
Collision Attack on XTR and a Countermeasure with
a Fixed Pattern ⋆

Dong-Guk Han1, Tsuyoshi Takagi1, Tae Hyun Kim2,
Ho Won Kim3, and Kyo Il Chung3

1 FUTURE UNIVERSITY-HAKODATE, JAPAN
{christa,takagi}@fun.ac.jp

2 Center for Information and Security Technologies(CIST),
Korea University, Seoul, KOREA

thkim@cist.korea.ac.kr
3 Electronics and Telecommunications Research Institute(ETRI), KOREA

{khw,kyoil}@etri.re.kr

Abstract. Public-key cryptosystem (PKC) is one of inevitable key technologies
in order to accomplish fruitful security applications in ubiquitous computing sys-
tems. The ubiquitous computer only has scarce computational resources (like
Smart cards, RFID, Sensor Network), however, so that the light weight PKC is
necessary for those miniaturized low-power devices. Recently, XTR is considered
as one of good candidates for more energy efficient cryptosystems. Among XTR
exponentiation algorithms, the most efficient one is the Improved XTR Single Ex-
ponentiation (XTR-ISE) proposed by Stam-Lenstra. Thus among the family of
XTR algorithms, XTR-ISE is the most efficient one suitable for ubiquitous com-
puter. Even though the security of such devices against side channel attacks is very
dangerous, there are few works on side channel attacks against XTR-ISE. In this
paper we propose a new collision attack on XTR-ISE, derived from the structural
properties of XTR-ISE. The analysis complexity of the proposed one is about 240

where the key size is 160-bit, which is 55% improvement from the previously best
known analysis of Page-Stam. We also propose a novel countermeasure using a
fixed pattern which is secure against SPA. We deploy a variant of Euclidean al-
gorithm whose one of the registers is a monotone decreasing function with odd
value. From our estimation of the efficiency of the proposed method, XTR expo-
nentiation, computing Tr(gn) with Tr(g) and n, takes 11.2 log2 n multiplications
in Fp2 . In the sense of both efficiency and security the proposed countermeasure
is the best one among the previous countermeasures- it is about 30% faster.

Keywords: Ubiquitous computer, XTR public key system, XTR Exponentiation

Algorithms, Side Channel Attacks, Collision Attack

1 Introduction

We are standing to the beginning of the ubiquitous computing era. It is expected that we
can accomplish lucrative applications by effectively synthesizing the ubiquitous computer
with cryptography. The ubiquitous computer only has scarce computational resources
(like Smart cards, RFID, Sensor Network), so that we have to make an effort to opti-
mize the memory and efficiency of the security system. Our expectation is that secure
symmetric encryption will be widely available on the ubiquitous computer of the future,
but one of the biggest problems in using secret key algorithms is the protection of the
sensitive key material. However, the use of public-key cryptosystem (PKC) facilitates
security protocols and has a potential impact on a much wider range of applications.

⋆ This is a “full” version of a paper that will be published in SecUbiq 2005.

Furthermore, only the public key would have to be embedded into the target devices.
Currently there are a few implementations on ubiquitous environments with PKC. In
ESAS 2004 Gaubatz-Kaps-Sunar showed an implementation of Rabin and Ntru in sensor
networks [8]. Recently Watro et al. showed RSA (in the case the encryption key is 3) is
feasible to the applications of ubiquitous computer, and remarked that XTR is one of
good candidates for light weight cryptosystems in SASN 2004 [21].

However, the applications of ubiquitous computer will be carried into and used in
hostile environments and often house sensitive information, for example identity related
tokens or financial information, the threat of attack is significant. This threat is magnified
by both the potential pay-off and level of anonymity that side channel attacks (SCA)
allow [12, 13]. The fact that one can attack a device somewhat remotely via timing and
power consumption means that most ubiquitous computing devices need to be aware of
similar problems in their operational environments.

In Crypto 2000 Lenstra-Verheul introduced XTR, a cryptosystem using a sub-group
of the multiplicative group of Fp6 but with a compact representation based on the trace
over Fp2 that allows highly efficient arithmetic [14]. In Crypto 2003, Rubin-Silverberg
proposed torus based public key cryptosystem CEILIDH to provide greater efficiency for
the same security [17]. Recently, Dijk et al. proposed an optimal communication technique
for torus-based cryptosystem [6, 5]. The common main idea of XTR and CEILIDH is to
shorten the bandwidth of transmission data. Even though the efficiency of communication
of CEILIDH is better than XTR, unfortunately it was shown that CEILIDH seems bound
to be inherently slower than XTR [9]. Given the current state of affairs in breaking the
discrete logarithm problems over either finite fields or elliptic curves, XTR can compete
with elliptic curve cryptosystems (ECC) in terms of both speed and bandwidth. This
makes XTR suitable for deployment on similar sorts of constrained devices such as smart-
cards, where computational power and storage capacity are both very limited. Among
XTR exponentiation algorithms, the most efficient one is proposed in [18], called as
Improved XTR Single Exponentiation (XTR-ISE), and that is on average more than
22% faster than the old method. Thus among the family of XTR algorithms, XTR-ISE is
the most efficient one suitable for smart-cards, where computational power and memory
capacity are both very limited. Even though the security of such devices against side
channel attacks is very dangerous, however, there are few works on side channel attacks
against XTR-ISE.

In 2004 Chung-Hasan [2] and Page-Stam [16] proposed simple power analysis (SPA)
against XTR-ISE and that it was the first try to analyze it with SCA. Chung-Hasan
showed it takes 2100 tries for an attacker until he/she correctly finds the secret key in
XTR-ISE with 160-bits key length. On the other hand, Page-Stam showed it requires
288 tries. It’s more nice result than that of Chung-Hasan, but these results are far worse
than well-known square-root type algorithms (Baby-Step-Giant-Step or Pollards’ Rho
methods), i.e., their results are not practically feasible. Page-Stam introduced the in-
distinguishable arithmetic formula and the exponent splitting method as SPA and DPA
countermeasure. It is considered as the most efficient countermeasure against SPA and
DPA among the proposed ones in XTR family.

1.1 Contribution of this paper

From the above previous results about XTR-ISE, we are encouraged to start the following
two challenges;

(1) Analysis - How can we reduce the complexity of analysis: We can see that the
analysis result of Page-Stam and Chung-Hasan are not practically feasible. In this paper
we find a new analysis technique, called as XTR collision attack, derived from the struc-
tural properties of XTR-ISE. The complexity of XTR collision attack is about 20.25·l

2

where l is the length of the key. Thus the complexity of XTR collision attack against
XTR-ISE is about 240 where the key length is 160-bit, which is about 55% improvement
from the result of Page-Stam [16].

(2) Countermeasure - How can we design a secure countermeasure against SCA: In
the countermeasure of Page-Stam, the indistinguishable arithmetic formula and exponent
splitting as a SPA and DPA countermeasure respectively, there are some controversial
points.

– Recently Walter showed that the produced unified code for elliptic addition and dou-
bling in order to avoid SPA may still be insecure against SPA if there is sufficient side
channel leakage at lower levels [20]. Thus the indistinguishable arithmetic technique
is not recommended as a SPA countermeasure.

