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Abstract. Restrictive blind signatures allow a recipient to receive a blind signature on a
message not known to the signer but the choice of message is restricted and must conform
to certain rules. Partially blind signatures allow a signer to explicitly include necessary in-
formation (expiration date, collateral conditions, or whatever) in the resulting signatures
under some agreement with receiver. Restrictive partially blind signatures incorporate the
advantages of these two blind signatures. The existing restrictive partially blind signature
scheme was constructed under certificate-based (CA-based) public key systems. In this pa-
per we follow Brand’s construction to propose the first identity-based (ID-based) restrictive
blind signature scheme from bilinear pairings. Furthermore, we first propose an ID-based
restrictive partially blind signature scheme, which is provably secure in the random oracle
model. As an application, we use the proposed signature scheme to build an untraceable
off-line electronic cash system followed Brand’s construction.
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1 Introduction

Blind signatures, introduced by Chaum [10], allow a recipient to obtain a signature on message m
without revealing anything about the message to the signer. Blind signatures play an important
role in a plenty of applications such as electronic voting, electronic cash schemes where anonymity
is of great concern. About the formal definition and security of blind signature schemes, refer to
[14,16-18].

Restrictive blind signatures, firstly introduced by Brands [5,6], which allow a recipient to
receive a blind signature on a message not known to the signer but the choice of the message
is restricted and must conform to certain rules. Furthermore, he proposed a highly efficient
electronic cash system, where the bank ensures that the user is restricted to embed his identity
in the resulting blind signature.

The concept of partially blind signatures was first introduced by Abe and Fujisaki [1] and
allows a signer to produce a blind signature on a message for a recipient and the signature
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explicitly includes common agreed information which remains clearly visible despite the blinding
process. This notion overcomes some disadvantages of fully blind signatures such as the signer has
no control over the attributes except for those bound by the public key. Partially blind signatures
play an important role in designing efficient electronic cash systems. For example, the bank does
not require different public keys for different coins values. On the other hand, the size of the
database that stored the previously spent coins to detect double-spending would not increase
infinitely over time.

Maitland and Boyd [15] first incorporated these two blind signatures and proposed a prov-
ably secure restrictive partially blind signature scheme, which satisfies the partial blindness and
restrictive blindness. Their scheme followed the construction proposed by Abe and Okamoto [2]
and used Brand’s restrictive blind signature scheme. However, their scheme was constructed un-
der the CA-based public key systems. There seems no such schemes under the ID-based public
key systems to the best of our knowledge.

The concept of ID-based public key systems, proposed by Shamir in 1984 [19], allows a user
to use his identity as the public key. It can simplify key management procedure compared to CA-
based systems, so it can be an alternative for CA-based public key systems in some occasions,
especially when efficient key management and moderate security are required. Many ID-based
schemes have been proposed after the initial work of Shamir, but most of them are impractical
due to low efficiency. Recently, the bilinear pairings have been found various applications in
cryptography, more precisely, they can be used to construct ID-based cryptographic schemes |3,
4,13, 20].

Recently, Chow et al first presented an ID-based partially blind signature scheme [12]. In this
paper, we utilize their scheme to propose an ID-based restrictive partially blind signature scheme
from bilinear pairings. Our contribution is two folds:

1. We first propose an ID-based restrictive blind signature scheme using the ID-based knowledge
proof for the equality of two discrete logarithms from bilinear pairings.

2. We first introduce the notion of ID-based restrictive partially blind signatures and propose a
concrete signature scheme from bilinear pairings. Furthermore, we give a formal proof of security
for the proposed scheme in the random oracle model.

The rest of the paper is organized as follows: Some preliminaries are given in Section 2.
The definitions associated with ID-based restrictive partially blind signatures are introduced in
Section 3. Two building blocks of ID-based restrictive partially blind signatures are given in
Section 4. The proposed restrictive partially blind signature scheme and its security analysis are
given in Section 5. Finally, conclusions will be made in Section 6.

2 Preliminaries

In this section, we will briefly describe the basic definition and properties of bilinear pairings and
gap Diffie-Hellman group. We also introduce ID-based public key setting and a knowledge proof
for the equality of two discrete logarithms from bilinear pairings.

