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Abstract. Carlet and Charpin classified in [5] the set of cubic (n − 4)-resilient
Boolean functions into four different types with respect to the Walsh spectrum and
the dimension of the linear space. Based on the classification of RM(3, 6)/RM(1, 6),
we completed the classification of the cubic (n−4)-resilient Boolean function by deriv-
ing the corresponding ANF and autocorrelation spectrum for each of the four types.
In the same time, we solved an open problem of [5] by proving that all plateaued cubic
(n − 4)-resilient Boolean functions have dimension of the linear space equal either to
n − 5 or n − 6.

1 Introduction

The properties of quadratic Boolean functions (i.e, the second order Reed-Muller
code RM(2, n)) are well studied, (e.g. the weight distribution [13], the affine equiva-
lence classes [13], the classification of resilient functions [4] and functions satisfying
propagation characteristics [16], etc.) However, it is not trivial to extend these re-
sults for functions of higher degrees and even for cubic functions. It is important to
understand how the properties behave for the different degrees of functions.
In this paper we focus on the study of cubic functions which satisfy the highest order
of resiliency. Resiliency is an important property related to (fast) correlation attacks
in stream ciphers [19, 15], which we define in the next section. In [5], Charpin and
Carlet made the first step in classifying the set of (n − 4)-resilient cubic Boolean
functions by distinguishing four types of functions with respect to their Walsh spec-
trum and linear space. In this paper, we extend their classification by deriving the
ANF and autocorrelation spectrum of each type. Moreover, we solve the open prob-
lem presented in the conclusions of [5]. We prove that the linear space of functions
of type IV (i.e., the plateaued cubic (n− 4)-resilient functions) has dimension either
equal to n− 5 or n− 6. This result implies that any plateaued cubic (n− 4)-resilient



2

Boolean function for n ≥ 7 has a non-trivial linear structure. Our approach is based
on the classification of the equivalence classes of RM(3, 6)/RM(1, 6) [14, 9].

The paper is organized as follows. We present in Sect. 2 some background and
definitions on Boolean functions. In Sect. 3, we extend the classification of [5]. Finally
we conclude in Sect. 4.

2 Background and Definitions

Let F
n
2 be the set of all n-tuples x = (x1, . . . , xn) of elements in the field F2 (Galois

field with two elements), endowed with the natural vector space structure over F2.
For the sake of clarity, we use “⊕,

⊕
” for the addition in characteristic 2 and “+,

∑
”

for the addition in C or in the finite field F2n .

A Boolean function f is a mapping from F
n
2 into F2. Any Boolean function is uniquely

represented by a polynomial in F2[x1, . . . , xn]/(x2
1 −x1, . . . , x

2
n −xn), which is called

the algebraic normal form (ANF):

f(x) =
⊕

(a1,...,an)∈Fn

2

h(a1, . . . , an)xa1

1 . . . xan

n ,

with h a function on F
n
2 defined by h(a) =

⊕
x�a f(x). The algebraic degree of f ,

denoted by deg(f) or shortly d, is defined as the number of variables in the longest
term xa1

1 . . . xan

n in the ANF of f . The study of properties of Boolean functions is
related to the study of the binary Reed-Muller codes. Each codeword of the binary
Reed-Muller code of order r in F2n , denoted by RM(r, n), is the truth table of the
corresponding Boolean function with degree less or equal to r.

A Boolean function f is also uniquely determined by its Walsh transform, which is
a real-valued function over F

n
2 that can be defined for all ω ∈ F

n
2 as

Wf (ω) =
∑

x∈F
n

2

(−1)f(x)⊕x·ω = 2n − 2wt(f ⊕ x · ω) , (1)

Here the dot product or scalar product of the vectors x = (x1, x2, . . . , xn) and ω =
(ω1, ω2, . . . , ωn) is defined as x ·ω = x1ω1⊕x2ω2⊕· · ·⊕xnωn. The weight of a vector
x (resp. function f) is equal to the number of nonzero positions in the vector (resp.
truth table) and is denoted by wt(x) (resp. wt(f)).

Related to the Walsh spectrum, we have the definitions of plateauedness, balanced-
ness, correlation-immunity, and resiliency.