– If Montgomery arithmetic is used in the proposed indistinguishable arithmetic for-
mula then some extra dummy additions have to added to XTR addition routine
to make up for this [16]. However, Yen et al. showed that the safe-error attack is
applicable to the dummy method [22].

Thus in this paper we propose a novel countermeasure using a fixed pattern which is
secure against SPA. As the behavior of XTR-ISE is based on an adaptation of a Euclidean
Algorithm we propose a special Euclidean algorithm such that one parameter is always
odd integer and monotone decreasing to construct a fixed pattern of XTR addition A and
doubling D. In deed we generate an XTR AD sequence with the fixed pattern such that
ADDADD. . .ADD. In order to defeat DPA the exponent splitting technique is utilized.
From our estimation of the efficiency of the proposed method, XTR exponentiation,
computing Tr(gn) with Tr(g) and n, takes 11.2 log2 n multiplications in Fp2 . In the
sense of both efficiency and security the proposed countermeasure is the best one among
the previous countermeasures- it is about 30% faster.

The remainder of the paper is structured as follows. After a brief description of XTR
public key systems in Section 2, and an introduction into side channel attacks on XTR
in Section 3, we will propose a new analysis technique, called as XTR collision attack
in Section 4. In Section 5 we explain the proposed countermeasure using a fixed pattern
which is secure against SPA.

2 XTR Public Key Cryptosystems

In this section, we review mathematics of XTR including basic parameters and funda-
mental algorithms to calculate traces of powers [14, 18].

2.1 XTR Parameters

Let p and q be primes with p ≡ 2 mod 3 and q dividing p2−p+1, and let g be a generator
of the order q subgroup of F∗p6 . Suggested lengths to provide adequate levels of security

are log2 q ≈ 160 and log2 p ≈ 170. As p is 2 modulo 3, it follows that (X3− 1)/(X − 1) =
X2 + X + 1 is irreducible over Fp and that two roots α and αp form an optimal normal
basis for Fp2 over Fp, i.e., Fp2 ∼= {x1α + x2α

p : x1, x2 ∈ Fp}. Since αi = αi mod 3 it
follows that

Fp2 ∼= {x1α + x2α
2 : α2 + α + 1 = 0 and x1, x2 ∈ Fp}.

For the simplicity, we denote x = x1α + x2α
2 as (x1, x2).

Property 1. As α2 = αp it follows that xp = x2α + x1α
2, so that p-th powering in Fp2 is

free.

3

For an element h ∈ F∗p6 its trace Tr(h) over Fp2 is defined as a sum of the conjugates
over Fp2 of h:

Tr(h) = h + hp2

+ hp4

∈ Fp2 .

2.2 XTR-ElGamal encryption

XTR can be used in any cryptosystem that relies on the discrete logarithm problem. This
section contains a description of an application of XTR to ElGamal encryption [14].

Public key data of Alice: p, q, Tr(g), Tr(gk).
Secret key data of Alice: k in [2, q − 3].

Encryption Bob can encryption a message M ∈ Fp2 intended for Alice as follows.

1. Select at random r ∈ [2, q − 3] and compute Tr(gr) ∈ Fp2 .

2. Compute Tr(grk) ∈ Fp2 with r and Tr(gk). Let K = Tr(grn′
).

3. Compute E = K ·M ∈ Fp2 .
4. Send (Tr(gr), E) to Alice.

Decryption Using her knowledge of secret key k, Alice decrypts the message (Tr(gr), E)
as follows.

1. Compute Tr(gkr) ∈ Fp2 with k and Tr(gr).
2. Let K = Tr(gkr) and find K−1 such that K ·K−1 = 1 in Fp2 .
3. Compute E ·K−1, resulting in message M .

2.3 XTR Exponentiation Algorithm

Throughout this paper, cn denotes Tr(gn) ∈ Fp2 , for some fixed p and g of order q, where
q divides p2 − p + 1. Note that c0 = 3 and c1 = c.

An efficient computation of cn for given p, q and c depends on the recurrence relations

cu+v = cucv − cp
vcu−v + cu−2v, (1)

and

c2u = c2
u − 2cp

u, (2)

which is derived from the equation (1) when u = v.
By using above two formula, we define the following two functions called as XTR

addition and XTR doubling respectively;

A[x, y, z, w] = x · y − yp · z + w,

D[x] = x2 − 2xp.

Computation time of the basic operations: Let Mul denote the computation time
of modulo multiplication in Fp and x = (x1, x2), y = (y1, y2), z = (z1, z2), and w =
(w1, w2) be elements of Fp2 .

The basic operations D[x] and A[x, y, z, w] in XTR can be calculated like this [14].

D[x] = (x2(x2 − 2x1 − 2), x1(x1 − 2x2 − 2)), (3)

A[x, y, z, w] = (y1 · T1 + y2 · T2 + w1, y1 · T3 + y2 · T4 + w2), (4)

where T1 = z1 − x2 − z2, T2 = x2 − x1 + z2, T3 = x1 − x2 + z1, and T4 = z2 − x1 − z1.

Thus the required number of multiplications to compute D[·] and A[·] is as follows;

4

– 2 ·Mul is required to compute D[·],
– 4 ·Mul is required to compute A[·].

Remark 1. As usual, the small number of additions and subtractions is not counted
because the computation time of that is negligible [14].

By using above defined notations we introduce Improved XTR exponentiation algo-
rithms proposed by Stam-Lenstra [18]. The goal of these algorithms is to compute cn for
given c1 and n ∈ Z, i.e. to compute Tr(gn) with Tr(g) and an integer n.

Improved XTR Single Exponentiation (XTR-ISE) [18]
Input: c1 and n where n > 2
Output: cn

1. Initialization:
1.1. Let a =round(3−

√
5

2 n) and b = n− a (where round(x) is the integer closest to x).
1.2. Let f = 0. As long as a and b are both even, replace (a, b) by (a/2, b/2) and f by f + 1.
1.3. Let i = 1 and Gi := (Q0, Q1, Q2, Q3) = (c1, c1, 3, cp

1).

2. As long as a 6= b
2.1. If b > a

X1. if b ≤ 4a, then (a, b)← (b− a, a)
T0 ← A[Q0, Q1, Q2, Q3], T1 ← Q0,
T2 ← Q1, T3 ← Qp

2 .
X2. else if b is even, then (a, b)← (a, b/2)

T0 ← D[Q0], T1 ← Q1,
T2 ← A[Q0, Q2, Q1, Qp

3], T3 ← D[Q2].
X3. else if a is odd, then (a, b)← (a, (b− a)/2)

T0 ← D[Q0], T1 ← A[Q0, Q1, Q2, Q3],
T2 ← Q2, T3 ← D[Q1]

p.
X4. else (a is even), then (a, b)← (b, a/2)

T0 ← D[Q1], T1 ← Q0,
T2 ← Qp

3 , T3 ← D[Q2]
p.

2.2. Else (if a > b)
Y1. if a ≤ 4b, then (a, b)← (a− b, b)

T0 ← A[Q0, Q1, Q2, Q3], T1 ← Q1,
T2 ← Q0, T3 ← Q2.

