for each tag,
restricting which readers are authorized to read that tag. Our architecture in-
cludes a central trusted entity, which we call the Trusted Center (TC), whose
role is to manage and enforce these privacy policies. When a tag is enrolled into
the system, it is loaded with a secret key generated for it by the TC. The TC



keeps a database listing, for each tag, the secret key provided to that tag, the
information associated with that tag (such as its identity), and that tag’s pri-
vacy policy. Given any pseudonym from an enrolled tag, the TC can decode the
pseudonym and determine the identity of the tag using the secret keys stored in
its database.

Note that we do not require the existence of a single global Trusted Center
that is trusted by everyone in the world. Although it would be possible to set up
a worldwide key infrastructure with a single globally trusted root (e.g., adminis-
tered by a consortium of tag manufacturers), this is not necessary. For example,
a library deploying RFID could act as its own Trusted Center, enrolling a tag
and writing secrets to it when the tag is applied to a library book. If libraries
do not need to read each other’s tags, then no library need trust any other.

In our system, the Trusted Center acts as a trusted third party that manages
the privacy policy associated to tags. We envision that the Trusted Center might
provide a way for the owner of each tag to specify a privacy policy for that tag,
listing which readers are authorized to decode this tag’s pseudonyms. Manufac-
turers might also specify a default policy when the tag is created, allowing us to
support both opt-in and opt-out policies. When the Trusted Center receives a
request from some reader to decode a particular pseudonym, the Trusted Center
can decode the pseudonym, consult the tag’s privacy policy, and decide whether
to reveal the tag’s identity to this reader.

This provides a simple way for users to delegate access only to specific readers.
In the future, a RFID infrastructure might consist of thousands or even millions
of RFID readers deployed across the planet, and we need a way for legitimate
readers to read the tag. In a naive implementation, the Trusted Center might
give a copy of the tag’s secret key to each reader that is authorized to read
the tag. (See Figure 2.) However, this form of delegation is too coarse-grained,
because the reader then permanently receives the ability to identify this tag
for all time. We may not wish to place this much trust in every RFID reader
that ever encounters the tag, because then compromise of any one reader could
endanger the privacy of many users. The challenge is to provide time-limited
delegation, where a reader’s ability to read a tag can be limited to a particular
time period.

Time-limited Delegation. Controlling delegation is easy if all readers are online—
the reader can simply act as a dumb relay, passing on the pseudonym from the
tag to Trusted Center and letting the TC reply with the identity of the tag (if
permitted by this tag’s privacy policy). However, this approach requires a costly
interaction between the reader and TC every time a tag is read. Because today’s
readers may repeatedly broadcast queries to all tags within range at a rate of
50 times per second or so, the burden on the TC and the database may be very
high: if there are 10 tags within range, we require 500 round-trip interactions per
second with the TC, multiplied times the number of readers. We instead focus
on the problem of offline delegation.

In our scheme, the TC can compute a time-limited secret that provides only
the ability to disambiguate pseudonyms for a particular tag for a limited number
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Fig. 1. The Trusted Center delegates access to two different readers.

of times. In particular, the TC computes a secret that allow to recognize the
next q pseudonyms from this tag, where q is arbitrary and can be specified by
the privacy policy. This secret can be communicated to the reader through any
secure channel, and for the next q tag-reads the reader does not need to interact
with the TC in any way. After reading the tag q times, the reader loses the
ability to link tag readings and must contact to the Trusted Center to ask for
re-authorization.

Delegation is helpful for cases where readers have intermittent or low-bandwidth
connectivity. When a reader first sees a tag it is unable to recognize, the reader
can send the pseudonym it received to the TC. If this reader is authorized for
this tag, the TC can return not only the tag’s identity but also a secret that
allows reading the tag for a limited time—say, for 1000 queries—without requir-
ing further interaction with the TC. Delegation provides benefits even for online
readers, because the locality in tag sightings can be used to greatly improve
performance and reduce communication with the TC.

