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Abstract. Since the introduction of Identity-based (ID-based) cryptography by Shamir
in 1984, numerous ID-based signature schemes have been proposed. In 2001, Rivest et al.
introduced ring signature that provides irrevocable signer anonymity and spontaneous group
formation. In recent years, ID-based ring signature schemes have been proposed and almost
all of them are based on bilinear pairings. In this paper, we propose the first ID-based
threshold ring signature scheme that is not based on bilinear pairings. We also propose the
first ID-based threshold ‘linkable’ ring signature scheme. We emphasize that the anonymity
of the actual signers is maintained even against the private key generator (PKG) of the
ID-based system. Finally we show how to add identity escrow to the two schemes. Due to
the different levels of signer anonymity they support, the schemes proposed in this paper
actually form a suite of ID-based threshold ring signature schemes which is applicable to
many real-world applications with varied anonymity requirements.

1 Introduction

As the number of applications on the Internet continues to grow, more and more traditional human
interactions have been converted to their electronic counterparts: messaging, voting, payments,
commerce, etc. The increase in reliance on the Internet potentially erodes personal privacy, the
right of the individual to be let alone [58], or the right to determine the amount of personal
information which should be available to others [59]. Privacy is important for many reasons, such
as impersonation and fraud. As more identity information is collected, correlated, and sold, it
becomes easier for criminals to commit fraud. But privacy is more than that, it also concerns
about the secrecy of which websites we visited, the candidates we voted for, etc.

Anonymity is one important form of privacy protection. In practice, anonymity diversifies into
various forms with different levels of anonymity. For example, look at how anonymous remailers
[35] have evolved over time – from type 0 to type I to type II, every successor provides a higher level
of anonymity, at the cost of lower efficiency and higher resource consumption. On the other side,
for some applications, too high a level of anonymity can do more harm than good. For example,
while unconditional anonymity provides maximum protection to users which can be useful for
scenarios such as secret leaking [53]. However, unconditional anonymity may not be desirable for
some other applications. For instance, in some scenarios one would like to have a trusted third
party to have the capability to trace users after the fact that the users have misbehaved, such as
tracing double-spenders in an e-cash system.
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Designing secure cryptographic schemes with unconditional anonymity is undoubtedly chal-
lenging. However, designing schemes with a carefully adjusted level of anonymity is sometimes
even more challenging. It is also very rewarding due to the fact that these schemes find many
applications in practice. For example, a ring signature scheme [53] allows a signer to generate a
signature on behalf of a group of signers such that everyone can be sure that the signature is gen-
erated by one of the group members yet no one can tell who the real signer is. Different from group
signature, there is no group manager, no member revocation, and it is spontaneous (setup-free).
While a linkable ring signature [46] allows anyone to tell whether two signatures are generated
by the same signer while still maintaining the anonymity of the real signer as a conventional ring
signature scheme in the way that no one can revoke the real signer’s anonymity.

1.1 Background and Related Work

Identity-based Cryptography. In 1984, Shamir [55] introduced the notion of Identity-based
(ID-based) cryptography to simplify certificate management. The unique feature of ID-based cryp-
tography is that a user’s public key can be any arbitrary string. Since then, many other ID-based
signature schemes have been proposed, despite the fact that the first practical ID-based encryption
appeared only until 2001 [13]. In 2004, Bellare et al. [10] developed a framework to analyze the
security of ID-based signature schemes and they proved the security (or insecurity) of 14 schemes
found in the literature. As in the case of standard signature, there are also blind signature [63],
proxy signature [61], proxy blind signature [32], proxy ring signature [6, 63], and proxy signcryption
[44] in the paradigm of ID-based cryptography.

Group-oriented Cryptography. This type of schemes has a group of users involved, e.g. secret
sharing schemes, group signature schemes, etc. In some of them, group members participate equally
well in all the processes and therefore, there is no concern of anonymity. In some other schemes,
however, the participation of only one or a proper subset of members is required to complete
a process, while the remaining members are not involved in (and are possibly unaware of) the
process. Such a distinction between participants and non-participants gives anonymity a meaning.
Specifically, a participant may prefer to be indistinguishable from the whole group of members,
thus maintaining his privacy in participating the process. According to the level of anonymity the
group-oriented cryptographic schemes provide, they can be categorized as follows.
No Anonymity means the identities of the participating users are known to everyone. Privacy is
simply not a concern here. For example, in a multi-signature scheme [41, 48], everyone can identify
who has contributed in the signing process.
Anonymity means not everyone should be able to identify participating users. A good example
is ring signature [53], in which besides the actual signer, no one can identify the actual signer of a
signature among a group of possible signers. There have been many different schemes proposed [1,
31, 54, 21] since the first appearance of ring signature in 1994 [30] and the formal introduction of it
in 2001 [53]. The first ID-based ring signature was proposed in 2002 [62]. Two constructions in the
standard model were proposed [5]. Their first construction was discovered to be flawed [33], while
the second construction is only proven secure in a weaker model, namely, selective-ID model. The
first scheme claimed to be secure in the standard model is [39] under the trusted setup assumption.
However, their proof is wrong and it is unknown whether their scheme is secure or not.5 Other
existing ID-based ring signatures includes [23, 7, 64, 28, 26, 50, 40]. Threshold variant of ID-based
ring signatures includes [24, 29, 39]. To the best of the authors’ knowledge, all the existing ID-based
ring signature schemes are pairing-based except the one in [40] which is RSA-based.
Revocable Anonymity can be summarized as “no anonymity to an authority, but anonymity to
anybody else”. In schemes with revocable anonymity, there is always an authority who is capable
of revoking the anonymity, e.g., under dispute or court order. The authority is often assumed to be
trusted not to abuse power. Users are anonymous to everybody other than this authority. Group
signature schemes [22, 9, 12] provide revocable anonymity. Many credential systems [16–18] also
provide revocable anonymity.
5 We explicitly point out the flaw in Appendix A.
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Linkable Anonymity is “anonymity with a condition”. Schemes with linkable anonymity give
maximal anonymity to users who succeeded in satisfying the condition and take away a certain
degree of anonymity from users who failed as a punishment. Let us illustrate the idea using a
linkable ring signature scheme. In this scheme, users are assumed to sign only once, in which case
they enjoy anonymity in full. However, if a user signs twice (or k times, in general), anyone can
tell if two signatures are produced by the same user or not, thus resulting in a reduced level of
anonymity. Linkable ring signature was introduced in [46]. [57] gave a separable construction that
supports threshold. The first constant-size linkable ring signature was proposed in [56]. Linkable
group signature first appeared in [49]. Escrowed linkable ring signature was proposed in [27]. The
first constant-size linkable ring signature (and revocable if and only if linked variant) was proposed
in [4]. The construction, however, was flawed as shown in [42]. A practical application of linkable
ring signature is e-voting [25].

A technical difficulty in constructing an ID-based linkable ring signature is that there exists a
Private Key Generator (PKG) in the system responsible for issuing users’ secret keys yet linkable
anonymity should be maintained, even against the PKG. Our construction solves this by modifying
the key extraction algorithm such that user’s secret key is co-generated by the PKG and the user.
This idea is reminiscent to the idea of self-certified keys [37]. It also allows the users in our ID-based
linkable signature scheme to refute any framing attacks launched by the PKG through generating
another signature which is unlinked to the forged signature.

1.2 Our Contributions and Motivations

– We propose the first ID-based threshold ring signature scheme that is not based on bilinear
pairings. We show its security under the Strong RSA and DDH Assumption, in the random
oracle model [11]. In particular, anonymity of the ring signers is maintained even against the
PKG.

– By extending on our basic construction, we propose the first ID-based linkable threshold ring
signature scheme. All previously proposed linkable ring signature schemes except [27] are not
ID-based. 6

– We show the method of adding identity escrow in both of our schemes. With identity escrow,
some trusted authority can revoke the anonymity of a ring signature when it becomes necessary.
The ability of revoking the real signer can help prevent the signature scheme from being abused
by misbehaving users. The schemes, plus their identity-escrowed counterparts, form a suite of
ID-based signature schemes applicable to a wide variety of scenarios with different anonymity
requirements. Note that even with identity escrow, the scheme is not the same as a group
signature scheme due to the spontaneity property of the ring signature scheme.