Y2. else if a is even, then (a, b)← (b, a/2)
T0 ← D[Q1], T1 ← Q0,
T2 ← Qp

3 , T3 ← D[Q2]
p.

Y3. else if b is odd, then (a, b)← (b, (a− b)/2)
T0 ← D[Q1], T1 ← A[Q0, Q1, Q2, Q3],
T2 ← Qp

2 , T3 ← D[Q0]
p.

Y4. else (b is even), then (a, b)← (a, b/2)
T0 ← D[Q0], T1 ← Q1,
T2 ← A[Q0, Q2, Q1, Qp

3], T3 ← D[Q2]

2.3. i← i + 1 and set Gi = (T0, T1, T2, T3).

3. Compute c̃ = A[Q0, Q1, Q2, Q3] = cu+v.
4. Output c̃2f .
5. If a = 1 then return c̃2f

else run Improved XTR Single Exponentiation with c = c̃2f and n = a.

Let Gi := (Q0, Q1, Q2, Q3) be the i-th updated intermediate values of Qi in Step
2 of XTR-ISE for i ≥ 1. G1 = (Q0, Q1, Q2, Q3) denotes the updated values at the

initialization step. Let Gi
Ti−→ Gi+1 denote that Gi+1 is updated from Gi after state

Ti ∈ {Xj , Yj}1≤j≤4. For example, if XTR-ISE is terminated after X1 → X1 → X4 →

Y4 → Y3 → X2 → Y1, then the relation between Gi and Ti is as follows; G1
X1→ G2

X1→

G3
X4→ G4

Y4→ G5
Y3→ G6

X2→ G7
Y1→ G8.

XTR-ISE is based on an adaptation of a Euclidean algorithm by Montgomery using
Lucas chains. For ease of notation, we will momentarily use ordinary exponentiation in
our description instead of the third order XTR recurrence. Given Tr(g) and n, computing
Tr(gn) takes 6.7 log2 n Mul in XTR-ISE. Note that it is the most efficient one among
XTR exponentiation algorithms without pre-computation.

5

3 Side Channel Attacks

Side channel attacks (SCA) are allowed to access the additional information linked to the
operations using the secret key, e.g., timings, power consumptions, etc [12, 13]. This type
of attack, which includes Simple Power Analysis (SPA) and Differential Power Analysis
(DPA), render cryptographic devices such as smart cards vulnerable.

− In SPA, an attacker just needs to monitor the devices power consumption and identify
the parts of the power trace that correspond to the difference of operations using the
secret key. This gives trivially the secret key.

− DPA observes many power consumptions and analyzes these information together with
statistic tools. An adversary should analyze the information of power consumptions with
statistic tools per every target bit, however, he/she does not need re-observe new power
consumptions to detect a next target bit because he/she can use the same obtained
information.

3.1 Side Channel Attacks on XTR and Their Countermeasures

We summarize the previous related results about side channel attacks on XTR and
countermeasures. According to target algorithms the proposed analysis techniques and
countermeasures are as follows:

XTR Single Exponentiation Method (XTR-SE)4: Several side channel attacks
such as DPA, the doubling attack, the refined power analysis, and the zero value at-
tack, were proposed by Han et al. [10, 11]. But, it is secure against SPA without any
countermeasures. In ICICS 2004, Ciet-Giraud showed that it can be also analyzed by the
transient fault induction attacks [1]. As countermeasures against DPA, the exponent ran-
domization, the exponent splitting, the base randomization, and the field randomization
techniques were proposed in [10, 11, 16].

Improved XTR Single Exponentiation Method (XTR-ISE): Chung-Hasan [2]
and Page-Stam [16] proposed SPA to XTR-ISE and that it was the first try to analyze it
with SCA. Chung-Hasan showed it takes 2100 tries for an attacker until he/she correctly
finds the secret key in XTR-ISE with 160-bits key length. On the other hand, Page-Stam
showed it requires 288 tries. As countermeasures against SPA and DPA, the indistinguish-
able arithmetic formula and the exponent splitting, were proposed and recommended as
an efficient and adequate SPA and DPA countermeasure respectively [16]. It is the most
efficient countermeasure against SPA and DPA among the proposed ones.

3.2 Challenges of This Paper

From the above previous results about XTR-ISE, we are encouraged to start the following
two challenges;

(1) Analysis - How can we reduce the complexity of analysis: The analysis result
of Page-Stam is more nice than that of Chung-Hasan, but these results are far worse
than well-known square-root type algorithms (Baby-Step-Giant-Step or Pollards’ Rho
methods), i.e., their results are not practically feasible. In this paper we find new analysis
technique, called as XTR collision attack, derived from the structural properties of XTR-
ISE. The complexity of XTR collision attack against XTR-ISE is about 240 where the
key length is 160-bit, which is about 55% improvement from the result of Page-Stam [16].
The description of it is contained Section 4.

4 This algorithm was proposed by Lenstra-Verheul [14].

6

(2) Countermeasure - How can we design a secure countermeasure against SCA:

Even though Page-Stam’s method, the indistinguishable arithmetic formula and exponent
splitting as an SPA and DPA countermeasure respectively, is the most efficient counter-
measure against SPA and DPA among the proposed ones, there are some controversial
points in their method.

– Recently Walter showed that the produced unified code for elliptic addition and dou-
bling in order to avoid SPA may still be insecure against SPA if there is sufficient side
channel leakage at lower levels [20]. Thus the indistinguishable arithmetic technique
is not recommended as a SPA countermeasure.

– If Montgomery arithmetic is used in the proposed indistinguishable arithmetic for-
mula then some extra dummy additions have to added to A[·] routine to make up for
this [16]. However, Yen et al. showed that the safe-error attack is applicable to the
dummy method [22].

Thus in this paper we propose a novel countermeasure using a fixed pattern which is
secure against SPA. In order to defeat DPA the exponent splitting technique is utilized.
In Section 5 we describe the proposed countermeasure.

4 New Collision Attack on XTR

In this section we find new analysis technique, called as XTR collision attack, derived
from the structural properties of XTR-ISE.

4.1 Some Properties of XTR-ISE

In XTR-ISE, Step 2 consists of eight states Xi and Yi where 1 ≤ i ≤ 4. One state is
only determined by the condition of a and b. The following properties give us useful
information to determine the next state, and their proof can be found in the appendix.

Proposition 1. In XTR-ISE, the following relations are satisfied;

1. X1 is followed by Xi and only Y1 where 1 ≤ i ≤ 4.

2. X2 is followed by Xi where 1 ≤ i ≤ 4.

3. X3 is followed by Xi where 1 ≤ i ≤ 3.

4. X4 is followed by only Y3 or Y4.

5. Y1 is followed by Xi and only Y1 where 1 ≤ i ≤ 4.

6. Y2 is followed by Xi where 1 ≤ i ≤ 4.

7. Y3 is followed by Xi where 1 ≤ i ≤ 3.

8. Y4 is followed by only Y3 or Y4.

9. The last step is either X1 or Y1.

The results of Proposition 1 give some useful information of the relation of executing
consecutive two states. For example, Y4 always follows either Y3 or by oneself. From
Proposition 1 we can see another property,

Property 2. State Y2 never occurs in the process of XTR-ISE except the first time.