Our scheme also supports recursive delegation: after we delegate to Alice
limited-access to the tag, she can further re-delegate to Bob the power to query
this tag, and Bob can further delegate to Carol, and so on. Moreover, the rights
delegated can be limited arbitrarily at each step. For instance, if Alice receives
a secret that lets her identify the tag for the next 100 queries, she can compute
a secret for Bob that will let him read the tag for the next 40 queries, a secret
for Bill that lets Bill read the tag for the 30 queries after that, and so on. To
the best of our knowledge, no previous protocol for RFID privacy has addressed
delegation, let alone provided support for recursive delegation.

Ownership Transfer. A related problem to delegation is that of ownership trans-

fer, where Alice gives an RFID-tagged item to Bob. After the transfer of own-
ership, Bob should be able to read the item but Alice should not. Pseudonyms
allow us to cleanly deal with ownership transfer from Alice to Bob. If Alice has
not been delegated the ability to disambiguate pseudonyms, no further work is
needed: once Bob registers his ownership of this tag, the TC can simply deny
any future requests from Alice to read this tag. If Alice has been delegated se-
crets that let her read this tag, we have two methods for ensuring Alice can no



Scheme TReader SReader TTC STC # Msg Comm Delegation?

OSK [7] O(N) O(N) NA NA 1 O(1) No

AO [1] O(N2/3) O(N2/3) NA NA 1 O(1) No
MW [5] O(log N) O(1) NA NA O(log N) O(log N) No

Basic O(D) O(D) O(log N) O(2d1) 1 O(log N) Yes
Optimized O(D) O(D) O(log N) O(1) 1 O(log N) Yes

Fig. 2. Comparison to previous RFID privacy schemes. Here TTC and STC stand for
the time and storage requirements of the Trusted Center, with the Reader requirements
marked similarly. N is the total number of tags in the system, d1 is the depth of the
Trusted Center’s tree, and D is the number of tags delegated to a particular reader. In
practice, we expect D � N . The Optimized Scheme uses a PRF to generate the TC’s
tree of secrets and truncates the tag outputs, as described in Section 6.

longer link a tag after it is passed to Bob. Both are described in more detail in
Section 5.

Scalable Lookup. A major technical challenge in the design of such systems is how
to make them scale to a large number of tags. Consider a TC with a database of
N tags. Naively, decoding a pseudonym might require a linear scan through all
N tag keys, which which may not be practical for an RFID system with N = 106

tags. Instead, we design a scheme with logarithmic complexity: the TC does just
O(log N) work to disambiguate a pseudonym.

Delegation incurs some performance overhead at the readers. In our scheme,
a reader that has received D delegations will require O(D) work per tag queried.
In practice we expect D will be small compared to the total number of tags; for
example, D might be the number of tags in a single shipment of goods. Therefore,
we expect this performance level to be adequate in practice.

3 Notation

We use a pseudo-random functions (PRF) F : K × {0, 1}n → {0, 1}n and a
pseudo-random generator (PRG) G : K → K × K. Also, we use G0(k) and
G1(k) to denote the first and second part of G(k), respectively, so that G(k) =
(G0(k), G1(k)).

In practice we might use AES as the PRF. Recent results on low-gate-count
implementations of AES suggest that AES may be within reach for all but the
lowest-end RFID tags [2]. We might also define the PRG in terms of the PRF,
for instance defining G by Gb(k) = Fk(0n−1 b), so that the tag needs only a
single cryptographic primitive. One should be careful to ensure that the inputs
to the PRF when used for PRG-emulation are disjoint from the inputs to the
PRF elsewhere in the protocol, for instance by having the first bit of the PRF
indicate which mode it is being used in.

