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Abstract

In the classic Diffie-Hellman protocol based on a generic group G, Alice and Bob agree
on a common secret KAB (master secret) which is indistinguishable from another element
of G but not from a random bits-string of the same length. In this paper, we present a
new deterministic method to extract bits from KAB when G is an elliptic curve defined
over a quadratic extension of a finite field. In the last section, we show that it is also
possible to extract a few bits when G is an elliptic curve defined over a prime field.
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Introduction

Let G = 〈g〉 be a cryptographic cyclic group of order q and ℓ be the bit size of q. In the
classic Diffie-Hellman key exchange [6], Alice and Bob agree on a common secret KAB (master
secret) which is indistinguishable from another element of G under the decisional Diffie-
Hellman assumption (DDH). In most cryptographic protocols, the secret key Ks, to encrypt
and authenticate data, has to be indistinguishable from a random bit-string with a uniform
distribution. This imply that KAB can not be directly used as a session key. For instance,
if G is a subgroup of the multiplicative group of a finite field Fp, or if G is an elliptic curve
defined over a finite field Fp, there is no easy ℓ-bit long representation for group elements, and
therefore the representation involves some redundancy. Although this redundancy is difficult
to remove, it is trivial to detect if a bit string corresponds to a representation of an element
of G. Hence the indistinguishability must be guaranteed with an additional device.

The classical solution is to use a hash function we have in our toolbox to map the element
KAB into an ℓ-bit string. Then the indistinguishability can not be proved under the standard
DDH assumption. The Random Oracle or some other technical assumption has to be added.
Some general results in that direction can be found for example in [8, 7].

More recently Chevassut, Fouque, Gaudry and Pointcheval in [3] pointed out that working
with elliptic curves can imply some nice solutions to the randomness extraction problem (their
TAU method is provably secure assuming only DDH on elliptic curves). In this paper we
propose two other methods to extract random bits from a point on an elliptic curve, that are
also provable under DDH only.

Our first extractor, H, works for elliptic curves defined over a quadratic extension of a
prime finite field. It simply takes the first Fp-coefficient of the abscissa of the point. The proof
that this extractor has the wanted properties relies on a counting theorem that amounts to
applying the Hasse Weil bound on some curve included in the Weil restriction of the elliptic
curve.

The second extractor works for elliptic curves defined over a prime field. It takes the
first k-bits of the binary representation of the abscissa of a point for k small enough (strictly
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less than ℓ/2 if p is an ℓ-bits prime number). In this case, the proof is a consequence of the
Polya-Vinogranov’s inequality.

In the next section, we start by quickly recalling the TAU method and then we propose
our new extractors. The core of the paper will be devoted to the proof that our extractor H
is a good extractor. In section 4, we discuss a few practical applications. The last section
describe our second method in detail.

1 Using elliptic curves for the extraction of bits

Let us fix some classical definitions related to probability.

Indistinguishability. Let Xℓ and Yℓ be two distributions over {0, 1}ℓ. We say that the
statistical distance between Xℓ and Yℓ is bounded by ∆(ℓ) if

∑

x∈{0,1}ℓ

∣∣∣∣ Pr
K∈RXℓ

[K = x] − Pr
K∈RYℓ

[K = x]

∣∣∣∣ ≤ ∆(ℓ).

We say that Xℓ and Yℓ are statistically indistinguishable if for any polynomial P we have
asymptotically

∆(ℓ) <
1

P (ℓ)
.

1.1 Adding conditions on the curve for an efficient extractor

In the following methods, the uniform distribution in the field Fp and the uniform distribution
in {0, 1}ℓ have to be statistically indistinguishable. It is possible only if p is a prime number
of the form 2ℓ − ε where ε is less than 2ℓ/2. In this section we fix p a prime number of this
form.

TAU method of [3]. Let E be an elliptic curve defined over Fp that is

E =
{
(x, y) ∈ Fp × Fp : y2 = x3 + ax + b

}
∪ {∞E},

where a and b are both in Fp and where ∞E denote the point at infinity. Let c be a quadratic
non-residue of Fp.