Our Motivations. As we have seen many constructions of threshold ring signature schemes [30, 14,
60, 45, 47, 57, 24, 29, 39] proposed recently, there are only few of them [24, 29, 39] under the setting
of ID-based cryptography. ID-based ring signature schemes have similar applications to that of
conventional public key setting, but with the key escrow property. Applications include whistle-
blowing [53] and ad hoc group authentication [14]. All ID-based threshold ring signature schemes
proposed are pairing based. Also it is obvious to further extend them to a linkable variant,
especially it needs to be secure under the security models we define in this paper. Therefore, the
work presented in this paper is mainly motivated by the following two aspects.

1. As of theoretical interest, we target to propose an identity-based scheme which does not rely
on security assumptions related to pairings, for example, Gap Diffie-Hellman Problem.

2. All current ID-based threshold ring signature schemes do not allow us to extend it to an ID-
based linkable threshold ring signature scheme. We target to construct a scheme which can
be extended so that we can construct a linkable variant.

6 We note that although the linkable ring signature scheme in [4] is ID-based, it is later proven insecure
in [42].
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1.3 Comparison

We compare our scheme with other ID-based threshold ring signature schemes [24, 29, 39] in Table
1.

Signature size Number of pairing Mathematical Security Extend to
(group elements) in verification Assumption model linkable

[24] O(n) O(n) GDH ROM No

[29] O(n2) O(n2) ECDL, BPI ROM No

[39] O(n) O(n) SGH, CDH Unknown No

Our schemes O(n) 0 Strong RSA, DDH ROM Yes
Table 1. Comparison of different ID-based threshold ring signature schemes

In the table, n is the number of users included in the ring. The assumptions mentioned include:

– GDH: Gap Diffie-Hellman problem
– ECDL: Elliptic Curve Discrete Logarithm problem
– BPI: Bilinear Pairings Identity problem
– SGH: Subgroup Decision problem
– DDH: Decisional Diffie-Hellman problem

Note that each group element of our scheme is about 1024 bits, while a group element of other
pairing-based schemes is about 160 bits.

We also note that although the authors of the scheme in [39] claimed that their scheme is secure
in the standard model, we find out a flaw in the proof. It is unknown whether their scheme is secure
or not, at least in the standard model. We present the flaw in Appendix A.

Paper Organization. We give some preliminaries in Sec. 2 and define a security model in Sec. 3.
We then propose an ID-based threshold ring signature scheme in Sec. 4 and an ID-based linkable
variant in Sec. 5. In Sec. 6, we show how to add identity escrow to our schemes.

2 Preliminaries

A safe prime p is a prime such that (p − 1)/2 is also prime7. Denote by QR(N) the group of
quadratic residues modulo the safe prime product N . For positive real numbers a ≤ b, bac denotes
the greatest integer less than or equal to a; [a, b] denotes the set {x ∈ Z|bac ≤ x ≤ bbc} and S(a, b)
denotes [bac−bbc+1, bac+bbc−1]. If S is a set, ℘(S) denotes the power set of S and ℘t(S) denotes
the set of elements in ℘(S) of size t, i.e. ℘t(S) .= {s ∈ ℘(S)| |s| = t}. A negligible function ν(λ) is
a function such that for all polynomial poly and sufficiently large λ, ν(λ) < 1/poly(λ). When G is
a finite cyclic group, define G(G) to be the set of generators of G, i.e. {g ∈ G|〈g〉 = G}.

2.1 Mathematical Assumptions

Definition 1 (Strong RSA [8, 36]). Let n = pq be an RSA modulus. Let G be a cyclic subgroup
of Z∗n of order u. Given n and z ∈R G, the Strong RSA Problem is to find x ∈ G and e ∈ Z>1

such that z = xe mod n. The Strong RSA Assumption says that there exists no PPT algorithm
that can solve the Strong RSA Problem, in time polynomial in the size of |u|.

In our schemes, we need to make restriction to safe primes for p and q in the Strong RSA assump-
tion. However, it is easy to see that the Strong RSA assumption without this restriction implies
the Strong RSA assumption with this restriction, assuming that safe primes are sufficiently dense.
7 Although it has never been proven, it is widely conjectured and amply supported by empirical evidence,

that safe primes are sufficiently dense.
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Definition 2 (Decisional Diffie-Hellman (DDH) [11]). Let G be a cyclic group generated
by g of order u. The DDH Problem is to distinguish between the distributions (g, ga, gb, gc) and
(g, ga, gb, gab), with a, b, c ∈R Zu. The DDH Assumption says there exists no PPT algorithm solve
the DDH Problem, in time polynomial in the size of |u|.

2.2 Signature of Knowledge

A Σ-protocol for an NP-relation R is a 3-round two-party protocol, such that for every input
(x, y) ∈ R to a prover P and y to a verifier V, the first P-round yields a commitment t, the
subsequent V-round replies with a challenge c, and the last P-round concludes by sending a response
s. At the end of a run, V outputs a 0/1 value, functionally dependent on y and the transcript
π
.= (t, c, s) only. A transcript is valid if the output of the honest verifier is 1. Additionally, we

require a Σ-protocol to satisfy:

– (Special Soundness.) There exists a computable function K (Knowledge Extractor) that on
input y in the domain of the second component of R and a pair of valid transcripts (t, c, s) and
(t, c′, s′), with the same commitment, outputs x such that (x, y) ∈ R.

– (Special Honest-Verifier Zero-Knowledge (Special HVZK).) There exists an efficient algorithm
S (Simulator) that on input y in the domain of the second component of R and a challenge c,
outputs a pair of commitment/response messages t, s, such that the transcript π .= (t, c, s) is
valid, and it is distributed according to the distribution (P(x, y)↔ V(y)).

A signature of knowledge allows a signer to prove the knowledge of a secret with respect to some
public information non-interactively. Following [20], we call this type of signatures “a signature
based on proofs of knowledge”, SPK for short. A HVZK Σ-protocol can be turned into a SPK by
setting the challenge to the hash value of the commitment together with the message to be signed
[34]. Such schemes can be proven secure against existential forgery under chosen-message attack
[38] in the random oracle model using the proofing technique introduced in [51].

3 Definitions and Security Models

3.1 ID-TRS (ID-based Threshold Ring Signature)

An ID-Based Threshold Ring Signature (ID-TRS) scheme is defined as a tuple of four probabilistic
polynomial-time (PPT) algorithms:

– ID-TRS.Setup. On input 1λ where λ ∈ N is a security parameter, it outputs a master secret
key s and a system parameter set param = (1λ,S,M, Ψ), where S is the user secret key space,
M the message space, and Ψ the signature space.

– ID-TRS.Extract. On input param, an identity IDi ∈ {0, 1}∗ for a user and the master secret
key s, it outputs a user secret key si ∈ S for the user.

– ID-TRS.Sign. On input param, an integer n as the ring size, a threshold t ∈ [1, n], an identity
set {IDi ∈ {0, 1}∗ | i ∈ [1, n]}, a message m ∈M, and a t-element user secret key set {sj ∈ S |
j ∈ Π} where Π ∈ ℘t([1, n]), it outputs an ID-based (t, n)-threshold ring signature σ ∈ Ψ .

– ID-TRS.Verify. On input param, ring size n, threshold t, identity set {IDi ∈ {0, 1}∗ | i ∈
[1, n]}, message m ∈M and signature σ ∈ Ψ , it outputs either valid or invalid.

Correctness. An ID-TRS scheme defined above satisfies verification correctness if for any
(s, param) ← ID-TRS.Setup(1λ), n ∈ N, t ∈ [1, n], L = {IDi ∈ {0, 1}∗ | i ∈ [1, n]}, Π ∈ ℘t([1, n]),
{si ← ID-TRS.Extract(param, IDi, s) | i ∈ [1, n]} andm ∈M, if σ ← ID-TRS.Sign(param, n, t, L,m, {sj |
j ∈ Π}), then valid← ID-TRS.Verify(param, n, t, L,m, σ).