Thus, there is no state which can actually leads to Y2’s precondition. Thus Y2 can
not be occurred in the process of XTR-ISE except an appearance of the first time.

7

X
1

X
2

X
4

X
3

Y
1

Y
2

Y
4

Y
3

Fig. 1. The finite Markov chain associated with XTR-ISE

4.2 Assumptions and Notations

We first introduce some reasonable assumptions which is used in a new attack.

1. A[x, y, z, w] and D[x] are distinguishable by a single measurement of power consump-
tion, whereas D[x]p and D[x], and A[x, y, z, wp] and A[x, y, z, w] are indistinguishable,
respectively. Here, x, y, z, w ∈ Fp2 .

2. When {A[·],D[·],D[·]} are all operated, e.g. in the case of X3 in XTR-ISE, we assume
these three functions are operated according to the following order A[·]D[·]D[·]. In
more detail, states Xi and Yi are updated according to the following orders;
(a) In X2 and Y4: the computation order is T2 → T0 → T3 → T1,
(b) In X3 and Y3: the computation order is T1 → T0 → T3 → T2.

3. If D[cu] and D[cv] are computed, the attacker is not able to guess the value of cu nor
cv but he/she is able to check if cu = cv.

As the required computing time of A[·] is two times of that of D[·] and p-th powering
is free (refer to Section 2) in XTR, the above Assumption 1 is reasonable. Assumption
3 is also reasonable since this kind of computation usually takes many clock cycles and
depends greatly on the value of the operand. This kind assumption has been used in
a stronger variant and validated by Schramm et al. [19] who are able to distinguish
collisions during one DES round computation. It was extended to ECC by Fouque at al
[7].

Notations: For simplicity, A[x, y, z, w] and D[x] are referred to as A and D, respectively.
Let S[c1, n] be an AD sequence when the inputs are c1 and n in XTR-ISE, i.e. A and D
are elements of S[c1, n], which are written with time-increasing from left to right. Due
to the above Assumption 1, A and D also denote A[x, y, z, wp] and D[x]p, respectively.

As described in Section 2.3 Gi = (Q0, Q1, Q2, Q3) is the i-th updated intermediate

values of {Qj}0≤j≤3 in Step 2 of XTR-ISE for i ≥ 1. For Gi
Ti−→ Gi+1 where Ti ∈

{Xj , Yj}1≤j≤4, if Ti is one of {X2,X3,X4, Y3, Y4}, then DD is computed. We denote
these two DD as D1

i D
2
i (D1

i D
2
i are carried along for expository purposely only).

For example, with input c1 and n, the utilized operations are

G1
X1→ G2

X4→ G3
Y3→ G4

X2→ G5
X1→ G6

Y1→ G7 . . . ,

then the AD sequence of it is S[c1, n] = AD1
2D

2
2AD1

3D
2
3AD1

4D
2
4AA · · · .

8

4.3 Attacker’s Goal

In XTR-ISE, Step 2 consists of eight states Xi and Yi where 1 ≤ i ≤ 4. One state is only
determined by the condition of two integers a and b. However, if an attacker can decide the
states executed during the computation then the secret key can be easily reconstructed
from the recovered state. Note that from the properties of XTR-ISE described in Section
4.1, we do not consider state Y2 in this attack any more.

Under Assumption 1, an attacker is able to distinguish A, DD, and ADD. With
this information he/she can categorize seven states of XTR-ISE into the following three
groups;
- A is corresponding to X1 or Y1,
- DD is corresponding to X4,
- ADD is corresponding to X2, X3, Y3 or Y4.

However, there are some ambiguity decisions such as (1) X1 and Y1 are not distin-
guished, (2) if ADD is observed in AD sequence then there are two possibilities; ADD
and A|DD. Using a brute force search technique, one might test around 6 candidates;
i.e. ADD is corresponding to one of {X2,X3, Y3, Y4,X1|X4, Y1|X4}.

Thus the attacker needs to check the possible candidates until he/she has found the
correct one, so in order to improve the efficiency of the attack we want to minimize the
number of candidates.

4.4 Analysis based on the Finite Markov Chain

First we consider the following three types of AD sequences;

– ADD|DD.

–

m−times
︷ ︸︸ ︷

ADD|ADD| . . . |ADD, briefly it is denoted as {ADD}m.

– ADD|

m−times
︷ ︸︸ ︷

A . . .A|ADD, denoted as ADD|{A}m|ADD.

When ADD|DD is observed in AD sequence we can decide ADD
︸ ︷︷ ︸

X2

∣
∣ DD
︸︷︷︸

X4

. Because

the last two DD originates from X4 and the possible preconditions of X4 are X1,X2,
and Y1. Thus ADD implies X2

When {ADD}m is observed in AD sequence there are 6m possible combinations
from {X2,X3, Y3, Y4,X1|X4, Y1|X4}. However, if we consider the finite markov chain (Fig.
1) then we can reduce the possible number of combinations such as 15, 39, 102, and 243
combinations when m is 2, 3, 4, and 5, respectively. If m ≥ 4 then the number of all
possible combinations from the finite markov chain is

[{ADD}m] = (39m + 48) · 2m−5. (5)

The proof of it is contained in Appendix.

When ADD|{A}m|ADD is observed in AD sequence there are 6 ·2m ·6 = 9 ·2m+2

combinations of XTR states. However, if we consider the finite markov chain (Fig. 1)
then the only possible combinations of XTR states are as follows;

9





X2

X3

Y3





︸ ︷︷ ︸

ADD

× [X1]×

[
X1

Y1

]m−1

︸ ︷︷ ︸

{A}m

×







X2

X3

X1X4

Y1X4







︸ ︷︷ ︸

ADD

(6)

Thus the number of possible combinations is 3 · 2m+1. Furthermore, we propose the
following decision rule derived from Proposition 1.

Property 3. If AADDAA is observed in AD sequence then we can decide
A

∣
∣
∣ ADD

︸ ︷︷ ︸

X2 or X3

∣
∣ A
︸︷︷︸

X1

∣
∣A.

Proof. ADD can be one of {X2,X3, Y3, Y4,X1|X4, Y1|X4}. As Y3 and Y4’s precondition
is one of {X4, Y4}, Y3 and Y4 are discarded in candidates. As X1|X4 and Y1|X4 are
followed by X3 or Y4 these two are also discarded. Thus ADD implies X2 or X3. As Y1

can not be followed by X2 or X3, A placed after ADD is X1. ⊓⊔

4.5 XTR Collision Attack

At the previous section, the number of possible combinations for {ADD}m and
ADD|{A}m|ADD is decreased by using the finite markov chain of XTR-ISE. In this
section, in order to reduce the search space from the finite markov chain we introduce a
new attack mainly based on the above assumptions, especially Assumption 3, described
in 4.2.

Key Observation: If we focus on D operation, we notice that some of them manipulate
the same operand. We consider two AD sequences S[c1, n] and S[c2, n].

In the case of {ADD}m: For simplicity, we assume m = 2, i.e. ADDADD is consid-
ered. Note that there are 15 combinations of states.

S[c1, n] = . . .AD1
i D

2
i AD1

j D
2
j . . .