2.1 Bilinear Pairings

Let G1 be a cyclic additive group generated by P, whose order is a prime ¢, and G2 be a
cyclic multiplicative group of the same order ¢. Let a, b be elements of Z;. We assume that
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the discrete logarithm problem (DLP) in both G and G2 are hard. A bilinear pairing is a map
e : G1 x G1 — G2 with the following properties:

1. Bilinear: e(aP, bQ) = e(P,Q);
2. Non-degenerate: There exists P and @ € G such that e(P,Q) # 1;
3. Computable: There is an efficient algorithm to compute e(P, Q) for all P,Q € G;.

2.2 Gap Diffie-Hellman Group

Let G be a cyclic multiplicative group generated by g, whose order is a prime ¢, assume that the
inversion and multiplication in G can be computed efficiently. We first introduce the following
problems in G.

1. Discrete Logarithm Problem (DLP): Given two elements g and h, to find an integer n € Z,
such that h = g™ whenever such an integer exists.

2. Computation Diffie-Hellman Problem (CDHP): Given g, g%, g° for a,b € Zy, to compute g,

3. Decision Diffie-Hellman Problem (DDHP): Given g,g%, g% g¢ for a,b,c € Zy, to decide
whether ¢ = ab mod gq.

We call G a gap Diffie-Hellman group if DDHP can be solved in polynomial time but there is
no polynomial time algorithm to solve CDHP with non-negligible probability. Such groups can
be found in supersingular elliptic curve or hyperelliptic curve over finite field, and the bilinear
pairings can be derived from the Weil or Tate pairings. For more details, see [3,9,13].

Throughout the rest of this paper we define G be a gap Diffie-Hellman group of prime order g,
G2 be a cyclic multiplicative group of the same order g and a bilinear pairing e : G; X G; — Gs.
Define four cryptographic secure hash functions H : {0,1}* — Gy, H; : Go* — Zq, Hy -
{0,1}* x Gy — Z, and Hz : G1% x Go* — Z,.

2.3 ID-based Setting from Bilinear Pairings

The ID-based public key systems allow some public information of the user such as name, address
and email etc., rather than an arbitrary string to be used his public key. The private key of the
user is calculated by PKG and sent to the user via a secure channel.

ID-based public key setting from bilinear pairings can be implemented as follows:

— Setup: PKG chooses a random number s € Z* and set FP,,, = sP. The center publishes
system parameters params = {G1, G2, e,q, P, Pyys, H}, and keep s as the master-key, which
is known only himself.

— Extract: A user submits his/her identity information ID to PKG. PKG computes the user’s
public key as Q;p = H(ID), and returns S;p = sQp to the user as his/her private key.

2.4 ID-based Knowledge Proof for the Equality of Two Discrete Logarithm from
Bilinear Pairings

A prover with possession of a secret number § € Z; wants to show that log, u = log;, v while
without exposing 3, where u = ¢°, v = h”. Chaum and Pedersen [11] first proposed an interactive
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protocol to solve this problem. Motivated by this idea, Baek and Zheng [7, 8] construct a new
ID-based knowledge proof for the equality of two discrete logarithms from bilinear pairings.

Define g = e(P,Qip), u = e(Ppup,Qrp), h = e(L,Qrp) and v = e(L, Srp), where P and
L are independent points of G;. The following protocol presents a knowledge proof of that
log, u = log;, v. An interesting property of this proof is that even the prover does not know the
discrete logarithm log, u = log), v (just be convinced that it equals to the master-key s of the
PKG), which is different from the previous protocols. With the notation of [4], < g, h,u,v > is
called a Diffie-Hellman tuple.

The prover randomly chooses an element @ in Gy and computes a = e(P,Q), b = e(L, Q).
The prover sends (a, b) to the verifier.

— The verifier randomly chooses an integer ¢ € Z; and sends c to the prover.

— The prover computes S = @) + ¢Srp and sends S to the verifier.

— The verifier checks whether e(P,S) = au® and e(L,S) = bv°. If both the equations hold,
returns “accept”; else, returns “reject”.

3 Definitions

Abe and Okamoto first present the formal definition of partially blind signatures. Restrictive
partially blind signatures can be regarded as partially blind signatures which also satisfies the
property of restrictiveness. In the context of partially blind signatures, the signer and user are
assumed to agree on a piece of information, denoted by 4nfo. In real applications, info may be
decided by the negotiation between the signer and user. For the sake of simplicity, we omit this
negotiation throughout this paper. In the following, we follow the definitions of [2,14,5,12] to
give a formal definition of ID-based restrictive partially blind signatures.

Definition 1. (ID-based Restrictive Partially Blind Signatures) An ID-based restrictive partially
blind signature scheme is a four-tuple (PG,KG,SG,SV).