A secure ID-TRS scheme should be unforgeable and anonymous. Specific to ID-based set-
ting, our security model captures the adaptive chosen ID attacks. Let A be an adversary. The
capabilities of A is modeled by making queries to the following oracles:



6 Patrick P. Tsang, Man Ho Au, Joseph K. Liu, Willy Susilo, and Duncan S. Wong

Hash: 8 A can ask for hash values of any finite length strings.
Key: On input IDi, sIDi ← ID-TRS.Extract(param, IDi, s) is returned. The oracle is stateful,

meaning that if IDi = IDj , then si = sj .
Signature: On input an identity set L = {IDi}i∈[1,n], a signer set Π ∈ ℘t([1, n]) and a message

m, the oracle returns σ ← ID-TRS.Sign(param, n, t, L,m, {si | i ∈ Π}).

Definition 3 (Unforgeability). We consider the following game.

– (Initialization Phase.) Challenger C generates (s, param)← ID-TRS.Setup(1λ) and sends param
to A.

– (Probing Phase.) A makes queries to any of the oracles.
– A outputs L∗ = {IDi ∈ {0, 1}∗ | i ∈ [1, n]}, m∗ ∈ M and an ID-based (t, n)-threshold ring

signature σ∗ ∈ Ψ .

Restrictions are: (1) (m∗, L∗) should not be queried to Signature; (2) strictly less than t users in
L∗ are queried to oracle Key.

An ID-TRS is unforgeable (i.e. existentially unforgeable against adaptive chosen-message-and-
ID attacks) or EUF-IDTR-CMIA secure if for all sufficiently large λ and any PPT adversary,
the probability that valid← ID-TRS.Verify(param, n, t, L∗,m∗, σ∗) is negligible. The probability is
taken over the coin tosses of C and A.

On anonymity, we emphasize that although the key escrow property of ID-based cryptography
is inherent, the anonymity of the actual signers should still be protected against the PKG. Indeed,
our model below captures the scenario that the PKG is an adversary which tries to find out who
the actual signers are.

Definition 4 (Anonymity).

– (Initialization Phase.) Challenger C generates (s, param)← ID-TRS.Setup(1λ) and sends both
param and s to A.

– (Probing Phase.) Same as that in Unforgeability definition.
– (Challenge Phase.) A gives C an identity set L = {IDi | i ∈ [1, n]}, t ∈ [1, n] and m ∈ M. C

picks randomly Π ∈R ℘t([1, n]) and returns σ ← ID-TRS.Sign(param, n, t, L,m, {si | i ∈ Π}).
– A continues making queries to any of the oracle. Finally, A outputs π̂ ∈ [1, n].

An ID-TRS scheme is anonymous (i.e. signer indistinguishable against adaptive chosen-message-
and-ID attacks) or IND-IDTR-CMIA secure if for all sufficiently large λ and any PPT adversary,
the probability that π̂ ∈ Π is negligibly greater than t

n . The probability is taken over the coin tosses
of C and A.

3.2 ID-LTRS (ID-based Linkable Threshold Ring Signature)

As introduced at the beginning of this paper, ID-LTRS (ID-based Linkable Threshold Ring Sig-
nature) scheme is a variant of ID-TRS. In the following, we give the formal definition and specify
the security requirements.

– ID-LTRS.Setup. Same as ID-TRS.Setup, except: (1) it has an additional input k ∈ N which
represents the maximum number of events that the system supports, and (2) param additionally
includes an event-ID space E . We have |E| = k.

– ID-LTRS.Extract Protocol. User with identity IDi engage with PKG in the protocol with
common input param. After the protocol, the user is obtained a user secret key si ∈ S.

– ID-LTRS.Sign,Verify. Same as ID-TRS.Sign,Verify, except they both additionally have an
input event-ID e ∈ E .

– ID-LTRS.Link. On input param, e ∈ E , two ring sizes n1, n2, two thresholds t1 ∈ [1, n1] and
t2 ∈ [1, n2], two identity sets Yj = {ID(j)

i | i ∈ [1, nj ]} for j = 1, 2, two messages m1,m2 ∈ M,
and two signatures σ1, σ2 ∈ Ψ such that valid ← ID-LTRS.Verify(param, e, nj , tj ,Yj ,mj , σj)
for j = 1, 2, the algorithm returns either linked or unlinked.

8 The hash oracle is only needed in the random oracle model.
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Note that we require an interactive extract protocol (between the PKG and user) instead of the
normal extract algorithm here. The purpose is to prevent the PKG from learning the identity of
the actual signer from the additional linking tag.

Correctness. Besides verification correctness (which is defined similarly to that for ID-
TRS), an ID-LTRS scheme also satisfies linking correctness if

linked← ID-LTRS.Link(param, e, n1, n2, t1, t2,Y1,Y2,m1,m2, σ1, σ2)

for any (s, param) ← ID-LTRS.Setup(1λ, k), n1, n2 ∈ N, tj ∈ [1, nj ], Yj = {ID(j)
i | i ∈ [1, nj ]},

Πj ∈ ℘tj ([1, nj ]), {s
(j)
i ← ID-LTRS.Extract Protocol | i ∈ [1, nj ]}, m1,m2 ∈ M such that

σj ← ID-LTRS.Sign(param, nj , tj ,Yj ,mj , {s(j)i | i ∈ Πj}), for j = 1, 2 and Π1 ∩Π2 6= ∅.

Remark : According to [56], linkability for threshold ring signatures is diversified into individual-
linkability and coalition-linkability, our definition belongs to the former type. That is, two signatures
are linked if they share at least one common signer even though the two identity sets are different.
The definition of linkability affects directly the level of anonymity due to the additional access to
ID-LTRS.Link by the adversary.

The security requirements of ID-LTRS schemes include Unforgeability , Anonymity , Link-
ability and Non-slanderability .

The definition of Unforgeability for ID-LTRS is the same as that for ID-TRS schemes. For
anonymity, a crucial difference between ID-LTRS and ID-TRS is that in the former, the adversary
cannot query signatures of a user who appears in the challenge phase. The reason is that if the
adversary has obtained some signature of user i in ID-LTRS, it can tell if the signature for challenge
is generated by this user due to the linking property. Also note that in the game below, we equip the
adversary with the master secret key. This implies that we require an ID-LTRS to be anonymous (as
defined below) even when the adversary colludes with the PKG. It also simulates the situation that
an outside attacker somehow steals the master secret key of the PKG. Note that we do not model
the case of a malicious PKG [3] where the adversary acts as a malicious PKG who generates all
public parameters instead of just given the secret key.

Definition 5 (L-Anonymity).

– (Initialization Phase.) C runs (param, s)← ID-LTRS.Setup(1λ, k) and sends (param, s) to A.
– (Probing Phase I.) A makes queries to any of the oracles. Suppose A makes a total of v queries

to Key. The restriction is that v < n− t.
– (Challenge Phase.) A gives C a ring size n, a threshold t ∈ [1, n], an identity set L = {IDi |∈

[1, n]} and a message m ∈ M. C picks randomly an index set Π ∈R ℘t([1, n]) such that every
element in Π is not contained in any of the queries to Signature and Key. C computes
σ ← ID-TRS.Sign(param, n, t, L,m, {si|i ∈ Π}).

– (Probing Phase II.) As in Probing Phase I, A makes queries to the oracles. Suppose A makes
a total of v′ queries to Key in this phase. The restriction is that v′ < n− t− v. If any of the
queries to Signature or Key contains an identity d such that d ∈ Π, C halts.

– A outputs an index π̂.

An ID-LTRS scheme is signer indistinguishable against adaptive chosen-message-and-identity at-
tacks (or IND-IDLTR-CMIA secure) if for all sufficiently large λ and any PPT adversary, the
probability that π̂ ∈ Π is negligibly greater than t

n−(v+v′) .