Plateaued Functions [22] A Boolean function f is said to be a plateaued function
if its Walsh transform Wf takes only three values 0 and ±2λ, where λ is a positive
integer, called the amplitude of the plateaued function.
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Balancedness A Boolean function is balanced if its output is equally distributed,
i.e., its weight is equal to 2n−1. This translates to Wf (0) = 0 in the Walsh
spectrum.

Correlation-Immunity [18] A function f is said to be correlation-immune of order
t, denoted by CI(t), if the output of the function is statistically independent of
the combination of any t of its inputs. For the Walsh spectrum, it holds that
Wf (ω) = 0, for 1 ≤ wt(ω) ≤ t [10].

Resiliency [18] The combination of correlation-immunity of order t and balanced-
ness results in the property of resiliency of order t, denoted by R(t). Or also,
Wf (ω) = 0, for 0 ≤ wt(ω) ≤ t [10].

We now present several important relations that will be used throughout the paper.

Let f be a Boolean function on F
n
2 and ω be a vector in F

n
2 , such that wt(ω) = r.

By fω we denote the Boolean function on F
n−r
2 , defined as follows. Let i1, . . . , ir be

such that ωi1 = · · · = ωir = 1 and ωj = 0 for j /∈ {i1, . . . , ir}. Then fω is formed
from f by setting the variable xj to 0 if and only if j ∈ {i1, . . . , ir}. This function
is also called the subfunction of f with respect to the vector w or the restriction
defined by w.

Theorem 1. [6] Let f(x1, . . . , xn) be a Boolean function and ω ∈ F
n
2 . Then

∑

θ≤ω

Wf (θ) = 2n − 2wt(ω)+1wt(fω). (2)

This theorem leads to the divisibility result on the Walsh coefficients Wf (w) = 0

mod 2t+2+⌈n−t−2

d
⌉ of t-resilient functions of degree d.

Finally, also the autocorrelation function (or spectrum) of f is an important tool in
the study of Boolean functions, which is a real-valued function over F

n
2 that can be

defined for all ω ∈ F
n
2 as

rf (ω) =
∑

x∈F
n

2

(−1)f(x)⊕f(x⊕ω) .

However, note that the autocorrelation spectrum does not uniquely determine the
function in contrast to the previous transformations. Related to the autocorrelation
spectrum are the definitions of derivative and linear structure:

Derivative The function Dωf(x) = f(x) ⊕ f(x ⊕ ω) is called the derivative of f
with respect to the vector ω.

Linear Structure [8, 12] If the derivative Dωf is a constant function, the vector
ω is called a linear structure of f . The set of linear structures forms a subspace
which is called linear space of the function and is denoted by LSf .
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A particular type of functions that satisfy |Wf (w)| = 2n/2 for all w ∈ F
n
2 are called

bent functions [7, 17]. It is well known that Dwf is balanced for all w ∈ F
n
2 \ {0}.

Two Boolean functions f1 and f2 on F
n
2 are called equivalent with respect to the

general affine group AGL(2, n) if and only if

f1(x) = f2(xA ⊕ a) ⊕ xB
t
⊕ b, ∀x ∈ F

n
2 , (3)

where A is a nonsingular binary n × n-matrix, b is a binary constant, and a,B are
n-dimensional binary vectors. If B, b are zero, the functions f1 and f2 are said to
be affine equivalent. We shall also say that f2 is transformable into f1. If in the
above equation also a = 0, then f1 and f2 are said to be linearly equivalent. Note
also that the action of AGL(2, n) on RM(r,m)/RM(r − 1,m) is reduced to the
action of the general linear group GL(2, n), since translations leave every element of
RM(r,m)/RM(r − 1,m) fixed.

3 Classification of (n − 4)-resilient cubic Boolean Functions

Carlet and Charpin have proved in [5] that the set of (n− 4)-resilient cubic Boolean
functions can be divided into four different types based on the Walsh spectrum and
the dimension of the linear space.