— System Parameters Generation PG: On input a security parameter k, outputs the com-
mon system parameters Params.

— Key Generation KG: On input Params and an identity information I D, outputs the private
key sk = Sip.

— Signature Generation SG: Let U and S be two probabilistic interactive Turing machines
and each of them has a public input tape, a private random tape, a private work tape, a
private output tape, a public output tape, and input and output communication tapes. The
random tape and the input tapes are read-only, and the output tapes are write-only. The
private work tape is read-write. Suppose info is agreed common information between U and
S. The public input tape of U contains ID and info. The public input tape of S contains
info. The private input tape of S contains sk, and that for U contains a message m which
he knows a representation with respect to some bases in Params. The lengths of info and m
are polynomial to k. U and S engage in the signature issuing protocol and stop in polynomial-
time. When they stop, the public output of S contains either completed or not-completed. If
it is completed, the private output tape of U contains either L or (info,m, o).

— Signature Verification SV: On input (ID, info,m,c) and outputs either accept or reject.
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Definition 2. (Completeness) If S and U follow the signature issuing protocol, the signature
scheme is complete if, for every constant ¢ > 0, there exists a bound ko such that S outputs
completed and info on its proper tapes, and U outputs (info, m,oc) that satisfies

SV(ID, info, m,c) = accept

with probability at least 1 — 1/k¢ for k > ko. The probability is taken over the coin flips of KG, S
and U.

We say a message-signature tuple (info,m, o) is valid with regard to ID if it leads to SV to
accept.

Definition 3. (Restrictiveness) Let m be a message such that the user U knows a representation
(a1, ,ax) of m with respect to a generator-tuple (g1,--- ,gr) at the start of a blind signature
issuing protocol. Let (by,--- ,by) be the representation U knows of the blinded number m’ of m
after the protocol finished. If there exist two function Iy and I such that

Il(a/la' o aa/k) - IQ(bla" : )bk)

regardless of m and the blinding transformation applied by U, then the protocol is called a re-
strictive blind signature protocol. The function Iy and Iz are called blinding-invariant functions
of the protocol with respect to (g1, , gk)-

Definition 4. (Partial Blindness) Let Uy and Uy be two honest users that follow the signature
1ssuing protocol.

1. sk = Sip «— KG(Params, ID).
2. (mo,m1, infoy, info,) « S*(1*,ID, sk).
3. Set up the input tapes of Uy and Uy as follows:
— Select b €r {0,1} and put my, and mqi_p on the private input tapes of Uy and Uy, respec-
tively.
— Put info, and info, on the public input tapes of Uy and Uy, respectively. Also put 1D
on their public input tapes.
— Randomly select the contents of the private random tapes.
S* engages in the signature issuing protocol with Uy and U;.
Let Uy and Uy output (infoy, my, op) and (info,, mi_y,o1-p), respectively, on their private
tapes. If info, # info,, then give L to S*. If info, = info,, then provide S* with the
additional inputs (op,01-p) ordered according to the corresponding messages (my, mi—p).
6. S* outputs b’ € {0,1}. We say that S* wins if b’ = b.

il

A signature scheme is partially blind if, for every constant ¢ > 0, there exists a bound ko such
that for all probabilistic polynomial-time algorithm S*, S* outputs b’ = b with probability at most
1/2+ 1/k¢ for k > ko. The probability is taken over the flips of KG,Uy, Uy, and S*.

Definition 5. (Unforgeability) Suppose the adversary A can perform a polynomial bounded num-
ber of the following types of queries (including the hash queries and signing queries) in an adap-
tively manner during the signature issuing protocol.

1. sk = Sip «— KG(Params, ID).
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2. For each info, A chooses a message m and an identity 1D, the challenger C issues a signature
o and send it to A.

3. A outputs a tuple (ID, info, m,o), where (ID,m, info) is never queried before. We say the
adversary A wins the game if o is a valid signature for m and info.

An ID-based partially blind signature scheme is existential unforgeable against adaptively chosen
message and ID attacks if no probabilistic polynomial-time adversary can win the above game
with a non-negligible advantage.

4 Building Blocks

In this section, we describe two building blocks of ID-based restrictive partially blind signatures.
Firstly, we propose an ID-based restrictive blind signature scheme from bilinear pairings. We
then introduce the ID-based partially blind signature scheme proposed by Chow et al.