S[c2, n] = . . .AD1
i D

2
i AD1

j D
2
j . . .

Depending on the combination type, we can observe the following results;

CASE I: D1
j of S[c1, n] is same to D1

i of S[c2, n],

CASE II: D2
j of S[c1, n] is same to D1

i of S[c2, n].

According to the above observation, the 15 combination pairs are categorized as
CASE I : (X2,X2), (X2,X3), (X3,X2), (X3,X3), (X1,X4, Y4), (Y1,X4, Y4), (Y3,X2),
(Y3,X3), (Y4, Y4), (X2,X1,X4), (X3,X1,X4), (Y3,X1,X4),
CASE II : (X1,X4, Y3), (Y1,X4, Y3), (Y4, Y3).

In order to confirm the validity of this categorization, we consider two examples.
Assume that two cases (X2,X3) and (Y4, Y3). Table 1 shows that in the case of (X2,X3)
CASE I collision is occurred and CASE II collision is detected in (Y4, Y3). Similarly, other
pairs are also categorized into two cases.

With this collision information, an attacker is required to test on average 10.2 (=
122+32

15) in order to find the precise combination pair corresponding to the target
ADDADD. If m = 3, i.e. ADDADDADD, similarly 39 combination pairs are cat-
egorized into CASE (I, I),CASE (I, II), and CASE (II, I) and the number of ele-
ments of each case is 24, 6, and 9, respectively. Here, CASE (I, I),CASE (I, II), and

10

Table 1. Some examples for CASE I and CASE II.

Assume Gi = (ce, cf , cg, ch) with input c1 in XTR-ISE.

Step Input
c1 and n c2 and n

Gi (ce, cf , cg, ch) (c2e, c2f , c2g, c2h)
⇓ X2 A[·], D1

i [ce], D2
i [cg] A[·], D1

i [c2e], D2
i [c2g]

CASE I Gi+1 (c2e, cf , ce+g, c2g) (c4e, c2f , c2(e+g), c4g)

⇓ X3 A[·], D1
i+1[c2e], D2

i+1[cf]p A[·], D1
i+1[c4e], D2

i+1[c2f]p

Gi+2 (c4e, c2e+f , ce+g, cp

2f
) (c8e, c2(2e+f), c2(e+g), cp

4f
)

Step Input
c1 and n c2 and n

Gi (ce, cf , cg, ch) (c2e, c2f , c2g, c2h)
⇓ Y4 A[·], D1

i [ce], D2
i [cg] A[·], D1

i [c2e], D2
i [c2g]

CASE II Gi+1 (c2e, cf , ce+g, c2g) (c4e, c2f , c2(e+g), c4g)

⇓ Y3 A[·], D1
i+1[cf], D2

i+1[c2e]p A[·], D1
i+1[c2f], D2

i+1[c4e]p

Gi+2 (c2f , c2e+f , cp
e+g

, cp
4e) (c4f , c2(2e+f), cp

2(e+g)
, cp

8e)

CASE (II, I) denote that the first ADDADD has Case I, Case I, and Case II collision
and the last ADDADD has Case I, Case II, and Case I collision. Thus on average 17.77
tests are required to detect the precise combination pair corresponding to {ADD}3.

of all possible combinations
m From Exhaustive Search From the Finite Markov Chain From Collision Attack

1 6 6 6
2 36 15 10.2
3 216 39 17.77
4 1296 102 31.59
5 7776 243 45.4
...

...
...

...

From the results of the above table we can see that the average number of trial tests
with collision information is drastically decreased compared to that of the finite markov
chain. For example, if m = 5 then the required number of trial tests is only 18% of that
of the finite markov chain.

In the case of ADD|{A}m|ADD: Consider

S[c1, n] = . . .AD1
i D

2
i {A}

mAD1
j D

2
j . . .

S[c2, n] = . . .AD1
i D

2
i {A}

mAD1
j D

2
j . . .

Similar to the previous analysis, we can observe the following results depending on
the combination type;

CASE 0: There is no relation between D operation of S[c1, n] and S[c2, n],
CASE I: D1

j of S[c1, n] is same to D1
i of S[c1, n],

CASE II: D2
j of S[c1, n] is same to D1

i of S[c2, n].

For example, when m = 1





X1

X3

Y3



× [X1]× [Y1X4] ∈ CASE I,





X1

X3

Y3



× [X1]×

[
X1X4

X3

]

∈ CASE II.

11

With this collision information, an attacker is required to test on average 4.5 (=
32+32+62

12) in order to find the precise combination pair corresponding to the target
ADDAADD. The results of the following table show the improvement of analysis com-
plexity.

of all possible combinations
m From Exhaustive Search From the Finite Markov Chain From Collision Attack

1 72 12 4.5
2 144 24 9.75
3 288 48 28.87
4 576 96 74.43
5 1152 192 169.21
...

...
...

...

Implementation Results: From these classifications, we can reduce the search space
order required to detect the whole secret value. The graph of results in Fig. 2 shows that
the average number of trial XTR exponentiations is roughly given by 20.25·l where l is the
length of the exponents. Thus the complexity of XTR collision attack against XTR-ISE
is about 240 where the key length is 160-bit, which is about 55% improvement from the
result of Page-Stam [16].

1073741824

33554432

1048576

32768

1024

32

1
 5 10 15 20 25

Nu
m

be
r o

f T
ria

l E
xp

on
en

tia
tio

ns

The Number of Key Size

Page-Stam method
Proposed method

Fig. 2. Comparison of analysis complexity between the proposed attack and Page-Stam’s one

5 Proposed Countermeasure

In this section we explain the proposed algorithm. We modify XTR-ISE to be secure
against SCA. The main idea is same to that of Okeya-Takagi scheme [15] for elliptic
curve cryptosystems. In XTR-ISE there are three different patterns, A, DD, ADD. For
example, if X1, Y1, and X4 are consecutively operated then the sequence is “AAADD”,
which is no longer the fixed pattern.

We try to generate a XTR operation sequence that has a fixed pattern such that
|ADD|ADD| . . . |ADD|. Firstly we describe the proposed scheme as follows:

12

Fixed Pattern XTR Single Exponentiation (XTR-FSE)
Input: c1 and n where n > 2
Output: cn

1. Initialization:
1.1. Select a random number a in [1, n−1] and b = n− a. If a is even, then let a← a + 1, b← b− 1.
1.2. Let Q0 = c, Q1 = c, Q2 = 3, and Q3 = cp.

2. As long as a 6= b
2.1. If b > a

X1. if b is even, then (a, b)← (a, b/2)
T0 ← D[Q0], T1 ← Q1,
T2 ← A[Q0, Q2, Q1, Qp

3], T3 ← D[Q2].
X2. else (b is odd), then (a, b)← (a, (b− a)/2)

T0 ← D[Q0], T1 ← A[Q0, Q1, Q2, Q3],
T2 ← Q2, T3 ← D[Q1]

p.
2.2. Else (if a > b)

Y1. if b is odd, then (a, b)← (b, (a− b)/2)
T0 ← D[Q1], T1 ← A[Q0, Q1, Q2, Q3],
T2 ← Qp

2 , T3 ← D[Q0]
p.