Let x0 be an element of Fp and consider the element z = x3
0 + ax0 + b. There are two

cases:

• z is a quadratic residue in Fp thus there exists y0 such that y2
0 = z and (x0, y0) ∈ E;

• z/c is a quadratic residue in Fp thus there exists y0 such that cy2
0 = z and (x0, y0) is a

point of an elliptic curve defined by

Ẽ =
{
(x, y) ∈ Fp × Fp : cy2 = x3 + ax + b

}
∪ {∞eE

},

called the quadratic twist of E.
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We define HTAU : E ∪ Ẽ → Fp by HTAU(P ) = [P ]
abs

, the abscissa of P . It is obvious that for
any x ∈ Fp we have #H−1

TAU
(x) = 2 and from that result we can deduce that the distribution

of the image by HTAU of a random point in (E∪ Ẽ) and the uniform distribution in {0, 1}ℓ are
statistically indistinguishable. In practice, the choice of E is a little bit more subtle because
the discrete logarithm has to be hard in both E and Ẽ. In [3], they explain how to construct
this kind of curve using the theory of Complex Multiplication or the SEA algorithm. Notice
that the standard curve defined over the finite field P-384 as describe in [5] (see section 4 for
more details), can be used for the TAU method.

Definition of the extractor H. Let E be an elliptic curve defined over a finite field
Fp2 = Fp[t]/(t

2 − c) where c is a quadratic non-residue of Fp. The field Fp2 can be considered
as a Fp-vector space equipped with the natural basis {1, t}Fp . This implies that if z ∈ Fp2

then there exist two elements z0, z1 in Fp such that z = z0 + tz1. We show that if P =
(x0 + tx1, y0 + ty1) ∈R E then the function H(P ) = x0 gives a good randomness extractor.
More exactly, theorem 1 of section 2 gives some explicit bounds to #H−1(x) for x in Fp

and we use this result to prove, in section 3, that the distribution of the image by H of a
random point in E and the uniform distribution in {0, 1}ℓ are statistically indistinguishable.
In section 4, we give some examples of curves which can be used in this context.

1.2 The general case

Let p be a prime number and E be an elliptic curve defined over a finite field Fp. We show in
the last section that we can extract a few bits from the abscissa of an point P = (x, y) ∈ E.
More exactly, we denote by [x]k the first k-bits of the binary representation of x and we
define Hk(P ) = [x]k. We give an explicit bound, dependent on k and p, to the statistical
distance between the distribution of the image by Hk of a random point in E and the uniform
distribution in {0, 1}k . We discus the efficiency of this method through an example.

2 The main theorem

In this section we prove the following result:

Theorem 1 Let E be a curve defined over Fq2 by an affine equation Y 2 = X3 + aX + b. Fix
a polynomial representation Fq2

∼= Fq[t]/(t
2 − c) where c is a quadratic non-residue of Fq and,

for all x in Fq2, write x = x0 + tx1.
We define the function H from E to Fq by H(x, y) = x0 and H(OE) = 0. Then for all

z ∈ F
∗
q,

|#H−1(z) − (q + 1)| ≤ 20
√

q + 14

and
m ≤ #H−1(0) ≤ M

where m = min(2(q + 1)− 4
√

q, (q + 1)− 20
√

q − 14) and M = max(2(q + 1) + 4
√

q, (q + 1) +
20
√

q + 14).

Proof. Let A be the Weil restriction of E to Fq. This is an abelian variety of dimension 2
defined over Fq. For each value of z in Fq, the points of H−1(z) form a curve Cz in A. Using
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the substitutions a = a0 + ta1, b = b0 + tb1... and carrying out the computations symbolically,
we obtain two explicit equations defining Cz in A

3
Fq

{
P1 = Y 2

0 + cY 2
1 − 3czX2

1 − ca1X1 − z3 − b0 − a0z
P2 = 2Y0Y1 − cX3

1 − (a0 + 3z2)X1 − a1z − b1

where Y0,X1, Y1 are indeterminates. We note f1(X1) = −(3czX2
1 + ca1X1 + z3 + b0 + a0z)

and f2(X1) = −(cX3
1 + (a0 + 3z2)X1 + a1z + b1). Let C′ be the plane curve defined by the

affine equation R = ResY0
(Y 2

0 + cY 2
1 + f1, 2Y0Y1 + f2) = 4cY 4

1 + 4f1Y
2
1 + f2

2 . Using a Gröbner
basis computation, one can show that C′ is the projection of Cz with respect to Y0 but we do
not need this result and we already know that C′ contains the projection of Cz. The end of
the proof is organised as follows:

• if C′ is not irreducible, study the geometry to reduce to the irreducible case ;

• if C′ is irreducible

1. find an explicit constant α such that |#Cz − #C′| ≤ α;

2. find an explicit constant β such that |#C′ − N | ≤ β where N is the number of
points on the desingularised projective model of C′;

3. by Weil’s theorem, the number of points N is bounded by

|N − (q + 1)| ≤ 2g
√

q

where g is the genus of C ′;

4. put everything together to conclude.