Linkability for ID-LTRS schemes is compulsory, that is, it should be infeasible for a signer to
generate two signatures such that they are determined to be unlinked using ID-LTRS.Link. The
following definition/game essentially captures a scenario that an adversary tries to generate two
ID-LTRS signatures, say an ID-based (t1, n1)-threshold linkable ring signature and an ID-based
(t2, n2)-threshold linkable ring signature, using strictly fewer than t1 + t2 user secret keys, so that
these two signatures are determined to be unlinked using ID-LTRS.Link. If the ID-LTRS scheme
is unforgeable (as defined above), then these signatures can only be generated if at least t1 and t2
user secret keys are known, respectively. If strictly fewer than t1 + t2 user secret keys are known,
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then there must be at least one user which is in common to both of the signatures. Therefore, this
model can effectively capture the definition of linkability for ID-LTRS schemes.

Definition 6 (Linkability).

– (Initialization Phase.) C runs (param, s)← ID-LTRS.Setup(1λ, k) and sends param to A.
– (Probing Phase.) A makes queries to any of the oracles.
– A outputs two ring sizes n1, n2, an event-ID e ∈ E, two thresholds t1 ∈ [1, n1] and t2 ∈ [1, n2],

two identity sets Y1 = {IDi | i ∈ [1, n1]} and Y2 = {IDi | i ∈ [1, n2]}, two messages m1,m2 ∈
M, an ID-based (t1, n1)-linkable threshold ring signature σ1 and an ID-based (t2, n2)-linkable
threshold ring signature σ2. The restrictions are: (1) (m1,Y1) and (m2,Y2) have never been
queried to Signature; (2) strictly fewer than t1 + t2 secret keys of Y1 ∪Y2 have been obtained
from Key.

An ID-LTRS scheme is linkable (or IDLTR-LINK secure) if for all sufficiently large λ and any
PPT adversary, it is negligible to have all the following conditions hold.

– valid← ID-LTRS.Verify(param, e, nj , tj ,Yj ,mj , σj), for j = 1, 2.
– unlinked← ID-LTRS.Link(param, e, n1, n2, t1, t2,Y1,Y2,m1,m2, σ1, σ2)

Non-slanderability ensures that no signer can generate a signature which is determined to be
linked by ID-LTRS.Link with another signature which is not generated by the signer. In other
words, it prevents adversaries from framing honest users. Also note that we require that even the
PKG cannot frame an honest user. This is modeled by equipping the adversary with the master
secret key.

Definition 7 (Non-slanderability).

– (Initialization Phase.) C runs (param, s)← ID-LTRS.Setup(1λ, k) and sends (param, s) to A.
– (Probing Phase I.) A makes queries to any of the oracles.
– (Challenge Phase.) A gives C a ring size n, an event-ID e ∈ E, a threshold t ∈ [1, n], an identity

set Y = {IDi | i ∈ [1, n]}, a t-element set of insider identities V ⊆ Y, and a message m ∈ M.
C returns σ ← ID-LTRS.Sign(param, n, t,Y,m, {si | i ∈ V})

– (Probing Phase II.) Same as Probing Phase I.
– (End Game Phase.) A outputs a ring size n′, a threshold t′, an identity set Y ′, a message m′

and a signature σ′.

An ID-LTRS scheme is non-slanderable (or IDLTR-NON-SLAND secure) if for all sufficiently
large λ and any PPT adversary, it is negligible to have all the following conditions hold.

– valid← ID-LTRS.Verify(param, e, n′, t′,Y ′,m′, σ′)
– linked← ID-LTRS.Link(param, e, n, n′, t, t′,Y,Y ′,m,m′, σ, σ′)

The restrictions of the game above are: (1) σ′ is not returned by oracle Signature; (2) none of
the user secret keys corresponding to elements in V has been returned by oracle Key.

4 Our ID-TRS Scheme

We first give an overview of our construction. For an identity ID, the corresponding secret key
is (a, x), with x > 1, such that ax ≡ Hid(ID) (mod N), where Hid : {0, 1}∗ → QR(N) is some
hash function. The modulus N is a product of two equal-length safe primes with factorization only
known to the PKG.

A user proves the knowledge of his secret key by running the Σ-protocol given by:

PK{(a, x) : y ≡ ax ∧ x ∈ Γ}

for y = Hid(ID) and some suitable range Γ . An ID-based signature scheme is readily available after
carrying out the Fiat-Shamir transformation on the Σ-protocol:

SPK1{(a, x) : y ≡ ax ∧ x ∈ Γ}(m). (1)
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Now, to extend the IBS scheme construction above into a threshold ring setting, we implement the
following signature of knowledge (SPK):

SPK2

(αi, χi)ni=1 :
∨

J∈℘t([1,n])

∧
i∈J

yi ≡ αχii ∧ χi ∈ Γ

 (m) (2)

with yi = Hid(IDi) for all i ∈ [1, n]. This SPK proves that there exists d identities in {ID1, · · · , IDn}
such that the prover knows the secret keys corresponding to these identities. To implement SPK2,
we incorporate the polynomial interpolation technique [30] into SPK1.

We now describe the details of our ID-based (t, n)-threshold ring signature scheme.

– ID-TRS.Setup. On input a security parameter λ, the algorithm randomly generates a safe prime
product N = pq = (2p′ + 1)(2q′ + 1), where |p′| = |q′| = λ. It then selects two cryptographic
hash functions Hid : {0, 1}∗ → QR(N) and Hsig : {0, 1}∗ → Z2κ . For security analysis, we
consider them to behave as random oracles. It also randomly picks g1, g2, g3 ∈ QR(N) that are
generators of QR(N).
To implement Hid using a conventional string-based hash function, we need to randomly choose
another generator g of QR(N) and define Hid as ID → gh(ID) mod N , where h : {0, 1}∗ →
{0, 1}2λ+θ is a hash function. The parameter θ > 0 defines the quality of the hash output of
Hid. A good construction of Hid should have the hash value distributed uniformly on QR(N).
It can be seen that the construction above can yield a good distribution when θ is large enough.
In practice, we may consider setting θ to 8.
Let κ, γ1, γ2 ∈ N and 1 < ε ∈ R be further security parameters such that γ1−2 > ε(γ2+κ) > 2λ.
Define Γ ′ .= S(2γ1 , 2γ2), and Γ .= S(2γ1 , 2ε(γ2+κ)). The master secret key is set to msk := (p, q).
The list of system parameters is param := (λ, κ, ε,N,Hid, Hsig, g1, g2, g3, Γ

′, Γ ).
To achieve security comparable to the standard 1024-bit RSA signature, λ = 512, κ = 160,
ε = 1.1, γ1 = 1080, γ2 = 800 can be used as the security parameters. For security analysis,
we require that all these security parameters to be sufficiently large. It is also important for
the generators g, g1, g2, g3 are generated independently, that is, their relative discrete loga-
rithm should not be known to anyone. This is to prevent the secret keys of users from being
known from the auxiliary commitments which is defined below and make sure that the proper
implementation of Hid described above.

– ID-TRS.Extract. On input a new user ID IDi, the algorithm computes yi := Hid(IDi), picks
a prime xi ∈R Γ ′, and then solves axii ≡ yi (mod N) for ai using the master secret key msk.
It finally returns the user’s secret key ski := (ai, xi). An entry 〈IDi, yi, ai, xi〉 is recorded. On
input an old user ID, the algorithm retrieve the corresponding entry to maintain consistency.

– ID-TRS.Sign. On input the list of system parameters param, a group size n ∈ N of size
polynomial in λ, a threshold t ∈ [1, n], a set of n IDs Y = {ID1, · · · , IDn}, a list of t secret keys
X = {skπ1 , · · · , skπt} such that the corresponding public key IDπi of each skπi = (aπi , xπi)
is contained in Y, a message m ∈ {0, 1}∗, the algorithm first sets Π := {π1, · · · , πt} ⊆ [1, n],
computes yi := Hid(IDi) for all i ∈ [1, n] and then does the following:
1. (Auxiliary commitment.) For all i ∈ Π, pick ui ∈R ±{0, 1}2λ and compute wi := uixi.