4.1 ID-based Restrictive Blind Signature Scheme

Brand’s restrictive blind signature scheme is mainly based on Chaum-Pedersen’s knowledge proof
of common exponent [11]. Maitland and Boyd [15] presented the following general construction
based on Brand’s original scheme. In this paper, we first propose ID-based restrictive blind sig-
nature scheme by using the ID-based knowledge proof for the equality of two discrete logarithms
from bilinear pairings.

— PKG chooses a random number s € Z; as the master-key and set Py, = sP. The system
parameters are params = {G1, G2, e, q, P, Pyus, H, H1 }.

— The signer submits his/her identity information ID to PKG. PKG computes Q;p = H(ID),
and returns S;p = sQrp to the user as his/her private key. For the sake of simplicity, define
9= e(Pa QID)a Yy= e(PPuba QID)'

— Suppose the signed message is M € G1.! The signer generates a random number Q €r G1,
and sends z = e(M, Sip),a = e(P,Q), and b = e(M, Q) to the receiver.

— The receiver generates random numbers «, 3, u,v €r Z, and computes

M' =aM + (P, A=e(M',Qrp),7 =29 d = a"g®, b = a"Pbp*>A".

The receiver then computes ¢/ = Hi(A,z',a’,b") and sends ¢ = ¢’/u mod ¢ to the signer.

— The signer responds with S = Q + ¢Stp.

— The receiver accepts if and only if e(P,S) = ay® e(M,S) = bz°. If the receiver accepts,
computes S = uS + vQrp.

(', ¢, S") is a valid signature on M’ if the following equation holds:
¢ = Hy(e(M',Q1p), 7, e(P,S)y  e(M, S)2~).

! In real applications, if the signed message m is not an element of G, we can use a cryptographic
secure hash function to map m into an element M of Gj.



This is because

A = G(M/, QID)
e(P,S") = e(P,uS +vQrp) = e(P,S)"e(P,Qp)"
= (ay“)"g" = a"g"y*"
_ a/yc’

e(M',S") =e(M',uS +vQip) = e(M’',S)e(M',Qrp)”
=e(aM + P, S)* A" = (bzc)“o‘(ayc)“ﬁA”
— auﬁbua(zayﬁ)c/Av
— blzlcl

Thus, the receiver obtains a signature on the message M’ where M’ = aM + P and («, )
are values chosen by the receiver. In addition, in the particular case where 8 = 0, the above
signature scheme achieves the restrictiveness [15]. For designing an electronic cash system, the
system parameters consist of another two random generators P; and P,. A user chooses a random
number u as his identification information and computes M = uP; + P». He then with the bank
performs the signature issuing protocol to obtain a coin. When spending the coin at a shop, the
user must provide a proof that he knows a representation of M’ with respect to P; and P». This
restricts M’ must be the form of aM. For more details, refer to [5].

4.2 ID-based Partially Blind Signature Scheme

Chow et al first presented the following ID-based partially blind signature scheme [12]. Suppose
the signed message is m and the agreed common information is A.

— PKG chooses a random number s € Z; as the master-key and set Py, = sP. The system
parameters are params = {G1, G2, e, q, P, Pyup, H, Ha }.

— The signer submits his/her identity information ID to PKG. PKG computes Q;p = H(ID),
and returns S;p = sQrp to the user as his/her private key.

— The signer randomly chooses r € Z;, and sends U = rP,Y = rQrp to the receiver.

— The receiver generates random numbers «, 3,7 €r Z; and computes

Y' = aY + QBQID - ’YH(A); U/ =aU + ’prubah = a_lHQ(maYI) + B

The receiver then sends h to the signer.
— The signer responds with S = (r + h)Sip + rH(A).
— The receiver computes S’ = a.S.

The resulting signature for the message m and the agreed information A is (Y, U’, S") ife(S’, P) =
e(Y' + Ho(m,Y")Q1p, Pous)e(H(A),U’) holds.
For the correctness and security analysis of the scheme, refer to [12].

5 ID-based Restrictive Partially Blind Signatures

5.1 ID-based Restrictive Partially Blind Signature Scheme

— System Parameters Generation PG: Given a security parameter k. The system param-
eters are Params = {G1,Gs, e, q, Ppup, k, H, H3}.
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— Key Generation KG: On input Params and the signer’s identity information I D, outputs
the private key Sip = sQrp = sH(ID) of the signer.

— Signature Generation SG: Let the shared information 4nfo = A, and a message M from
the receiver. Define g = e(P, Q1p),y = e(Ppup, @1p). The signature issuing protocol is shown
in Fig. 1.

e The signer randomly chooses an element Q €r G1, and computes z = e(M, Sip), a =

e(P,Q), and b = e(M, Q). He also randomly chooses a number r €r Z;, and computes
U=rP,and Y = rQp. He then sends (z,a,b,U,Y) to the receiver.