Y2. else (b is even), then (a, b)← (a, b/2)
T0 ← D[Q0], T1 ← Q1,
T2 ← A[Q0, Q2, Q1, Qp

3], T3 ← D[Q2]
2.3. Set Q0 ← T0, Q1 ← T1, Q2 ← T2, Q3 ← T3.

3. Compute c̃ = A[Q0, Q1, Q2, Q3] = cu+v.
4. If a = 1 then return c̃,

else goto Step 1. with c = c̃ and n = a.

In order to make “ADD” fixed pattern, first we eliminate X1,X4, Y1, Y2 from XTR-
ISE and then change the condition of input a and b in the initialization step such that the
integer a is always odd. For easy explanation of the properties of XTR-FSE, we define
some notations;

Notations: Let Si := (Ai,Bi) be the i-th updated values of a and b in Step 2 of XTR-
FSE for i ≥ 0. S0 = (A0,B0) denotes the updated values at the initialization step, i.e.

A0 = a and B0 = b. Si
X1−→ Si+1 denotes Si+1 is updated by X1 from Si.

We derive some properties of XTR-FSE, and their proofs can be found in the ap-
pendix.

Lemma 1. With input integer n, XTR-FSE has the following properties;

(1) Ai is always odd integer,

(2) Ai is a monotone decreasing function,

(3) Ai = Ai−1 and Bi ≤
Bi−1

2 at X1,X2, and Y2,

(4) Ai + Bi = Ai−1+Bi−1

2 at X2 and Y1,

(5) Ai + Bi = t(Ai−1 + Bi−1) at X1 and Y2, where 1/2 < t < 1,
(6) Ai + Bi is a strictly decreasing function,

(7) #{X2,Y1} ≤ log2 n.

Proof. The proof of (1),(2),(3),(4), and (5) are immediate and (6) follows from (4) and

(5). Suppose (a, b) = S0
W1→ S1

W2→ S2
W3→ . . .

Wt→ St . . . for Wi ∈ {X2,Y1}. From (4) it

follows that At + Bt =
(

1
2

)t
(a + b) =

(
1
2

)t
n for any t. As Ai and Bi are positive integers

the minimum of Ai + Bi is 2, thus t ≤ log2(n)− 1, which proves (7). ⊓⊔

Lemma 2. Assume Si−1
Y1−→ Si.

(1) If Ai−1 > 3Bi−1 then

a. Ai < Ai−1, Bi > Bi−1, and Bi < Ai−1

2 ,

b. the next state is X1 or X2.

(2) Else (Ai−1 ≤ 3Bi−1) then

13

a. Ai < Ai−1 and Bi ≤ Bi−1,

b. if Ai−1 < 3Bi−1 then the next state is Y1 or Y2, otherwise goto Step 3.

The proof of Lemma 2 follows from a straightforward computation. Let Ya>3b
1 and

Ya≤3b
1 be the states such that Y1 with inputs Si−1 such that Ai−1 > 3Bi−1 and Ai−1 ≤

3Bi−1, respectively.

5.1 Average-case Analysis of Fixed Pattern XTR Single Exponentiation

In this section we will analyze the average number of states of the proposed algorithm.
First we prove that the proposed algorithm is polynomial time algorithm, i.e. it is ter-
minated in O(log2 n) with the input integer n in XTR-FSE.

XTR-FSE is a Polynomial Time Algorithm: Let S = S0S1S2 · · · be the sequence
of Si updated by one of {X1,X2,Y1,Y2}. From Lemma 2, we can separate S into several
sub-sequences with Ya>3b

1 like as

S = S0S1 · · ·Sk1−1
︸ ︷︷ ︸

P1

∣
∣Sk1

∣
∣ Sk1+1 · · ·Sk2−1
︸ ︷︷ ︸

P2

∣
∣Sk2

∣
∣ · · ·

∣
∣Skt−1

∣
∣ Skt−1+1 · · ·Skt−1

︸ ︷︷ ︸

Pt

∣
∣Skt

∣
∣Skt+1 · · ·

, where Ski
is updated by state Ya>3b

1 . Thus Sj in each separated part Pi is updated

by one of {X1,X2,Y
a≤3b
1 ,Y2}. Let Li and Mi be the total number of {X1,X2,Y2} and

Ya≤3b
1 utilized in part Pi, respectively. Let N be the total number of Ya>3b

1 used in S.
From Lemma 1 -(3) and Lemma 2, the maximum values of the updated Ai and Bi are
described in Table 2.

Table 2. The maximum values of the updated Ai and Bi

Sequence S Updated Ai and Bi

Ai Bi

Initialization (S0) A0 = a B0 = b

P1 max(Ai) ≤ a max(Bi) ≤ (1
2)L1b

Sk1
max(Ai) ≤ (1

2)L1b max(Bi) ≤
1
2 a

P2 max(Ai) ≤ (1
2)L1b max(Bi) ≤ (1

2)L2+1a

Sk2
max(Ai) ≤ (1

2)L2+1a max(Bi) ≤ (1
2)L1+1b

P3 max(Ai) ≤ (1
2)L2+1a max(Bi) ≤ (1

2)L1+L3+1b

Sk3
max(Ai) ≤ (1

2)L1+L3+1b max(Bi) ≤ (1
2)L2+2a

P4 max(Ai) ≤ (1
2)L1+L3+1b max(Bi) ≤ (1

2)L2+L4+2a

Sk4
max(Ai) ≤ (1

2)L2+L4+2a max(Bi) ≤ (1
2)L1+L3+2b

.

.

.
.
.
.

.

.

.

As max(Ai) and max(Bi) are positive integers,
∑

i=1 L2i ≤ log2 a and
∑

i=1 L2i−1 ≤
log2 b. Thus

∑

i=1 Li ≤ 2 log2 n because a, b < n. From the result of Lemma 1 -(7),
N +

∑

i=1 Mi ≤ log2 n. Thus

∑

i=1

(Li + Mi) + N ≤ 3 log2 n,

so that we have proved:

Proposition 2. For a given integer n, the proposed algorithm takes at most 3 log2 n
iterations in Step 2. This implies that it is a polynomial time algorithm.

Heuristic Estimation of XTR-FSE: From now on, we would like to investigate a
heuristic estimation result of the proposed algorithm. From Proposition 2 we can assume
that the sequence S = S0S1 · · ·Sm where m ≤ 3 log2 n. Note that the last Sm = (1, 1).

14

Assume Pr[X1] =Pr[X2] =Pr[Y1] =Pr[Y2] = m/4. From the result of (4)-(6) in Lemma
1, we can derive the following equation:

Am + Bm = 2 =
(1

2

)m/2

· (t)m/2 · (A0 + B0)

=
(1

2

)m/2

· (t)m/2 · n

where 1/2 < t < 1.
Let t = 3/4. Then the iteration number m is asymptotically logarithmic,

m ≈ 1.41 log2 n.

In order to confirm our estimation result above we show simulation results. We ran-
domly generate one million integers n with bit length 160, 200, 500, 1000, 5000, 10000,
respectively. Table 3 demonstrates that our estimation result matches the simulation
results (SR) for the large input integer n.