The plane curve C′ is irreducible if and only if the discriminant D of R̃ := 4cY 2
1 +4f1Y1+f2

2

with respect to Y1 is not a square in Fq∞[X1]. We have D = 16(f1 + tf2)(f1 − tf2) which is
a square if and only if f1 = 0 or f2 = 0. (More precisely, we use the equation of the curve
(Y0 + tY1)

2 = f1 + tf2 = (z + tX1−λ1)(z + tX1−λ2)(z + tX1−λ3) in Fq∞ ,this is the equation
of an elliptic curve thus the λ’s are different.) The leading coefficient of f2 is −c 6= 0 and
f1 = 0 implies in particular that z = 0. It thus follows that if z 6= 0 then C′ is irreducible.

Case z 6= 0: let (x1, y1) be a point on C′. By equation P2, if y1 6= 0 then there exists
y0 ∈ Fq, which is unique, such that (y0, y1, x1) is a point on Cz. If y1 = 0 then f2(x1) = 0 and
there are at most two points on the fiber of (x1, y1) for at most 3 elements x1 ∈ Fq. Using
projective coordinates, there are at most two points on the fiber of the point at infinity of C′.
We have

|#Cz − #C′| ≤ 4.

The curve C′ is irreducible of degree 6. The genus of C′ is bounded by its arithmetic genus
(6 − 1)(6 − 2)/2 = 10. There are at most 10 singular points thus

|#C′ − N | ≤ 10

where N verifies
|N − (q + 1)| ≤ 20

√
q.

Case z = 0 and f1 6= 0: the curve C′ is irreducible and we can do the same computation
that in the previous case.
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Case z = 0 and f1 = 0: Cz is the union of two elliptic curves E1 and E2 of equations
Y 2

1 ± 1/(2t)f2. By Weil’s theorem we have

|#C0 − 2(q + 1)| ≤ 4
√

q.

�

3 The function H is a good randomness extractor

In this section, we assume that p verifies the following condition: there exist two integers ℓ
and ε such that ε ∈

[
1, 2ℓ/2

]
and p = 2ℓ − ε. We show that the distribution of the secret key

K, if we take it as the image by H of a random point of E, is statistically almost uniformally
distributed on {0, 1}ℓ under the Elliptic Curve Decisional Diffie-Hellman assumption.

First, we compute the statistical distance between the distribution of K and the uniform
distribution Up in Fp (lemma 1) then between Up and the uniform distribution Uℓ in {0, 1}ℓ

(lemma 2). Notice that we identify Fp with the set {0, 1, . . . , p − 1}.
Let D be the distribution of K which is

D = {P ∈R E : K = H(P )}.

Lemma 1 The distribution D is statistically indistinguishable to the uniform distribution Up

in Fp:

δ =
∑

x∈Fp

∣∣∣∣ Pr
K∈RUp

[K = x] − Pr
K∈RD

[K = x]

∣∣∣∣ ≤
21
√

2√
2ℓ

.

Proof. Let x be an element of Fp, for the uniform distribution Up the probability is given by
PrK∈RUp [K = x] = 1/p. For the distribution D we have

Pr
K∈RD

[K = x] = Pr
P∈RE

[H(P ) = x] =
#H−1(x)

#E
.

Using the explicit bounds of theorem 1 and Weil’s theorem for #E we obtain

p + 1 − (20
√

p + 14)

p2 + 1 + 2p
≤ Pr

K∈RD
[K = x] ≤ p + 1 + (20

√
p + 14)

p2 + 1 − 2p

if x 6= 0, and
2(p + 1) − 4

√
p

p2 + 1 + 2p
≤ Pr

K∈RD
[K = 0] ≤ 2(p + 1) + 4

√
p

p2 + 1 − 2p
.