The receiver generates random numbers «, 5, u, v, A\, 1,y €r Zg, and computes M’ =
aM + BP, A=e(M',Qrp), 2/ = 2%y, a’ = a¥g", V' = a"Pb"* A" Y' = \Y + \uQ1p —
YH(A), U = NU+~Pyup, ¢ = Hs(M',Y' U, A, 2, d',b), h1 = ¢ Ju, and he = A\71c/+p.
He then sends hi, hs to the signer.

e The signer responds with S1 = Q + h1Srp, S2 = (r + h2)Sip + rH(A).
e If the equations e(P, S1) = ay™ and e(M, S;) = bz"* hold, the receiver computes S| =

uS1 +vQrp, and Sé = \S,.

The resulting signature for A and message M’ is a tuple (Y',U’, 2/, ¢, 51, 5%).

— Signature Verification SV: Given the message M’, the shared information A and the tuple

Y, U', 7,5, 5%), the verifier accepts the signature if the following equations hold:

d = HB(M/a Yly UI, S(M/, Q]D), Z/7 S(P, Si)y_C/, S(MI7 S{)Z/_C/)

e(Sy, P)=e(Y' +Qip, Ppu)e(H(A), U’).

5.2 Security Analysis

Theorem 1. The proposed scheme achieves the property of completeness.

Proof. Note that

and

A=e(M' Qrp)
e(P’ Si) = e(Pa Sl)ue(P’ Qip)’ = (ayh)ugv = a/yC/
(M, 5}) = e(M', $1)"e(M, Qrp)" = e(al + BP, 51" A” = /="

)\525
=e ()\T + )\hg)S[D + )\TH(A), P)

e(S3, P) = e(
(
=e((Mr+c +M\u)Sip, Ple(H(A), )\TP)
(
(

e((A\r + ¢ + ) Q1p, Ppup)e(H(A) YPpub)
e((Ar 4+ \)Qrp — vH(A), pub) (H(A) U’
e(Y' +Qrp, Pyuv)e(H(A),U')

Thus, the proposed scheme achieves the property of completeness.

Theorem 2. The proposed scheme achieves the property of restrictiveness.
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Proof. Similar to [5,15], the restrictiveness nature of the scheme can be captured by the following
assumption: The recipient obtains a signature on a message that can only be the form M’ =
aM + BP with a and 3 randomly chosen by the recipient. In addition, in the particular case
where 8 = 0, if there exists a representation (u1, u2) of M with respect to bases P; and P, such
that M = p1 Py + poPa and if there exists a representation (u}, uh) of M’ with respect to ¢1
and go such that M’ = ) Py + pPs, then the relation In(py, po) = pa/pe = py/uh = Ia(uh, 1)
holds.

Theorem 3. The proposed scheme is partially blind.

Proof. Suppose S* is given L in step 5 of the game in definition 4, S* determines b with a
probability 1/2 (the same probability as randomly guessing b).

If in step 5, the shared information Ag = A;. Let (Y',U’,2', ¢, S}, S5, M') be one of the
signatures subsequently given to S*. Let (Y, U, z,a,b, h1,ha, S1,S2, M) be data appearing in
the view of S* during one of the executions of the signature issuing protocol at step 4. It is
sufficient to show that there exists a tuple of random blinding factors («, 3, u,v, A, u,7y) that
maps (Y,U, z,a,b, hy, ha, S1,S2, M) to (Y',U', 2/, ¢, Sy, S, M').

Let S5 = AS2, U' = AU +~vPpup and Y’ = AY +AuQrp —vH(A). The unique blinding factors
(A, 1, 7y) are always exist.?

Let u = ¢//hy, we know there exists a unique blinding factor v which satisfies the equation
S1 = uS1 + vQrp. Determine a representation M’ = aM + 3P, which is known to exist. Note
that 2’ = A% and z = e(M, Qrp)*® have been established by the interactive proof and the fact
that the signature is valid. Therefore, 2’ = e(M’,Q;p)° = 2®y”. Since e(P,S;) = ay™ and
e(M,S1) = bz"', we have a’ = e(P,S})y~¢ = a"g” and b = e(M’,S})(z')~¢ = a“Fpue A",

Thus, the blinding factors always exist which lead to the same relation defined in the signa-
ture issuing protocol. Therefore, even an infinitely powerful S* succeeds in determining b with
probability 1/2.