Table 3. Experiment for the proposed algorithm

Size of n 160 bits 200 bits 500 bits 1000 bits 5000 bits 10000 bits

of iterations 222 279 703 1409 7057 14117
SR 1.39 log2 n 1.39 log2 n 1.40 log2 n 1.40 log2 n 1.41 log2 n 1.41 log2 n

5.2 Security Analysis

In this section we discuss the security of the proposed scheme against SPA and DPA.

SPA: As we mentioned previous section, the proposed method compute XTR single
exponentiation through the fixed pattern |ADD|ADD| . . . |ADD|. The attacker could
distinguish XTR operations D[·] and A[·] in XTR-FSE by measurement of the power
consumption, but he/she obtains only the identical ADD sequence for any input c and
n. Therefore, he/she cannot detect the secret scalar n by using SPA.

DPA: The use of scalar randomization such as exponent splitting [3] prevents against
DPA. Note that the idea of splitting the data was already abstracted in [4] as a general
countermeasure against DPA. The proposed method is using exponent splitting technique
as a DPA countermeasure, i.e. we split the input integer n into two parts by picking a
random a ∈ [1, n−1] and rewriting the integer n as a+(n−a). Thus XTR-FSE is secure
against DPA.

5.3 Comparison of empirical performance and type of countermeasure

In this section we compare the computational cost and the type of countermeasures
between the proposed countermeasure and the previous ones.

The compared three methods use the exponent splitting method as DPA countermea-
sure. But the utilized SPA countermeasure is different each others. The countermeasure
of ICICS’04 is based on XTR-SE. Their method does not require SPA countermeasure
because XTR-SE has the fixed operations ADD. On the other hand, the countermea-
sure of SAC’04 and the proposed method is based on XTR-ISE, which does not has
fixed operations. In order to solve this problem Page-Stam proposed the indistinguish-
able arithmetic with dummy operation sometimes, but the security of indistinguishable
arithmetic [20] and the dummy method [22] are recently very controversial. From the
result of Table 4 our proposed countermeasure is the best one in XTR in the sense of
both efficiency and security.

15

Table 4. Comparison of empirical performance and type of countermeasure

Efficiency Type of Countermeasure

Compute Tr(gn) SPA DPA

ICICS’04 [10] 16 log2(n) Fixed Pattern Exponent Splitting
+ No Dummy Operation

SAC’04 [16] 8.5 log2(n) Indistinguishable Assumption Exponent Splitting
+ Dummy Operation

Proposed Method 11.2 log2(n) Fixed Pattern Exponent Splitting
+ No Dummy Operation

Acknowledgements

Dong-Guk Han was supported by the Korea Research Foundation Grant. (KRF-2005-
214-C00016) and Tae Hyun Kim was supported in part by the MIC(Ministry of Infor-
mation and Communication), Korea, under the ITRC(Information Technology Research
Center) support program supervised by the IITA(Institute of Information Technology
Assessment).

References

1. M. Ciet and C. Giraud, Transient Fault Induction Attacks on XTR, Information and
Communications Security (ICICS 2004), LNCS 3269, (2004), 440-451.

2. J. Chung and A. Hasan, Security Analysis of XTR Exponentiation Algorithms against

Simple Power Analysis Attack, Preprint of CACR, Univ. of Waterloo, CACR 2004-05.
3. C. Clavier and M. Joye, Univeral Exponentiation Algorithm A First Step to-

wards Provable SPA-Resistance, Cryptographic Hardware and Embedded Systems
(CHES’01), LNCS2162, (2001), 300-308.

4. S. Chari, C.S. Jutla, J.R. Rao, and P. Rohatgi, Towards sound approaches to coun-

teract power-analysis attacks, Advances in Cryptology - CRYPTO ’99, LNCS1666,
(1999), 398-412.

5. Dijk, M.v., Granger, R., Page, D., Rubin, K., Silverberg, A., Stam, M., Woodruff,
D., Practical Cryptography in High Dimensional Tori, to be appeared in Eurocrypt
2005.

6. Dijk, M.v., Woodruff, D., Asymptotically Optimal Communication for Torus-Based

Cryptography, Advances in Cryptology - CRYPTO ’04, LNCS 3152, (2004), 157-178.
7. P.-A. Fouque and F. Valette, The Doubling Attack Why Upwards is better than Down-

wards, Workshop on Cryptographic Hardware and Embedded Systems 2003 (CHES
2003), LNCS 2779, (2003), 269-280.

8. G. Gaubatz, J.-P. Kaps, and B. Sunar, Public Key Cryptography in Sensor Networks-

Revisited, 1st European Workshop on Security in Ad-Hoc and Sensor Networks,
(ESAS 2004), LNCS3313, (2004), 2-18.

9. R. Granger, D. Page, and M. Stam, A Comparison of CEILIDH and XTR, Algorith-
mic Number Theory, (ANTS 2004), LNCS 3076, (2004), 235-249.

10. D.-G. Han, T. Izu, J. Lim, and K. Sakurai, Modified Power-Analysis Attacks on XTR

and An Efficient Countermeasure, Information and Communications Security (ICICS
2004), LNCS 3269, (2004), 305-317.

11. D.-G. Han, J. Lim, and K. Sakurai, On security of XTR public key cryptosystems

against Side Channel Attacks, The 9th Australasian Conference in Information Se-
curity and Privacy, (ACISP 2004), LNCS 3108, (2004), 454-465.

12. Kocher, C., Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and

Other Systems, Advances in Cryptology - CRYPTO ’96, LNCS 1109, (1996), 104-113.
13. Kocher, C., Jaffe, J., Jun, B., Differential Power Analysis, Advances in Cryptology

- CRYPTO ’99, LNCS1666, (1999), 388-397.
14. A.K. Lenstra and E.R. Verheul, The XTR public key system, Advances in Cryptology

- CRYPTO ’00, LNCS1880, (2000), 1-19.

16

15. K. Okeya and T. Takagi, The Width-w NAF Method Provides Small Memory and

Fast Elliptic Scalar Multiplications Secure against Side Channel Attacks, CT-RSA
2003, LNCS 2612, (2003), 328-342, 2003.

16. D. Page and M. Stam, On XTR and Side-Channel Analysis, Pre-proceedings of SAC
2004, 67-81.

17. K. Rubin and A. Silverberg, Torus-Based Cryptography, Advances in Cryptology -
CRYPTO ’03, LNCS2729, (2003), 349-365.

18. M. Stam and A.K. Lenstra, Speeding Up XTR, Proceedings of Asiacrypt 2001,
LNCS2248, (2001), 125-143.

19. K. Schramm, T. Wollinger, and C. Paar, A New Class of Collision Attacks and its

Application to DES, Proceedings of FSE 2003, LNCS2887, (2003), 206-222.
20. C.D. Walter, Simple Power Analysis of Unified Code for ECC Double and Add, Work-

shop on Cryptographic Hardware and Embedded Systems 2004 (CHES 2004), LNCS
3156, (2004), 191-204.

21. R. Watro, D. Kong, S-f. Cuti, C. Gardiner, C. Lynn, and P. Kruus, TinyPK: Securing

Sensor Networks with Public Key Technology, ACM Workshop on Security of Ad Hoc
and Sensor Networks 2004 (SASN 2004), 59-64.