Thus for δ we deduce the desired inequality

δ ≤ max
i∈{0,1}

(∣∣∣∣
1

p
− 2(p + 1) + (−1)i4

√
p

p2 + 1 + (−1)i+12p

∣∣∣∣+ p

∣∣∣∣∣
1

p
−

p + 1 + (−1)i(20
√

p + 14)

p2 + 1 + (−1)i+12p

∣∣∣∣∣

)

≤
20p2√p + 18p2 + 4p

√
p + 3p − 1

p (p2 − 2p + 1)
≤

21
√

p
≤

21
√

2√
2ℓ

,

for p large enough (e.g. p > 500). �
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Lemma 2 Let us recall that Up denote the uniform distribution on the space Fp and Uℓ the
uniform distribution on the space {0, 1}ℓ = {0, 1, . . . , 2ℓ − 1}. Then the statistical distance
between Up and Uℓ is bounded by 2/

√
2ℓ.

Proof. It is exactly the proof of lemma 9 in [3]. Let δ′ be the statistical distance between Up

and Uℓ then

δ′ =
∑

x∈{0,1}ℓ

∣∣∣∣ Pr
X∈RUℓ

[X = x] − Pr
X∈RUp

[X = x]

∣∣∣∣

=
∑

x∈{0,1}ℓ

x<p

∣∣∣∣ Pr
X∈RUℓ

[X = x] − Pr
X∈RUp

[X = x]

∣∣∣∣+
∑

x∈{0,1}ℓ

x≥p

∣∣∣∣ Pr
X∈RUℓ

[X = x] − Pr
X∈RUp

[X = x]

∣∣∣∣

=
∑

x∈{0,1}ℓ

x<p

∣∣∣∣∣
1

2ℓ
−

1

p

∣∣∣∣∣+
∑

x∈{0,1}ℓ

x≥p

∣∣∣∣∣
1

2ℓ
− 0

∣∣∣∣∣ = p ×
∣∣∣∣∣
1

2ℓ
−

1

p

∣∣∣∣∣+ (2ℓ − p) ×
1

2ℓ

≤
2(2ℓ − p)

2ℓ
≤

2ε

2ℓ
≤

2√
2ℓ

.

�

A simple application of lemma 1 and 2 gives us the following corollary.

Corollary 1 When 0 < p − 2ℓ ≤ 2ℓ/2, an upper bound of the statistical distance between the

uniform distribution on Uℓ and the H technique is given by
2√
2ℓ

+
21
√

2√
2ℓ

.

4 Choice of the curve and practical consequences

Using a prime of the form 2ℓ − ε (see section 3) is not so restrictive. Such a prime is useful in
practice because it allows a faster arithmetic than a more general prime. Noticed also that
prime fields over which are defined most of the curves proposed in standards [4, 5] have this
special property.

Using a curve defined over Fp2. In this case, if one needs a 80-bits key, one has to
construct a cryptographically secure curve over Fp2 with p a prime near 280. It is well known
how to construct such a curve using the SEA algorithm (for instance, this is implemented in
MAGMA [1]).

Using a standard curve. It is also possible to use a recommended curve, EP-N, described
in [5] but considered over Fp2.

More exactly, the curve EP-N, N ∈ {192, 384, 512}, is defined by its affine equation

EP-N =
{
(x, y) ∈ Fp × Fp : y2 = x3 − 3x + b

}
∪ {∞EP-N

},

where p = 2N − ε is a prime number with properties describe in section 3, b is an element in
Fp, ∞EP-N

the point at infinity and a generator EP-N = 〈G1〉. We are going to use the curve
E defined over Fp2 by

E =
{
(x, y) ∈ Fp2 × Fp2 : y2 = x3 − 3x + b

}
∪ {∞E}.
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If #EP-N = p+1− t = q1, for an integer t, then it is clear that #E = (p+1− t)(p+1+ t) = q
(consequence of the Weil’s theorem). For this choice of N , E is cyclic but q2 = p + 1 + t is
not necessarily almost prime (in particular if N = 192 or 512) so that the discrete logarithm
problem in E can be easier than in EP-N. We denote by G2 an element of E of order q2 (there
exists such an element as soon as E is cyclic and q2|q) and we define G = G1 + G2. We have
to modify a little the Diffie-Hellman part of the protocol. For instance, Alice has to pick up
a random integer nA in Z/q1Z and a random integer rA in Z/q2Z which can be considered
as a public information as soon as q2 is smooth. She computes NA such that nA = NA

mod q1 and rA = NA mod q2 and sends NA·G = nA·G1 +rA·G2. Bob does the same kind of
computations and they obtain the master key KAB = (NANB)·G = (nAnB)·G1 +(rArB)·G2

which can be considered as a random element of E (if nA, nB, rA and rB are randomly chosen
in there respective set). The security of KAB is based on the discrete logarithm of EP-N and
K = H(KAB) can be used as a pseudo-random bit string of length N .