The set of tuples in which the first element denotes the absolute Walsh value and
the second element the number of times it occurs form the absolute Walsh spectrum
of f . The four types of (n − 4)-resilient cubic Boolean functions on F

n
2 have the

following absolute Walsh spectra and linear dimensions:

I. Walsh spectrum: {(2n−2, 7), (3 · 2n−2, 1), (0, 2n − 8)}, dim(LSf ) = n − 3.

II. Walsh spectrum: {(2n−2, 8), (2n−1, 2), (0, 2n − 10)}, dim(LSf ) = n − 4.

III. Walsh spectrum: {(2n−2, 12), (2n−1, 1), (0, 2n − 13)}, dim(LSf ) = n − 5.

IV. Walsh spectrum: {(2n−2, 16), (0, 2n − 16)}, n − 9 ≤ dim(LSf ) ≤ n − 5.

Notice that functions of type IV are plateaued. We now complete this classification
by computing the ANF and the autocorrelation spectrum of each type. Moreover,
we prove that dim(LSf ) = n − 5 or n − 6 for functions of type IV.

Further on in our investigations we will use the following Lemma, which slightly
strengthens Lemma 3 in [5].

Lemma 1. Any cubic function whose Walsh values are divisible by 2n−2 has auto-
correlation spectrum with values also divisible by 2n−2.

The proof in [5] exploits only the divisibility property of the Walsh spectrum. That
is why it is also valid for functions, with all Walsh values divisible by 2n−2.
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3.1 The Dimension of Linear Space of Functions of Type IV

The proofs of the next theorems make use of the representatives of the affine equiv-
alence classes of RM(3, n)/RM(2, n), n = 6, 7 and 8 (see Appendix A). Denote the
class with representative fi⊕RM(2, n) by Ci for 1 ≤ i ≤ 6, 12, and 32 in dimensions
6, 7, and 8 respectively.

Theorem 2. Cubic functions of 7 variables with Walsh values divisible by 32 can
only belong to the affine equivalence classes C2, C3 or C5 of RM(3, 7)/RM(2, 7).

Proof. In [2], we have already proved that functions linearly equivalent to functions
with cubic part among f4, f6, f8, f10, f11, and f12 have a Walsh value that is
not divisible by 16 as well as functions linearly equivalent to a function from f9 ⊕
RM(2, 7) have a Walsh value non-divisible by 32.
To show that also class C7 does not contain such functions, we use Lemma 1.
Let g(x) = f7(x) ⊕ q(x), where q(x) is quadratic. The derivative of g(x) with
respect to the vector ω = (0, 0, 0, 0, 0, 0, 1) is Dωf(x) = x1x2 ⊕ x3x4 ⊕ x5x6 ⊕
l(x1, x2, x3, x4, x5, x6) where l is an affine function of the variables x1, . . . , x6. This
derivative represents a bent function of 6 variables and thus |rf (ω)| = 16. Since
the autocorrelation spectrum of the set of first order derivatives is affine invariant
of RM(r, n)/RM(r − 1, n) [3, Proposition 2], this holds for all functions linearly
equivalent to functions from f7 ⊕ RM(2, 7). If C7 contains a function, satisfying
the divisibility condition according to Lemma 1, all the values of its autocorrelation
spectrum are divisible by 32, which is a contradiction. ⊓⊔

In order to show that Theorem 2 can be generalized for dimensions n ≥ 7, we need
the following lemma.

Lemma 2. Let f be a cubic form of n variables, n ≥ 7 which does not belong to
the affine equivalence classes C2, C3, C5 in RM(3, n)/RM(2, n). Then at least one
of the following properties is satisfied:

1. f is linearly equivalent to a function having a subfunction with respect to a vector
of weight n − 6 which belongs to C4 or C6 in RM(3, 6)/RM(2, 6);

2. f is linearly equivalent to a function having a subfunction with respect to a vector
of weight n − 7 which belongs to C7 or C9 in RM(3, 7)/RM(2, 7).

Proof. The proof goes by induction with respect to n. For n = 7, it is easy to
check that the functions f4, f6, f8, f10, f11, and f12 have a subfunction with respect
to x7 = 0 which is either f4 or f6. We will use Proposition 6 of [3], which shows that
the function f is linearly equivalent to a function of the form fi ⊕ xnq, where fi ⊕
RM(2, n−1) is a representative of the class in RM(3, n−1)/RM(2, n−1) and q a non-
zero quadratic function of the variables x1, . . . , xn−1. If i /∈ {1, 2, 3, 5} substituting
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xn = 0 and using the inductive assumption we conclude that the theorem holds. So,
we only have to show that the theorem also holds when fi is one of the functions
f1, f2, f3, f5. If f = f1 ⊕ xnq = xnq and if f depends in a nonlinear way on all n
variables, by Dickson’s theorem f is linearly equivalent to a function of the form
xn(x1x2 ⊕ x3x4 ⊕ · · · ⊕ xn−2xn−1) (for n odd). Therefore there exists a subfunction
with respect to a vector of weight n − 7, which is linearly equivalent to f7.