22. S.-M. Yen, S. Kim, S. Lim, and S. Moon, A Countermeasure against One Physical

Cryptanalysis May Benefit Another Attack, Information Security and Cryptology
2001 (ICISC 2001), LNCS 2288, (2001), 414-427.

A Proof of Proposition 1

We will give a proof of Proposition 1.

1. X1 has a condition that a < b ≤ 4a. And the updating rule is (a′, b′) ← (b − a, a)
where a′, b′ can be even or odd. Thus 0 < a′ ≤ 3b′. If 0 < a′ < b′, then cases X1

through X4 will occur because b′ ≤ 4a′ or b′ > 4a′ can be satisfied depending on
given a′, b′. If b′ < a′ ≤ 3b′, then case Y1 will occur because a′ > b′ and a′ ≤ 4b′. So
X1 is followed by X1 through X4 or Y1.

2. X2 has conditions that 4a < b and b is even. And the updating rule is (a′, b′)← (a, b
2)

where a′, b′ can be even or odd. 4a < b implies 2a′ < b′. If 2a′ < b′ ≤ 4a′, then cases
X1 will occur. If b′ > 4a′, then cases X2 through X4 will occur. So X2 is followed by
X1 through X4.

3. X3 has conditions that 4a < b and b is odd and a is odd. And the updating rule is
(a′, b′) ← (a, b−a

2) where a′ is odd. 4a < b implies 3a′

2 < b′. If 3a′

2 < b′ ≤ 4a′, then
cases X1 will occur. If b′ > 4a′, then cases X2 through X4 will occur. As a′ is odd,
however, X4 can not be occurred. So X3 is followed by X1 through X3.

4. X4 has conditions that 4a < b and b is odd and a is even. And the updating rule is
(a′, b′)← (b, a

2) where a′ is odd. 4a < b implies 8b′ < a′. Since a′ is odd and 4b′ < a′,
Y3 and Y4 will occur. So X4 is followed by Y3 and Y4.

5. Y1 has a condition that b < a ≤ 4b. And the updating rule is (a′, b′) ← (a − b, b)
where a′, b′ can be even or odd. Thus 0 < a′ ≤ 3b′. If 0 < a′ < b′, then cases X1

through X4 will occur because b′ ≤ 4a′ or b′ > 4a′ can be satisfied depending on
given a′, b′. If b′ < a′ ≤ 3b′, then case Y1 will occur because a′ > b′ and a′ ≤ 4b′. So
Y1 is followed by X1 through X4 or Y1.

6. Y2 has conditions that 4b < a and a is even. And the updating rule is (a′, b′)← (b, a
2)

where a′, b′ can be even or odd. 4b < a implies 2a′ < b′. If 2a′ < b′ ≤ 4a′, then cases
X1 will occur. If b′ > 4a′, then cases X2 through X4 will occur. So Y2 is followed by
X1 through X4.

7. Y3 has conditions that 4b < a and a is odd and b is odd. And the updating rule is
(a′, b′) ← (b, a−b

2) where a′ is odd. 4b < a implies 3a′

2 < b′. If 3a′

2 < b′ ≤ 4a′, then
cases X1 will occur. If b′ > 4a′, then cases X2 through X4 will occur. As a′ is odd,
however, X4 can not be occurred. So Y3 is followed by X1 through X3.

17

8. Y4 has conditions that 4b < a and a is odd and b is even. And the updating rule is
(a′, b′)← (a, b

2) where a′ is odd. 4b < a implies 8b′ < a′. Since a′ is odd and 4b′ < a′,
Y3 and Y4 will occur. So Y4 is followed by Y3 and Y4.

9. In the steps of {X2,X3,X4, Y2, Y3, Y4}, one of a, b is fourth times bigger than the
other. In the case of 4a < b, X2, X3, X4 are occur. If X2 occurs, (a′, b′) is updated by
(a, b

2). Since 2a′ < b′, a′ = b′ can not be happened. If X3 occurs, (a′, b′) is updated by

(a, b−a
2). Since 3a′

2 < b′, a′ = b′ can not be happened. If X4 occurs, (a′, b′) is updated
by (b, a

2). Since 8b′ < a′, a′ = b′ can not be happened. The cases of {Y2, Y3, Y4} are
similar with {X2,X3,X4}. Therefore the last step is either X1 or Y1.

⊓⊔

B Proof of Equation (5)

Let A :=





X2

X3

X1X4



 and B :=

[
Y3

Y4

]

. Then all possible combinations of ADDADD are

[X2]×A, [X3]×A, [Y3]×A

[Y4]× B, [X1X4]× B, [Y1X4]× B

If m = 3 then all possible combinations of {ADD}3 are

[X2]×





X2 ×
[
A

]

X3 ×
[
A

]

X1X4 ×
[
B

]



 , [X3]×





X2 ×
[
A

]

X3 ×
[
A

]

X1X4 ×
[
B

]



 , [Y3]×





X2 ×
[
A

]

X3 ×
[
A

]

X1X4 ×
[
B

]



 ,

[Y4]×

[
Y3 ×

[
A

]

Y4 ×
[
B

]

]

, [X1X4]×

[
Y3 ×

[
A

]

Y4 ×
[
B

]

]

, [Y1X4]×

[
Y3 × [A]
Y4 × [B]

]

.

Thus #
[
{ADD}3

]
= 3 ∗ (8 + 5).

If m = 4 then all possible combinations of {ADD}4 are

[X2]×














X2 ×





X2 × [A]
X3 × [A]

X1X4 × [B]





X3 ×





X2 × [A]
X3 × [A]

X1X4 × [B]





X1X4 ×

[
Y3 × [A]
Y4 × [B]

]














, [X3]×














X2 ×





X2 × [A]
X3 × [A]

X1X4 × [B]





X3 ×





X2 × [A]
X3 × [A]

X1X4 × [B]





X1X4 ×

[
Y3 × [A]
Y4 × [B]

]














, [Y3]×














X2 ×





X2 × [A]
X3 × [A]

X1X4 × [B]





X3 ×





X2 × [A]
X3 × [A]

X1X4 × [B]





X1X4 ×

[
Y3 × [A]
Y4 × [B]

]














[Y4]×









Y3 ×





X2 × [A]
X3 × [A]

X1X4 × [B]





Y4 ×

[
Y3 × [A]
Y4 × [B]

]









, [X1X4]×









Y3 ×





X2 × [A]
X3 × [A]

X1X4 × [B]





Y4 ×

[
Y3 × [A]
Y4 × [B]

]









, [Y1X4]×









Y3 ×





X2 × [A]
X3 × [A]

X1X4 × [B]





Y4 ×

[
Y3 × [A]
Y4 × [B]

]









.

Thus #
[
{ADD}4

]
= 3 ∗ (2 ∗ 8 + 5 + 8 + 5). From above observations, we can derive the

following equation for m ≥ 4

[{ADD}m] = 3 ∗
{
2n−4 ∗ (16 + 5) + 2n−5 ∗ (n− 4) ∗ (8 + 5) + 2n−4 ∗ (8 + 5)

}

= (39 ∗m + 48) ∗ 2m−5.

18