If s ∈ {0, 1}∗ is a bitstring, we use s1..i to denote the first i bits of s, and len(s)
to denote the length of s (in bits). Also, we place the nodes of a complete depth-
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Fig. 3. An example tree of secrets for four tags in our RFID pseudonym scheme.
The nodes drawn with solid lines correspond to secrets shared only between the tags
T1,...,T4 and the Trusted Center. Each of these secrets is drawn uniformly at random
and independently of each other. The dashed line nodes are secrets in delegation trees,
where keys at child nodes are derived by the GGM construction from the key at their
parent. On each read, a tag updates its state to use the next leaf in the delegation tree
for its next pseudonym. To delegate limited-time access to a tag, the Trusted Center
can give out subtrees of the delegation tree; for example, the immediate parent of 1
and 2 allows learning T1’s identity in time periods 1 and 2, but not in time periods 3
and 4.

d binary tree in one-to-one correspondence with {0, 1}≤d, the set of bitstrings
of length at most d. The empty string represents the root of the tree. If s is
any internal node, s 0 and s 1 are used to represent its left and right children,
respectively. Thus each bitstring of length ≤ d identifies a node in the binary
tree by specifying the path from the root that reaches it. We sometimes also use
s to refer to the integer s12

n−1 + · · ·+sn−12+sn obtained by viewing the string
s as a number written in big-endian binary notation.

If f : S′ → T is a function and S ⊆ S′, let f |S : S → T denote the restriction
of f to S. When given a function H : {0, 1}≤d1 → K defined on {0, 1}≤d1 ,
we will extend it to a function defined on all of {0, 1}∗ using the recurrence
H(s b) = Gb(H(s)).

4 Our Protocol

Tree of Secrets. Our protocol is based around a tree of secrets of depth d = d1+d2

as shown in Figure 4. Each node in the tree has its own k-bit secret key. For
simplicity, we describe our scheme in terms of a complete binary tree {0, 1}≤d,
though we will later generalize this to larger branching factors.



Tag State: (initialized by TC.EnrollTag)

c, a counter in {0, 1}d.

S, a set with S ⊆ {0, 1}≤d1 .
h, where h : S → K.

Algorithm Tag.Respond():

1. Pick r ∈R {0, 1}k uniformly at random.
2. Set p := (Fh(c1..1)(r), Fh(c1..2)(r), . . . , Fh(c1..d)(r)).
3. Set c := c + 1.
4. Return (r, p).

Fig. 4. Algorithms and state for the RFID tag.

The first d1 levels of the tree contain node secrets that are chosen uniformly
and independently at random by the Trusted Center during system initialization
(see algorithm TC.GenTC in Figure 5). Each node at depth d1 corresponds to
a unique tag. When the tag is enrolled into the system, it receives all keys on
the path from its node to the root. Therefore, each tag only needs capacity to
store d1 secrets.

The next d2 levels of the tree contain secrets that are derived using a GGM
tree construction [3]: each node is labelled with a secret, and the secrets for its
children are derived by applying a PRG. Knowing a secret at level ≥ d1 allows
computation of the secrets for every descendent in the subtree rooted at that
node, but nothing else.

Formally, the TC chooses a function H : {0, 1}≤d1 → K uniformly at random,
and H(s) denotes the key associated with node s in the tree. We extend the
function H : {0, 1}≤d1 → K to a function H : {0, 1}≤d → K by the rule
H(s b) = Gb(H(s)) for all s ∈ {0, 1}≥d1 , b ∈ {0, 1}. For the rest of this paper,
we assume this extension is implicitly performed whereever necessary, and we
do not distinguish between H and its extended version.

Each tag receives H|S for some prefix-closed set S = {t1..1, . . . , t1..d1
} cor-

responding to the path to the root. This means that the tag effectively learns
the function H|S′ , where S′ = {t1..1, . . . , t1..d}, though it only needs to store the
first d1 secrets in this list.

Tag Responses. Each tag T keeps a counter T.c. The counter identifies a leaf
at level d of the tree; thus, each counter value corresponds to a new pseudonym
for this tag. The tag responds to a query from a reader by generating a random
number r and sending a pseudonym

(r, p) = (r, (Fh(c1..1)(r), Fh(c1..2)(r), ..., Fh(c1..d)(r)))

where the h(c1..i) values represent secrets along the path in the tree of secrets
from the root to the tag’s current leaf T.c. The tag then increments the counter
c. See Figure 4.