Let f be linearly equivalent to fi ⊕ xnq for i = {2, 3, 5}. Since f depends in a
nonlinear way on n variables, f should contain at least the term xnxn−1xj where
j ∈ {1, . . . , n − 2}. Since, none of the variables xi for i ∈ {1, . . . , 6} is contained in
each term of f5, we can obtain a subfunction with respect to the restriction xk = 0
for k /∈ {j, n, n − 1, a, b, c} where xaxbxc is a term in f5 which does not contain the
variable xj, i.e., the subfunction xaxbxc ⊕ xnxn−1xj ⊕ xnq′(xj , xn, xn−1, xa, xb, xc),
with q′ a quadratic function in its arguments. This function is linearly equivalent to
f4.

For f3, the same reasoning as above can be applied, except if xj = x2. Let xj = x2. If
f depends in a nonlinear way on n variables with n ≥ 8, then also the term xnxn−2xl

with l ∈ {1, . . . , n−1}\{2} is contained in the ANF since f3 depends in a nonlinear
way on 5 variables. Taking the restriction with respect to xn−1, we are in the same
situation as for f5.

Finally, for f2, in order to obtain a function that depends in a nonlinear way on
n variables with n ≥ 8, there exists a term xnxlxj in the ANF of f with l ∈
{4, 5, . . . , n− 1} such that the variable xj is not equal to {x1, x2, x3}. Therefore, we
can apply the same approach as explained for the function f5. ⊓⊔

Theorem 3. Any cubic function of n variables with Walsh values divisible by 2n−2

belongs to one of the affine equivalence classes C2, C3 or C5 in RM(3, n)/RM(2, n)
for n ≥ 7.

Proof. Taking into account Lemma 2 we have to consider the following two cases:

1. When there exists a vector w of weight n−6 for which the restriction fw belongs
to the classes C4 or C6 in RM(3, 6)/RM(2, 6);

2. When there exists a vector w of weight n−7 for which the restriction fw belongs
to the classes C7 or C9 in RM(3, 7)/RM(2, 7).

In the first case we can even prove that there are no cubic functions with Walsh
values divisible by 2n−3. Suppose that f is such a function and let f̃ be the image of
f under the invertible linear transformation, described in Lemma 2. Now applying
equation (2) we obtain

∑

v�w

W ef
(v) = 2n − 2n−5 · wt(f̃w).
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The Walsh transform values of f̃ are divisible by 2n−3 and thus, 4 is a divisor of
wt(f̃w). But from [11, p. 113] we see that there is no weight divisible by 4 in the
cosets f4 ⊕ RM(2, 6) and f6 ⊕ RM(2, 6). Since the weight of a function is linear
invariant we reach a contradiction.
Proceeding in a similar way in the second case we obtain that all Walsh values of f̃w

(which belongs to the classes C7 or C9) are divisible by 32. This is a contradiction
with Theorem 2 and the proof is completed. ⊓⊔

Corollary 1. Any (n−4)-resilient cubic function belongs to one of the affine equiv-
alence classes C2, C3 or C5 of RM(3, n)/RM(2, n) for n ≥ 7.

¿From now on we will consider only functions of type IV. Recall that these functions
are plateaued.

Theorem 4. Each of the classes C2, C3 and C5 contains functions of type IV.

Proof. The functions f2 ⊕ x2x4 ⊕ x1x5, f3 ⊕ x2x6 ⊕ x1x3, f5 ⊕ x1x2 ⊕ x1x3 ⊕ x2x5

on F
n
2 are functions of type IV in the classes C2, C3 and C5, respectively.

We will now prove the linear dimension of functions of the class C2. Let us first
investigate the functions which belong to the class C2.