Compute in modulo N :

Ai,1 := gui1 , Ai,2 := aig
ui
2 , Ai,3 := gxi1 g

ui
3 .

For all i ∈ [1, n]\Π, pick Ai,1, Ai,2, Ai,3 ∈R QR(N).
2. (Commitment.) For all i ∈ Π, pick ri,x ∈R ±{0, 1}ε(γ2+κ), ri,u ∈R ±{0, 1}ε(2λ+κ), ri,w ∈R
±{0, 1}ε(γ1+2λ+κ+1). Compute in modulo N :

Ti,1 := g
ri,u
1 , Ti,2 := g

ri,x
1 g

ri,u
3 , Ti,3 := A

ri,x
i,1 g

−ri,w
1 , Ti,4 := A

ri,x
i,2 g

−ri,w
2 .

For all i ∈ [1, n]\Π, pick ci ∈R Z2κ , si,u ∈R ±{0, 1}ε(2λ+κ), si,x ∈R ±{0, 1}ε(γ2+κ), si,w ∈R
±{0, 1}ε(γ1+2λ+κ+1). Compute in modulo N :

Ti,1 := g
si,u
1 Acii,1, Ti,2 := g

si,x−ci2γ1
1 g

si,u
3 Acii,3,

Ti,3 := A
si,x−ci2γ1
i,1 g

−si,w
1 , Ti,4 := A

si,x−ci2γ1
i,2 g

−si,w
2 ycii .
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3. (Challenge.) Compute

c0 := Hsig(param, n, d, (yi, Ai,1, Ai,2, Ai,3)ni=1, (Ti,1, · · · , Ti,4)ni=1,m).

4. (Response.) Generate a polynomial f over GF (2κ) of degree at most (n − t) such that
c0 = f(0) and ci = f(i) for all i ∈ [1, n]\Π. For all i ∈ Π, compute ci := f(i), and compute
in Z:

si,u := ri,u − ciui, si,x := ri,x − ci(xi − 2γ1), si,w := ri,w − ciwi.

5. (Signature.) Set σ′ := (f, (si,u, si,x, si,w)ni=1).
6. (Output.) Return the signature as: σ := ((Ai,1, Ai,2, Ai,3)ni=1, σ

′).
Remark : step 2 to 4 together contribute to the signing algorithm of:

SPK3


ui,
xi,
wi

n

i=1

:
∨

J∈℘t([1,n])

∧
i∈J

Ai,1 ≡ gui1 ∧Ai,3 ≡ g
xi
1 g

ui
3 ∧

Axii,1 ≡ g
wi
1 ∧A

xi
i,2 ≡ g

wi
2 yi∧

xi ∈ Γ

 (m), (3)

which is an instantiation of SPK2. The signature of SPK3 is σ′ in step 5.
– ID-TRS.Verify. On input param, a group size n of length polynomial in λ, a threshold t ∈ [1, n],

a set {IDi ∈ {0, 1}∗|i ∈ [1, n]} of n user identities, a message m ∈ M, a signature σ ∈ Ψ , the
algorithm computes yi := Hid(IDi) for all i ∈ [1, n] and then does the following.
1. Check if f is a polynomial over GF (2κ) of degree at most (n− t).
2. For all i ∈ [1, n], compute ci := f(i) and compute in modulo N :

T ′i,1 := g
si,u
1 Acii,1, T ′i,2 := g

si,x−ci2γ1
1 g

si,u
3 Acii,3,

T ′i,3 := A
si,x−ci2γ1
i,1 g

−si,w
1 , T ′i,4 := A

si,x−ci2γ1
i,2 g

−si,w
2 ycii .

3. Check if the following statements hold: si,u
?
∈ {0, 1}ε(2λ+κ)+1, si,x

?
∈ {0, 1}ε(γ2+κ)+1, si,w

?
∈ {0, 1}ε(γ1+2λ+κ+1)+1, for all i ∈ [1, n], and

f(0) ?= Hsig(param, n, t, (yi, Ai,1, Ai,2, Ai,3)ni=1, (T
′
i,1, · · · , T ′i,4)ni=1,m).

4. Accept if all checks pass and reject otherwise.
Remark : The above verification actually verifies SPK3.

The proof for correctness is straightforward. We show its security in Appendix C.

5 ID-Based Linkable Threshold Ring Signature

In this section, we propose the first ID-based linkable threshold ring signature (ID-LTRS) and
present its security analysis.

5.1 Our Proposed Construction

The key idea is to include a tag to the original ID-TRS signature for the purpose of linking. Such a
tag is a one-way and unique image of the signer’s secret signing key. To prevent PKG from learning
the signer identity from the tag, we modify the extract protocol so that the secret signing key is
co-generated by signer and PKG. The signature, besides proving the knowledge of a secret signing
key, now also proves that the tag is formed correctly. To test whether two signatures are linked,
one simply checks if the two signatures contain the same tag. Below is our construction.

– ID-LTRS.Setup. Same as ID-TRS.Setup, except it additionally picks ei ∈R G(QR(N)) for all
i ∈ [1, k] and sets E := {ei|i ∈ [1, k]}. It also picks one more generator h ∈R G(QR(N)). Define
λ1, λ2 such that γ2 > λ1 + 2, λ1 > ε(λ2 + κ) and λ2 > 2λ. Define Λ̃′ =]0, 2λ2 [, Λ′ = S(2λ1 , 2λ2)
and Λ = S(2λ1 , 2ε(λ2+κ))
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– ID-LTRS.Extract Protocol. User i with ID IDi engage with PKG in the following protocol.

1. User randomly generates d̃i ∈R Λ̃′, a random r̃ ∈R ±{0, 1}2λ and sends C1 = gd̃i1 g
r̃
2,

together with knowledge of representation of C1 with respect to g1 and g2 to PKG. It also
sends IDi together.

2. PKG checks that the proof is valid and randomly selects α, β ∈R Λ̃′ and sends α, β to user.
3. User computes di = 2λ1 +(αd̃i+β mod 2λ2) and sends C2 = hdi together with the proof of

validity to PKG. This can be done by SPK{(u, v, w) : Cα1 g
β
1 = gu1 g

2λ2v
1 gw2 ∧C2 = hu ∧ u ∈

Λ′}(m)
4. PKG checks if the proof is valid, and picks a prime xi ∈R Γ ′, and then solves axii ≡ yiC2

(mod N) for ai using the master secret key msk, where yi = H(IDi). Return (ai, xi) to user
and record the entry 〈IDi, yi, ai, xi〉.

5. User checks if axii = yih
di (mod N)

We remark that this structure is used by the ACJT group signature [2].
– ID-LTRS.Sign. For an event with event-ID e ∈ E , compute τi := edi mod N for all i ∈ Π and
τi := eti mod N with ti ∈R Λ′ for all i ∈ [1, n]\Π. The algorithm is subsequently modified
from ID-TRS.Sign to also prove that the τi’s are correctly formed. Specifically, the algorithm
now implements:

SPK4

(ai, xi, di)ni=1 :
∨

J∈℘t([1,n])

∧
i∈J

yih
di ≡ axii ∧ τi ≡ e

di ∧ di ∈ Λ, xi ∈ Γ

 (m) (4)

which is instantiated as:

SPK5

(ui, xi, wi)ni=1 :
∨

J∈℘t([1,n])

∧
i∈J

Ai,1 ≡ gui1 ∧ Ai,3 ≡ gxi1 g
ui
3 ∧

Axii,1 ≡ g
wi
1 ∧ Axii,2 ≡ g

wi
2 yih

di ∧
τi ≡ edi ∧ xi ∈ Γ ∧di ∈ Λ

 (m). (5)

The actual steps implementing the SPK5 above follow closely those implementing SPK3 in
ID-TRS.Sign and are thus not verbosely enumerated . Denote by σ5 the signature output of
SPK5. Note that it includes τ1, · · · , τn.
In addition, generate a signature σ6 for the following SPK using the knowledge of xi’s for
i ∈ Π and ti’s for i ∈ [1, n]\Π:

SPK6

{
(αi)ni=1 :

n∧
i=1

τi ≡ eαi
}

(m). (6)

The detailed implementation of the above SPK is given in Appendix B.
Finally the signature is output as σ := (σ5, σ6).