Theorem 4. The proposed scheme is secure against on the existential adaptively chosen message
and ID attacks under the assumption of CDHP in G is intractable and the random oracle model.

Proof. The proof follows the security argument given by Chow et al [12].

5.3 Application for Electronic Cash System

We follow Brand’s construction to describe an electronic cash system using the proposed ID-based
restrictive partially blind signature scheme. We denote the bank by B, a generic account-holder
by U, and a generic shop by S.

The setup of the system. Let (P, P;, P») be a random generator tuple of G;. Suppose PKG
chooses a random number s € Z as the master-key and sets Py, = sP. B submits his identity
information I D to PKG and PKG computes the private key Syp for B. Define three cryptographic
secure hash functions H : {0,1}* — G, Ho : G3x G5 — Z, and Hy : Gx G xIDgx Date/Time —
Z,. For the sake of simplicity, define ¢ = e(P,Qrp),91 = e(P1,Qip),92 = e(P2,QIp),y =
e(Ppuba QID)-

2 Though it is difficult to compute (A, i, v), we only need to exploit the existence of them.
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Opening an account. When U opens an account at B, B requests U to identity himself. U then
generates at random a number u; €r Z,, and computes the unique account number I = u;P;.
If M =uy P + P> # O, then U transmits I to B, and keeps u; secret. B stores the identifying
information of U in the account database, together with I. The information I enables B to
uniquely identify U in case he double-spends.

The withdrawal protocol. When U wants to withdraw a coin, he first proves ownership of his
account and negotiates a common information A. To this end, the following withdrawal protocol
between U and B is performed:

Step 1. B randomly chooses an element @ €r G, and computes z = e(M, Sip), a = e(P,Q),
and b = e(M, Q). He also randomly chooses a number r € Zy, and computes U = rP, and
Y =rQip. He then sends (z,a,b,U,Y) to U.

Step 2. U generates random numbers o, 21, T2, u, v, A\, t,Y €r Zg, and computes M’ = aM,
A =eM',Qrp), B=g{'g5% 2z = 2% da =a"g", v = b"*A", Y = \Y + \uQrp — vH(AQ),
U' = N + vPpup, ¢ = Hy(M',Y', U, A, B,z ,a',V'), hy = ¢ Ju, and hy = A1 + p. He then
sends hy, ho to B.

Step 3. B responds with S; = Q + h1S1p, Sa = (r + ha)Sip + rH(A).

Step 4. If the equations e(P, S1) = ay”* and e(M, S;) = bz"* hold, U computes S| = uS; +vQ;p,
and S = aSs.

We say M', B, A, (Y',U',2',¢,57,5%) is a valid coin of which & knows a representation.

The payment protocol. When U wants to spend his coin at S, the following protocol is per-
formed:

Step 1. U sends M', B, A, (Y, U’ 2/, ¢/,S1,55) to S.

Step 2. Let A = e(M',Qp), and if A # O, S then sends U a challenge d = H1 (A, B, IDg, date/time),
where I Dg can be the account number of S, date/time is the number representing date and time

of the transaction.

Step 3. U computes the responses 1 = d(uja) + x1 and 79 = da + x2 and sends them to S.

S accepts the coin if and only if (Y',U’,2/,¢,S],5%) is a valid signature on (M’, B, A), and
gIl 952 — AdB

The deposit protocol. After some delay in time, S sends B the payment transcript, consisting
of M',B, A, (Y', U, 2, ¢, S7,5%), (r1,r2) and date/time of transaction. B first checks the validity
of the coin. If the verifications hold, he then searches its deposit database to find out whether
M’ has been stored before. If M’ has not stored before, B stores M', A, date/time, (r1,72) in
its database; Else, B can detect double-depositing (the same challenge)or double-spending (the
different challenge). The information of (r; — r})/(re — r4) serves as a proof to trace the dishonest
double-spender.

6 Conclusions

Restrictive partially blind signatures incorporate the advantages of restrictive blind signatures
and partially blind signatures, which play an important role in electronic commerce. In this paper
we first propose an ID-based restrictive partially blind signature scheme from bilinear pairings.
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Furthermore, we give a formal proof of security for the proposed schemes in the random oracle
model. As an application, we use the proposed signature scheme to build an untraceable off-line
electronic cash system followed Brand’s construction.
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Fig. 1. ID-based Restrictive Partially Blind Signature Scheme