Notice that because the counter c is incremented on each query, the tag will
use a different path of secrets, and therefore a different pseudonym, for every
query. This is what enables delegation, because we can give the reader a subtree
of secrets that will expire after a certain number of tag reads.

The tag’s workload is quite modest: only d + d2 invocation of the PRF are
needed per query. By varying the branching factor and depth of the tree, we can
trade off between the complexity of Tag.Respond and the complexity for the
reader. See Section 6.

Decoding Pseudonyms. Given a pseudonym (r, p), it is possible to use the tree
structure to efficiently decode this pseudonym and discover the identity of the
tag that generated this pseudonym. The main idea is to use a depth-first search
to find a path in the tree that matches the response p. We start at the root of
the tree of secrets. At each node s, we can check whether the left child s 0 or the
right child s 1 matches entry pi in the response by checking whether Fs0(r) = pi

or Fs1(r) = pi, respectively. In this way, wrong paths can be quickly pruned. See
TC.IdentifyTag in Figure 5.

Given a pseudonym, this procedure lets the TC identify the tag’s real identity
ID. Based on the identity of the tag, the identity of the reader, and the privacy
policy for this tag, the TC can then decide whether to reveal ID to the reader.
This provides a mechanism for enforcing a privacy policy regarding which readers
are allowed to learn which tag IDs.

Delegation. Our protocol also allows the TC to delegate access to a certain
interval of pseudonyms to an offline reader. This can be thought of as allowing
the reader to perform the mapping itself from a pseudonym (r, p) to the tag’s
identity ID, but only if the tag’s counter value is in a prescribed interval [L,R]
(for some 1 ≤ L ≤ R ≤ 2d).

Recall that each leaf of the tree corresponds to a different pseudonym for a
tag. To delegate access to leaves in an interval [L,R], the Trusted Center first
determines the smallest set S ⊆ {0, 1}≥d1 of tree nodes that cover the interval
[L,R]. We say that S covers [L,R] if for all x ∈ [L,R], there exists s ∈ S so that
s is a prefix of x. The Trusted Center then sends H|S to the reader along with
the tag’s identity. Now, when the reader sees the pseudonym (r, p), the reader
no longer needs to communicate with the Trusted Center. Instead, the reader
can perform a depth-first search starting at each node in S, since H|S contains
everything the reader needs to know to perform this search. See Figures 5 and
6.

After the tag updates itself past the leaf R, however, the reader can no longer
recognize any subsequent pseudonyms from this tag. This is because the counter
Tag.c will have updated past the subtree of secrets known to the reader. The
reader’s access to the tag has effectively expired, and at this point the reader
must re-apply to the TC if it wants continued access.

Note that decoding a pseudonym takes the reader O(D) invocations of the
PRF (for D = |S|), since the reader must check every value in its delegated
subset S for a match with the tag’s response.



TC State:
H : {0, 1}≤d1 → K, a function.

Algorithm TC.GenTC():

1. Let H : {0, 1}≤d1 → K be a random function, i.e., pick H(s) ∈R K uniformly at
random for each bitstring s of length at most d1.

Algorithm TC.EnrollTag(ID):

1. Find the smallest integer t ∈ {0, 1}d1 that hasn’t been assigned to any other tag.
Assign t to this tag.

2. Set S := {t1..j : 1 ≤ j ≤ d1}.
3. Return (t 0d2 , S, H|S) as the state for this tag.

Algorithm TC.Delegate(L, R):

1. Let S denote the minimal subset of {0, 1}≥d1 such that for all x with L ≤ x ≤ R,
there exists s ∈ S so that s is a prefix of x.

2. Return H|S .

Algorithm TC.IdentifyTag(r, p):
1. Return DFS(r, p, 1, ε), where ε denotes the empty bitstring.