– ID-LTRS.Verify. Given a signature σ = (σ5, σ6), verify the validity of σ5 with respect to SPK5

and that of σ6 with respect to SPK6. Again we omit the verification algorithm for SPK5 as
it can be adapted in a straightforward manner from ID-TRS.Verify. Verification for SPK6 is
given in Appendix B.

– ID-LTRS.Link. On input the list of system parameters param, an event-ID e ∈ E , two group
sizes n1, n2 ∈ N of length polynomial in the security parameter λ, two thresholds t1 ∈ [1, n1]
and t2 ∈ [1, n2], two identity sets Yj = {ID(j)

i ∈ {0, 1}∗|i ∈ [1, nj ]} for j = 1, 2, two messages
m1,m2 ∈M, and two signatures σ1, σ2 ∈ Ψ such that valid← Verify(param, e, nj , tj , Yj , mj ,
σj) for j = 1, 2, the algorithm parses σ1 for the tags (τ (1)

1 , · · · , τ (1)
n1 ) and σ2 for the tags (τ (2)

1 ,
· · · , τ (2)

n2 ). If there exists a tag from the first set and a tag from the second set such that the
two tags are equal in value, the algorithm outputs linked. Otherwise it returns unlinked.

Correctness of our scheme is straightforward and we show its security in Appendix C.1.
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6 Identity Escrow

As mentioned earlier, the anonymity provided by ring signatures can be undesirably strong in some
situations. Authorities prefer providing only revocable anonymity to their users. Their ability of
revocation serves as a mechanism that prevents them from being suffered from the presence of
misbehaving users. Introducing a trusted authority who can reveal the true identity of the user
under certain circumstances is formally known as identity escrow [43].

To add identity escrow to ring signature schemes, one could variably encrypt any information
sufficient for identifying the signer, and then include in the signature the resulting ciphertext plus
a proof that it is correctly formed. In fact, verifiable encryption [15, 19] has been frequently used
(though sometimes implicitly) to achieve revocable anonymity. For instance, the generic construc-
tions of group signatures [9, 12]. As a concrete example, in [2], part of the user’s secret key 9 is
ElGamal encrypted under the public key of an authority. The unforgeability of the signature scheme
implies that valid signatures are actually proofs of the fact that encryption was done according to
specification.

Our Construction. We use the same technique as in [2] to add identity escrow to the two
schemes proposed above. The resulting schemes are virtually the same as their respective original
schemes without identity escrow, except that in Setup, g2 is not generated randomly. Instead it is
generated in a way such that the revocation manager knows the discrete logarithm of g2 in base g1,
i.e. he knows an integer s such that g2 ≡ gs1 (mod N). Assume the revocation manager is trusted
not to abuse his knowledge of s in the sense that he does not collude with any adversary and only
uses s when trying to revoke the anonymity of a signature with eligible reasons, e.g. under court
orders. Then the two schemes with identity escrow still enjoy all the security notions we proved
for original schemes.

To see how the anonymity can be revoked, the revocation manager can compute from a signature
a part of the secret key (ai, xi), namely ai, of all participating users by computing Ai,2/Asi,1 mod N
for all i ∈ [1, n]. The unforgeability of the signature scheme forces at least d pairs of Ai,1 and Ai,2
to be formed correctly. These pairs are exactly those belonging to the participating users. The
remaining ai could just be some random numbers. All n ai’s are passed to the key issuing manager,
whom can then look up in his database the identity of the user possessing ai as a part of his secret
key, for each i ∈ [1, n]. In this way, the d actual signers can be identified.

The revocation manager cannot frame a user if he is required to prove (in zero-knowledge of s)
the statement g2 ≡ gs1 ∧ Ai,2 ≡ aiA

s
i,1. The key issuing manager cannot frame a user as well if he

is required to prove (in zero-knowledge of xi) the statement axii ≡ yi, where yi = Hid(IDi).

7 Performance and Conclusion

The computation complexity and the signature size of our construction are both linear to the ring
size. This is the major tradeoff of our schemes as they achieve different levels of anonymity. To
improve their efficiency, especially on constructing an efficient ID-based linkable threshold ring
signature scheme, will be our next research work.

In this paper, we proposed the first ID-based threshold ring signature construction that is not
based on bilinear pairings. We formally proved the security of the construction under well-known
mathematical assumptions in the RO model. Based on the construction, we then proposed the first
ID-based linkable (threshold) ring signature scheme. We argued the security of all the constructions.
Finally we showed how to add identity escrow to the two schemes. All the ID-based threshold ring
signature schemes proposed in this paper form a suite of schemes applicable to many real world
applications with varied anonymity requirements.

9 Also known as the user’s signing certificate in the context of group signatures.
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Memorial

This paper is dedicated to the first author, Patrick P. Tsang, who was a PhD student in the
Computer Science program at Dartmouth College, has passed away on October 27, 2009 as a
victim to cancer. He was 28 years old.
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A Analysis of the Proof of [39]

We point out a flaw in the security proof of [39]. While in the security model, the attacker is allowed
to query secret key of any identity of his choice (private key query), However, in the security proof
of anonymity and unforgeability, no description is given on how this query is handled.

Indeed, this flaw in the security proof leads to the following theoretical error. Recalled that the
secret key of an identity ID is H(ID)a, where H is some collision-resistant hash function and a is
the master secret key of the PKG. This is in fact a very common key structure in identity-based
encryption or signature [13], and is well-known to be secure under the CDH assumption in the
random oracle model.

However, in the standard model where the hash function is only required to be collision-
resistant, it is entirely possible for an attacker to obtain the secret key of identity ID1 by issuing
private key queries on a set of identities {ID2, . . ., IDk} such that H(ID1) =

∏
H(IDi).

Thus, it is very doubtful, to say the least, that [39] can be proven secure in the standard model
when H is only modelled as collision-resistant hash function. The claim that the scheme in [39] is
secure in the standard model is not accurate. One could, however, possibly simulates the ID query
in the random oracle model.

B Implementations of SPK6

SPK6. To sign a signature for SPK6, do the following:

1. (Commitment.) Pick ρi ∈R ±{0, 1}ε(λ2+κ) and compute Ti := gρi mod N for all i ∈ [1, n].
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2. (Challenge.) Compute c := Hsig(param, n, g, (τ1, T1)ni=1, m).
3. (Response.) Compute si := ρi − cxi for all i ∈ I and si := ρi − cti for all i ∈ [1, n]\Π.

The signature for SPK6 is thus σ6 := (c, s1, . . . , sn).
Verification for σ6 = (c, s1, . . . , sn) is done by first computing T ′i := gsiτ ci mod N for all i ∈ [1, n]

and then checking if si
?
∈ {0, 1}ε(λ2+κ)+1 for all i ∈ [1, n], and c ?= Hsig(param, n, g, (τ1, T ′1)ni=1, m).

C Security Proofs

Theorem 1 (Unforgeability). Under the condition that both λ and κ are sufficiently large, the
ID-TRS scheme proposed in Sec. 4 is existential unforgeable against chosen-message-and-identity
attacks (EUF-IDTR-CMIA secure) under the Strong RSA Assumption, in the Random Oracle
Model.

Proof. Suppose the challenger C receives a random instance (Y,N) of the Strong RSA problem,
where N is a product of two equal-length safe primes and Y ∈R QR(N), and is to compute x, e
such that xe = Y mod N . C runs A and acts as A’s challenger in Game Unforgeability. During the
game, C simulates answers to Hsig, Hid and Key queries made by A. These answers are randomly
generated accordingly with consistency maintained and collision avoided. To do so, C keeps track
of all the previous queries and answers. Due to the random oracle assumption, we assume that A
has queried for Hid(ID) before ID is used. In the game, C randomly picks g1, g2, g3 ∈ QR(N) such
that they are generators of QR(N) and chooses γ1, γ2 ∈ N and 1 < ε ∈ R accordingly. C gives A
the list param of system parameters. In the following, we give more details on how the Hid queries
and Signature queries are simulated.