5 Using an elliptic curve defined over a prime field

In this section, we give a pseudo-random extractor which is working for any secure elliptic
curves defined over a prime field. This method seems to be the more attractive for crypto-
graphic applications but more than half of the entropy is lost for a weak randomness quality
compare to the H method.

Notations and tools. Let p be a prime number and let Fp be a prime field with p elements
which we identify with the set {0, 1, . . . , p − 1}. If x ∈ Fp, we denote by [x]k the k-first less
significant bits of the binary representation of x.

Let {Si}i be a family of sets in Fp defined by:

S0 = {x ∈ Fp : [x]k = 0},
S1 = {x ∈ Fp : [x]k = 1},

...
S2k = {x ∈ Fp : [x]k = 2k − 1}.

We write p = s2k + r where 0 < r < 2k. We have #Si = s or s − 1.
Let f be an irreducible squarefree polynomial of degree 3 defined over Fp and we denote

by

(
·
p

)
the Legendre symbol. We recall that the Weil’s bound is gives

∣∣∣∣∣∣

∑

x∈Fp

(
f(x)

p

)∣∣∣∣∣∣
≤ 2

√
p,

and if N is a positive integer smaller than p the Polya-Vinogranov’s bound (see [2]) gives

∣∣∣∣∣

N−1∑

x=0

(
f(x)

p

)∣∣∣∣∣ ≤ 3
√

p log p.
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A good random-extractor. Let E be an elliptic curve defined over Fp given by

E =
{
(x, y) ∈ Fp × Fp : y2 = x3 + ax + b

}
∪ {∞E},

where ∞E denote the point at infinity.
We define the function Hk from E to {0, 1}k by Hk(x, y) = [x]k. For z ∈ {0, 1}k we have

∣∣#H−1

k (z) − s
∣∣ ≤ 3

√
p log p.

using the Polya-Vinogranov’s inequality.
Let Dk be the distribution of the image by Hk of a random point in E and let us compute δk,

the statistical distances between Dk and the uniform distribution in {0, 1}k :

δk =
∑

x∈{0,1}k

∣∣∣∣ Pr
X∈R{0,1}k

[X = x] − Pr
P∈RE

[Hk(P ) = x]

∣∣∣∣ =
∑

x∈{0,1}k

∣∣∣∣∣
1

2k
−

#H−1

k (x)

#E

∣∣∣∣∣

≤ max
i=0,1

∣∣∣∣∣1 −
2ks + (−1)i2k3

√
p log(p)

p + 1 + (−1)i+12
√

p

∣∣∣∣∣ = max
i=0,1

∣∣∣∣∣1 −
p − r + (−1)i2k3

√
p log(p)

p + 1 + (−1)i+12
√

p

∣∣∣∣∣

≤
2k3

√
p log(p) + 2

√
p − 1

p − 2
√

p + 1
= Qk(p).

Formally, if we take α such that 2k = pα/(3 log p) then we have

Qk(p) =
1

p1/2−α
+

2
√

p
+ O

(
1
√

p

)

and, by definition, the distribution Dk and the uniform distribution in {0, 1}k are statistically
indistinguishable as soon as α is small enough compare to 1/2.

Example. Let p a 200-bits prime number, for 50 pseudo-random bits, the statistical distance
δ50 is bounded by 2−42 (for various k : δ60 < 2−32, δ70 < 2−22 . . .).

Notice that, for the same cost during the Diffie-Hellman part of the protocol, if we work
with a 100-bits prime over a quadratic extension then we have 100 pseudo-random bits and
the statistical distance δ is bounded by 2−93.

Conclusion

We have constructed a deterministic randomness extractor H which can be used in any elliptic
curve based protocol. The main condition to use H is that the ground field, over which the
curve is defined, has to be a quadratic extension. It is easy to construct a secure curve on a
quadratic extension and if we really want a curve defined over a prime field (for instance to
use a standard curve), it suffices to work in a quadratic extension of this field.

We have also constructed a deterministic randomness extractor Hk which can be used
without any conditions on the elliptic curve. In this case, the random bits extractor is less
efficient than H.
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