Algorithm DFS(r, p = (p1, .., pd), i, s):
1. If i = d + 1, return {s1..d1

}.
2. Set ids := ∅.
3. If FH(s 0)(r) = pi then set ids := ids ∪ DFS(r, p, i + 1, s 0).
4. If FH(s 1)(r) = pi then set ids := ids ∪ DFS(r, p, i + 1, s 1).
5. Return ids.

Fig. 5. Algorithms and state for the Trusted Center.

Second Version: Eliminating the Counter. In low- and middle-end RFID tech-
nologies, writing permanent state such as a counter on each tag read may be
difficult, making our first protocol inapplicable. For example, the EPC Gen II
specification requires a random number generator, but EPC tags are read at a
distance of several meters and may not have enough power available for writes.

We now design a second version of the protocol that eliminates the need for
updateable non-volatile state, assuming the tag can generate random numbers
on demand. One approach is to simply delete the last d2 levels of the tree, so
that instead of a counter whose last d2 bits increment, the tag contains a unique
d1-bit value t that is fixed at enrollment time. Another approach is to retain the
last d2 levels of the tree, and to replace the counter with a d-bit value Tag.c
whose first d1 bits are fixed at the unique value t (as before) and whose last
d2 bits are chosen uniformly at random for each query. The Trusted Center’s
algorithms remain unchanged in either case. Unfortunately, the second version
of our protocol does not support time-limited delegation or ownership transfer.



Reader State:

h : S → K, for some S ⊆ {0, 1}≥d1 , with S initialized to ∅.

Algorithm Reader.IdentifyTag(r, p):
1. Set ids := ∅.
2. For each s ∈ S such that no prefix of s is in S, do:
3. Set ids := ids ∪ DFS(r, p, len(s) + 1, s).
4. Return ids.

Fig. 6. Algorithms and state for the reader.

Security and Privacy. Our protocol provides replay-only security against im-
personation attack and privacy against a radio-only adversary. Informally, this
is because each pseudonym emitted by a tag is indistinguishable from other
pseudonyms unless the secret keys are known; we give formal definitions and
proofs in the full version of the paper.

Our protocol provides replay-only security against impersonation attack even
if an adversary can compromise tags. This is because each tag has at least
one secret not shared with any other tag; to perform a successful non-replayed
impersonation, the adversary would need to predict the value of a PRF keyed
with such a secret.

Privacy, on the other hand, degrades under tag compromise. This is because
tags may share secrets in the tree of secrets. The amount of degradation de-
pends on the branching factor of the tree. At one extreme, a single-level tree
with a branching factor of N loses no privacy under tag compromise. At the
other extreme, two randomly chosen tags in a binary tree have a chance of 1/2k

of sharing k secrets. Each deployment can pick the branching factor that makes
the best tradeoff between privacy loss under tag compromise and reader com-
plexity. Even at high branching factors, however, our scheme provides benefits
via delegation.

5 Ownership Transfer

Ownership transfer in RFID is the following problem: Alice gives an RFID tag
to Bob. How do we prevent Alice from later reading the RFID tag? This problem
is crucial for limiting the trust required in readers which may need to read tags
at some point in the tag’s lifetime.

In the case that Alice has not been delegated access to the RFID tag, own-
ership transfer in our model is simple. The Trusted Center is notified of the
transfer and updates a privacy policy associated with the tag. Afterwards, Al-
ice requests access to the tag’s ID. The Trusted Center then checks the privacy
policy, sees Alice no longer owns the item, and denies access. In case Alice has
been already been delegated access to the tag, we introduce two methods for
ownership transfer.



PRNG.Initialize()
1. Initialize ctr to 0.
2. Pick secret key rk ∈R K.

PRNG.GetNextNonce()
1. Return Frk(ctr++).

Fig. 7. Generating nonces with a PRF and a counter.