Hid queries: Besides maintaining consistency and avoiding collision, for each Hid query, C
randomly generates a prime x and a number a of suitable range, and returns ax mod N . There is
one exception: in the game, C also randomly chooses one of the Hid queries and sets the answer as
Hid(ID∗) = Y , where ID∗ is the value of the query. Since Y is an random instance of the strong RSA
problem, it does not affect the randomness of simulated Hid. However, a Key query on identity
ID∗ will make C fail.

Signature queries: A chooses a group {IDi}i∈[1,n] of n identities, a threshold value t where
t ∈ [1, n], a set S ∈ ℘t([1, n]) and a message m ∈ {0, 1}∗, and asks for a signature. If ID∗ /∈ S, C is in
possession of all secret keys correspond to identities in S and can simulate a signature accordingly.
Otherwise, C generates the signature by following the steps below. Without loss of generality, we
assume S = [1, t] and IDt = ID∗.

1. (Auxiliary commitment.) For all i ∈ [1, t − 1], pick ui ∈R ±{0, 1}2λ and compute wi := uixi.
Compute in modulo N : Ai,1 := gui1 , Ai,2 := aig

ui
2 , Ai,3 := gxi1 g

ui
3 . For all i ∈ [t, n], randomly

pick Ai,1, Ai,2, Ai,3 ∈R QR(N).
2. (Commitment.) For all i ∈ [1, t − 1], pick ri,x ∈R ±{0, 1}ε(γ2+κ), ri,u ∈R ±{0, 1}ε(2λ+κ),
ri,w ∈R ±{0, 1}ε(γ1+2λ+κ+1). Compute in modulo N :

Ti,1 := g
ri,u
1 , Ti,2 := g

ri,x
1 g

ri,u
3 , Ti,3 := A

ri,x
i,1 g

−ri,w
1 , Ti,4 := A

ri,x
i,2 g

−ri,w
2 .

For all i ∈ [t, n], pick ci ∈R {0, 1}κ, si,x ∈R ±{0, 1}ε(γ2+κ), si,u ∈R ±{0, 1}ε(2λ+κ), si,w ∈R
±{0, 1}ε(γ1+2λ+κ+1). Compute in modulo N :

Ti,1 := g
si,u
1 Acii,1, Ti,2 := g

si,x−ci2γ1
1 g

si,u
3 Acii,3,

Ti,3 := A
si,x−ci2γ1
i,1 g

−si,w
1 , Ti,4 := A

si,x−ci2γ1
i,2 g

−si,w
2 ycii .

3. (Challenge.) Generate a polynomial f over GF (2κ) of degree at most (n−t) such that and ci =
f(i) for all i ∈ [t, n] and set Hsig(param, n, t, (yi, Ai,1, Ai,2, Ai,3)ni=1, (Ti,1, · · · , Ti,4)ni=1,m) =
f(0).
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4. (Response.) For all i ∈ [1, t− 1], compute ci := f(i), and compute in Z:

si,u := ri,u − ciui, si,x := ri,x − ci(xi − 2γ1), si,w := ri,w − ciwi.

5. (Signature and Output.) Set σ := ((Ai,1, Ai,2, Ai,3)ni=1, f, (si,u, si,x, si,w)ni=1).

When A outputs a forged ID-based (t, n)-threshold ring signature for a group Y such that ID∗ ∈ Y,
and A only issues up to t − 1 key queries corresponding the identities in Y \ {ID∗}, the following
will be carried out by C for solving the Strong RSA problem. Otherwise, C fails.

It follows from the forking lemma [52] that if A is a sufficiently efficient forger in the above
interaction, we can construct a Las Vegas machine A′ that outputs two signatures:

σ = ((Ai,1, Ai,2, Ai,3)ni=1, f, (si,u, si,x, si,w)ni=1),
σ′ = ((Ai,1, Ai,2, Ai,3)ni=1, f

′, (s′i,u, s
′
i,x, s

′
i,w)ni=1).

C achieves this result by keeping all the random tapes in two invocations of A the same except c0
returned by Hsig of the forged message.

Next we consider the probability that ID∗ is the chosen target of forgery. Let π be the index
of ID∗ in Y. Since f(0) 6= f ′(0), and the degree of f and f ′ is at most n − t, there are at least t
values k1, k2, · · · , kt such that f(ki) 6= f ′(ki). With probability at least 1/n, ki = π.

Given σ and σ′, C solves the Strong RSA problem as follows. Denote f(π) and f ′(π) by cπ, c′π.
For clarity, we drop the subscript π, thus A1 denotes Aπ,1, su denotes sπ,u, etc. Since A1

cg1
su =

A1
c′g1

s′u , it follows that g1su−s
′
u = A1

c′−c. Let du = gcd(su − s′u, c′ − c), that is, there exists αu,
βu such that αu(su − s′u) + βu(c′ − c) = du. Hence,

g1 = g
αu(su−s′u)+βu(c′−c)

du
1 = (Aαu1 g1

βu)
c′−c
du

Under the strong RSA assumption, c′ − c = du (otherwise the c′−c
du

-th root of g1 is computed).
This implies (su − s′u) = û(c′ − c) such that g1

û = A1. Next consider A3
cg1

sx−c2γ1 g3
su =

A3
c′g1

s′x−c
′2γ1 g3

s′u , it follows that g1sx−s
′
xg3

su−s′u = (A3g1
−2γ1 )

c′−c
. By (su − s′u) = û(c′ − c),

( A3
g12γ1 gû3

)c
′−c = g1

sx−s′x . Under the strong RSA assumption and similar argument as above, we have

sx − s′x = x̃(c′ − c) such that ( A3
g12γ1 gû3

) = g1
x̃. That is, A3 = gû3 g

(x̃+2γ1 )
1 . Denote x̂ = x̃+ 2γ1 . Then

consider A1
(sx−c2γ1 )g1

−sw = A1
(s′x−c

′2γ1 )g1
−s′w , it follows that A1

sx−s′xA1
(c′−c)2γ1 = g1

sw−s′w . By
sx−s′x = x̃(c′−c), (A1

x̂)c
′−c = g1

sw−s′w . Under the strong RSA assumption and similar argument as
above, we have sw−s′w = ŵ(c′−c) such that Ax̂1 = gŵ1 . This implies g1ûx̂ = gŵ1 and ŵ = ûx̂. Finally,
consider A2

(sx−c2γ1 )g2
−swyc = A2

(s′x−c
′2γ1 )g2

−s′wyc
′
, it follows that A2

sx−s′xA2
(c′−c)2γ1 g2

s′w−sw =
yc
′−c. By sx − s′x = x̃(c′ − c) and sw − s′w = ŵ(c′ − c), we have (A2

x̂g2
−ŵ)c

′−c = yc
′−c. It follows

that ( A2
g2û

)x̂ = y.
C returns ( A2

g2û
, x̂) as the solution to the Strong RSA problem.