Soft Killing. In the first method, soft killing, Bob queries the Trusted Center
and learns how many leaves were delegated to Alice. Suppose this number is k.
Bob then reads the tag k + 1 times. The tag will then have updated past Alice’s
access, so she will no longer be able to disambiguate the tag’s pseudonyms.
Notice that even if Bob knows how many leaves were delegated to Alice, he still
cannot distinguish a tag delegated to Alice from any other tag without Alice’s
help; this is because the tag will emit a new, pseudorandom, pseudonym on each
read. Therefore knowing the number of leaves delegated to Alice does not hurt
the privacy of our protocol.

The benefit of soft killing is that it does not require shared secrets between
the tag and reader. The downside is that soft killing requires many tag reads. Soft
killing also opens up the possibility for a denial of service attack if an adversary
reads the tag many times; Alice can recover from this by simply asking the
Trusted Center to delegate more access.

Increasing The Tag Counter. In the second method, we allow Bob to increase
the counter on a tag from c to c′. Bob does so by sending the tag a random seed
r, after which Bob and the tag can perform mutual authentication and establish
a secure channel with the shared secret Fh(c)(r). Bob then sends c′, plus a proof
that Bob knows the secret for the leaf c′ to the tag over the secure channel. The
tag checks that c′ > c, so Bob can only increase the tag’s counter, not decrease
it. By doing so, Bob can “leapfrog” the tag over Alice’s delegated leaves and be
sure that Alice can no longer read the tag. Increasing the counter requires only
one read, but also requires that Bob share two secrets with the tag, one for the
current leaf and one for the new leaf c′. Notice that the Trusted Center need not
be involved at all in the transaction in this case.

6 Optimizations and Weakening Assumptions

Reducing TC Storage. In our protocol as described, the Trusted Center must
generate and store 2d1+1 independent random values. We can reduce this storage
to a single key by instead having the Trusted Center use a PRF with a master
key mk that is never revealed to any other party. The PRF evaluated at a nodeID
yields the secret for the node: H(s) = Fmk(s) for s ∈ {0, 1}≤d1 .

Random Number Generation. In some RFID technologies, it may be difficult to
generate random numbers. If the tag can support writable non-volatile state, we
can replace the random number generator with a PRF run in counter mode. See
Figure 6. We stress that the key rk used for random-number generation is not
shared with any reader at any time.



Number of Tags Tag Storage Communication Tag Computation Reader Computation

220 128 bits 158 bits 6 6 · 210

230 192 bits 168 bits 7 7 · 210

240 256 bits 178 bits 8 8 · 210

Fig. 8. Concrete resource use of our scheme for some example parameters. We use a
branching factor of 210 in all cases, use a 64-bit r value with truncation, and we assume
tags will be read at most 220 times. Tag and reader computation are both measured
in expected number of PRF evaluations.

Truncating PRF Values. Instead of sending full PRF values in a tag response,
it is more efficient to send truncated versions. This reduces communication
overhead at the cost of following false paths during the depth-first search. To
avoid misidentification of tags, we recommend truncating only at the inter-
nal nodes and sending the full-length PRF output at the leaves. If internal
nodes are truncated to a bits, the tag’s response becomes (r, p) where p :=
(Fh(c1..1)(r) mod 2a, ..., Fh(c1..d−1)(r) mod 2a, Fh(c1..d)(r)). With full-length val-
ues at the leaves, the probability of misidentification is negligible.

When PRF responses are truncated, identifying a tag requires searching
through the tree, and this search might follow false paths that do not corre-
spond to the true tag identity. If the branching factor is exactly 2a, it is possible
to show that the search process is a birth-death process and that the expected
complexity of the search is O(2a × lg N) = O(2a × d).

Branching Factor and Concrete Examples. Truncation greatly reduces commu-
nication overhead while only slightly impacting the complexity of tag identifica-
tion. For instance, with a binary tree of depth d = 40, we might truncate PRF
values to 1 bit at internal nodes and use a 64-bit PRF output at the leaves.
With these parameters, the response p will be 103 bits long, while the search
complexity remains minimal.

In practice, we would use trees with branching factors much larger than 2. A
larger branching factor reduces the depth of the tree, thus reducing tag storage
and computation, at the cost of more computation for the Trusted Center and
reader. For example, consider an RFID system with N = 220 tags, each of which
will be read at most 220 times. We construct a four-layer tree of secrets with
branching factor 1024 = 210 at all levels. Each tag stores two 64-bit secrets s1, s2,
with the second secret being the root of a GGM tree that covers the final two
tree levels. Each pseudonym requires two PRF invocations to compute s3, s4 and
four PRF invocations to compute the response. Total tag storage is 2 · 64 = 128
bits and total tag computation is 6 applications of the PRF. If we truncate the
tag’s responses to 10 bits at internal nodes and 64 bits at the leaf, and use a
64-bit r, the tag’s total communication is 64 + 30 + 64 = 158 bits. The work for
the reader, on the other hand, is only 6 · 210 applications of the PRF. We show
concrete parameters for this and some other examples in Figure 6.



7 Related Work

Weis et al. provide “hash lock” protocols for private mutual authentication [8].
As we have discussed, mutual authentication is not needed in scenarios when
only tag identification is required, and it incurs significant performance costs.
Their schemes also require readers to perform work linear in the number of total
tags and do not support time-limited delegation to offline readers. Because they
choose independent secrets for each tag, however, they do not suffer from privacy
loss under tag compromise.

Molnar et al. show how to use a tree of secrets to achieve mutual authen-
tication protocol with complexity logarithmic in the number of tags [5]. Un-
fortunately, their scheme requires at least 3 and possibly as many as O(log N)
rounds of communication between tag and reader, while we achieve one message
from tag to reader. Further, their work does not support delegation, nor does it
work with legacy readers. Our work uses a similar tree construction to achieve
logarithmic work, but applies the idea to RFID pseudonyms. Our recursive tree-
walking scheme has some similarities with the traitor tracing scheme of Naor et
al. [6].

Ohkubo et al. introduce a scheme for RFID pseudonyms [7]. In their proto-
col, recovering the tag identity requires work linear in the number of possible
tags, while we achieve logarithmic work. They propose storing the expected next
output of each RFID tag as an optimization, but this cannot be kept up to date
unless without online reader-TC interaction on every tag read. Avoine and Oech-
slin propose a time-space tradeoff technique that improves the complexity of the
Ohkubo et al. protocol to O(N2/3) time with a table of size O(N2/3), but their
protocol does not support delegation as ours does [1]. Both protocols could be
extended to support a form of delegation by giving out individual secrets for
each time period, but this requires much more state on the tag and degrades
performance significantly. On the other hand, both schemes avoid the problem of
privacy loss under tag compromise, because all tags have independently chosen
secrets.

Juels gives a scheme for one-use RFID pseudonyms [4]. Unlike our protocol,
Juels’s scheme does not require a PRF; a simple XOR is enough. Juels also
discusses methods for rotating and changing pseudonyms to support ownership
transfer. His protocol, however, only allows a tag to emit a limited number
of pseudonyms before it must be refreshed through interaction with a trusted
reader. Juels outlines an extension to the protocol which removes this restriction
using a PRG, but this method requires tight synchronization between reader
and tag. Further, his protocol does not work with legacy readers, and it does
not support delegation as ours does. Again, in Juels’s system, compromising one
tag does not aid the adversary in identifying another.

8 Conclusions

We have described a new cryptographic protocol for RFID privacy. In our
scheme, tags generate pseudonyms that can only be decoded with knowledge



of the appropriate secrets, and privacy is protected by controlling which parties
are given access to these secrets. The key ingredient of our protocol is a set of
secrets organized in a tree format. This tree structure enables many powerful
features, including support for legacy readers, disconnected operation, flexible
privacy policies, delegation to authorized readers, time-limited delegation, re-
cursive delegation, and ownership transfer between users. At the same time, our
scheme is practical and scalable: it requires only a few PRF invocations and
a modest amount of communication between the tag and reader, even for very
large deployments. We believe our protocol could enhance the privacy protection
for a wide range of current and future deployments of RFID technology.
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