The success probability of C is computed as follows. For C to succeed, key query on ID∗ should
never be issued (i.e. ID∗ is not corrupted) and the corresponding probability is qHid−qKey

qHid
, where

qHid and qKey are the number of Hid queries and Key queries, respectively. Suppose na identities
in the group Y of the forged signatures are corrupted using key queries. Here 0 ≤ na ≤ t− 1. With
probability n−na

qHid−qKey
, ID∗ is in Y, given that ID∗ is not corrupted. C can compute at least t out of

n secret keys in the group since there are at least t values k1, k2, · · · , kt such that f(ki) 6= f ′(ki).
Suppose nb secret keys corresponding to uncorrupted identities in Y are computed. Here 1 ≤ nb ≤ t.
With probability nb

n−na , the secret key of ID∗ is computed. Combining all the events, the success

probability of C is given by qHid−qKey
qHid

n−na
qHid−qKey

nb
n−na which is at least 1

qHid
. ut

Theorem 2 (Anonymity). Under the condition that both λ and κ are sufficiently large, the
ID-TRS scheme proposed in Sec. 4 is signer indistinguishable against adaptive chosen-message-
and-identity attacks (IND-IDTR-CMIA secure) under the DDH Assumption in the random oracle
model.
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Proof. Suppose the challenger C receives a random instance of the DDH problem in the group
QR(N): (g, gα, gβ , gγ) and is to decide if γ = αβ mod ord(g). C runs A and acts as A’s challenger
in Game Anonymity. C sets g1 = g, g2 = gk and g3 = gβ where k is randomly generated. It chooses
γ1, γ2 ∈ N and 1 < ε ∈ R accordingly, and gives A the list param of system parameters. During the
game, C answers A’s queries similar to that described in the simulation of Game Unforgeability
above. In particular, consistency should be maintained and collision should be avoided. Similarly,
we assume that A has asked for Hid(ID) before ID is used.

Challenge Phase: In the challenge phase of Game Anonymity, A gives C a group size n,
a threshold t, a set {IDi}i∈[1,n] of identities and a message m. C picks randomly Π ∈R ℘t([1, n]).
Without loss of generality, we assume Π = [1, t] and C computes σ as follows.

1. (Auxiliary commitment.) For all i ∈ [1, t − 1], pick ui ∈R ±{0, 1}2λ and compute wi := uixi.
Compute in modulo N : Ai,1 := gui1 , Ai,2 := aig

ui
2 , Ai,3 := gxi1 g

ui
3 . For i = t, set Ai,1 = gα,

Ai,2 = ai(gα)k, Ai,3 = g1
xigγ . For all i ∈ [t+ 1, n], pick Ai,1, Ai,2, Ai,3 ∈R QR(N).

2. (Commitment.) For all i ∈ [t− 1], pick ri,x ∈R ±{0, 1}ε(γ2+κ), ri,u ∈R ±{0, 1}ε(2λ+κ), ri,w ∈R
±{0, 1}ε(γ1+2λ+κ+1). Compute in modulo N :

Ti,1 := g
ri,u
1 , Ti,2 := g

ri,x
1 g

ri,u
3 , Ti,3 := A

ri,x
i,1 g

−ri,w
1 , Ti,4 := A

ri,x
i,2 g

−ri,w
2 .

For all i ∈ [t, n], pick ci ∈R {0, 1}κ, si,x ∈R ±{0, 1}ε(γ2+κ), si,u ∈R ±{0, 1}ε(2λ+κ), si,w ∈R
±{0, 1}ε(γ1+2λ+κ+1). Compute in modulo N :

Ti,1 := g
si,u
1 Acii,1, Ti,2 := g

si,x−ci2γ1
1 g

si,u
3 Acii,3,

Ti,3 := A
si,x−ci2γ1
i,1 g

−si,w
1 , Ti,4 := A

si,x−ci2γ1
i,2 g

−si,w
2 ycii .

3. (Challenge.) Generate a polynomial f over GF (2κ) of degree at most (n−t) such that and ci =
f(i) for all i ∈ [t, n] and set Hsig(param, n, t, (yi, Ai,1, Ai,2, Ai,3)ni=1, (Ti,1, · · · , Ti,4)ni=1,m) =
f(0).

4. (Response.) For all i ∈ [1, t− 1], compute ci := f(i), and compute in Z:

si,u := ri,u − ciui, si,x := ri,x − ci(xi − 2γ1), si,w := ri,w − ciwi.

5. (Signature and Output.) Set σ := ((Ai,1, Ai,2, Ai,3)ni=1, f, (si,u, si,x, si,w)ni=1).

When A outputs an index π̂, C returns that (g, gα, gβ , gγ) is a valid DDH-tuple if π̂ = t. Otherwise,
with half of the chances, C returns that it is a valid DDH-tuple, and with the other half, C returns
that it is not a DDH-tuple.

Now we evaluate the winning probability of C. Suppose the winning probability of A in a real
Game Anonymity is t/n + εA for some non-negligible εA. There are three cases that C will win.
Case 1: A outputs π̂ = t and the challenge is a valid DDH-tuple. Case 2: A outputs π̂ 6= t and C’s
wild guess is correct. Since half of the chances, the challenge is a valid DDH-tuple, the probability
that A outputs π̂ ∈ [1, t] given that the challenge is a valid DDH-tuple is εA. As the value of t
is also randomly chosen, the probability of case 1 is 1/2n + εA/2t. For case 2, there are two sub-
cases. In the first sub-case, the challenge is a valid DDH-tuple. Since C simply makes wild guess in
this sub-case, the probability of winning for C in this sub-case is therefore 1

4 (1 − ( 1
n + εA

t )). The
second sub-case is when the challenge is not a DDH-tuple. From the steps of simulating signature
σ above, we can see that (Ad,1, Ad,2, Ad,3) has no difference from (Ai,1, Ai,2, Ai,3) for i ∈ [t+ 1, n],
i.e. same as those non-signers. Hence the probability of the second sub-case is equal to one minus
the probability that π̂ = t and the challenge is not a DDH-tuple. The probability of π̂ = t given
that the challenge is not a DDH-tuple is ψ = (1 − (t/n + εA))/(n − t + 1). Hence the probability
of winning for C in the second sub-case is 1

4 (1− ψ) = 1
4 −

1−t/n−εA
4(n−t+1) . Combining all cases, we have

the winning probability of C to be at least 1
2 + εA

4t . ut
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C.1 Security Arguments of ID-LTRS

Unforgeability : it can be proved in a similar manner as in the case of ID-TRS. The signature using
a random number as the tag (i.e., using a random number instead of edi) can still be simulated
using standard techniques. Distinguishing a random number from a correctly formed tag require
solving the DDH problem.

Anonymity : a signature for ID-LTRS is different from a signature for ID-TRS as the former
includes tags. The same signer will always produce the same tag. If the signer signs only once,
distinguishing the actual signer solves a DDH instance of (g1,e,g1di , edi). Thus, signers who signed
only once won’t reveal their identity under the DDH assumption.

Linkability : due to the soundness of the SPK, a signer is forced to use a correct tag for yielding
a valid a signature. If an adversary can produce two distinct tag using one secret key, it is able to
compute H(ID) = a1

e1h−d1 = a2
e2h−d2 for some distinct d1, d2. With this, it is easy to set up a

simulator to solve the Strong RSA problem and thus linkability is ensured under the Strong RSA
assumption.

Non-slanderability : in order to slander, an adversary must produce a valid signature with a
same tag of the person-to-be-slandered. Due to the soundness of SPK, the adversary must know
the secret key of that person.

We outline how to simulate the key queries in the proofs of ID-LTRS.
Given a random instance (Y,N) of the strong RSA problem, randomly chooses xk ∈R Γ ′ for

k = [1, qk] \ {j} for some j ∈ [1, qk], where qk is the number of key queries. Also chooses dk ∈R Λ′
for k = [1, qk].

The public key h is set to be Y Πxk . For the ith, i 6= j key query, set H(IDi) = hri for
ri ∈R Λ′. Upon receiving C1 , perform a rewind simulation and obtain d̃i, r̃i. Choose α, β such that
2λ1 + (αd̃i + β mod 2λ2) = di. Compute Ai = Y (di+ri)Πk 6=idi . The secret key is (Ai, xi).

For the jth query, set H(IDj) = A
xj
j /h

di for some Aj = hrj where rj ∈R Λ′. The secret key is
(Aj , xj).

In fact, for fixed IDi, it is possible to simulate the key query and generate different secret keys
using different C1 as follow. H(IDi) is of the form ht where t = ri or rjxj − di. Additional secret
keys on IDi can be generated by unused xk as (Ai = Y (t+ri)Πl 6=kxl , xk).

However, from practical point of view, a PKG should not allow users to obtain different secret
keys for the same IDi.