Lemma 3. Any function from x1x2x3 ⊕ RM(2, n)/RM(1, n) for n ≥ 6 is trans-
formable into direct sum f1(x) ⊕ f2(y), where the function f1(x) belongs to the set
{x1x2x3, x1x2x3 ⊕ x1x4, x1x2x3 ⊕ x1x4 ⊕ x2x5, x1x2x3 ⊕ x1x4 ⊕ x2x5 ⊕ x3x6} and
f2(y) belongs to the set {0, y1y2, . . . , y1y2 ⊕ . . . ⊕ yk−1yk}.

Proof. Any function g, which belongs to the coset f2⊕RM(2, n) can be decomposed
as g3 ⊕ gc ⊕ gn−3, where the function g3 contains the term x1x2x3 together with a
quadratic function g′3 of the variables {x1, x2, x3}, the function gn−3 is a quadratic
function of the variables {x4, . . . , xn} with rank 2k for k ≥ 0, and the function gc

contains cross terms from both sets of variables.
First, the function g′3 can be absorbed in the cubic term x1x2x3. Then, there exists
a linear transformation that maps gn−3 onto 0, xnxn−1, . . . , xnxn−1⊕· · ·⊕x5x4 and
maps the variables x1, x2, x3 onto itself. Suppose gn−3 is equal to xnxn−1⊕· · ·⊕xlxl−1

for 5 ≤ l ≤ n. The terms in gc that contain the variables xl−1, . . . , xn can be
absorbed in gn−3. Consequently, gc is of the form x1l1⊕x2l2⊕x3l3 where l1, l2, l3 are
linear functions in the variables x4, . . . , xl−2. Thus, after applying a suitable linear
transformation, the functions l1, l2, l3 can be mapped onto

l1 = 0 l2 = 0 l3 = 0

l1 = x4 l2 = 0 l3 = 0 if l − 1 > 4;

l1 = x4 l2 = x5 l3 = 0 if l − 1 > 5;

l1 = x4 l2 = x5 l3 = x6 if l − 1 > 6.
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This will lead to the form as stated in the theorem. ⊓⊔

Theorem 5. The dimension of the linear space of the functions on F
n
2 from type

IV in class C2 is equal to n − 5.

Proof. From Lemma 3, we derive the form of the functions from the coset x1x2x3 ⊕
RM(2, n) for n ≥ 6. The Walsh spectrum of f1(x) ⊕ f2(y) is equal to the product
of the Walsh spectra of f1(x) and f2(y). Consequently, the only plateaued functions
with amplitude 2n−2 which belongs to C2 are the functions equivalent to the function
x1x2x3⊕x1x4⊕x2x5. Therefore, the dimension of the linear space of these functions
is equal to n − 5. ⊓⊔

¿From now on we will denote by ei the binary vector of weight 1, which i−th co-
ordinate is “1”. In order to derive the dimension of the linear space for plateaued
functions of classes C3 and C5, we make use of the following three basic lemmas.

Lemma 4. Let g be a function of type IV on F
n
2 and Wg(0) = 2n−2. Then the weight

of g is equal to 2n−1 − 2n−3 and there are three possible weights for the subfunctions
of g:

– if Wg(ei) = 2n−2, then wt(g(x|xi = 0)) = 2n−3;
– if Wg(ei) = −2n−2, then wt(g(x|xi = 0)) = 2n−2;
– if Wg(ei) = 0, then wt(g(x|xi = 0)) = 3 · 2n−4.

Proof. The proof follows from equation (2). ⊓⊔

Lemma 5. (Kasami et al., van Tilborg [20, 21]) Let us denote by P3,1 the functions
which are transformable to a function of degree 3 with ANF in which each term
involves the same variable. If f ∈ RM(3, n) and wt(f) = 2n−2 then either f ∈ P3,1

or f is transformable into one of the following forms:

1. x2(x1x3 ⊕ x4x5) ⊕ x1x3;
2. x2(x1x3 ⊕ x4x5) ⊕ x3x4x6;
3. x2(x1x3 ⊕ x4x5) ⊕ x4x6x7.

Lemma 6. [21, Th.1.3.2] If f(x1, . . . , xm) = x1x2⊕· · ·⊕x2k−1x2k⊕(a0⊕
∑m

i=1 aixi)(b0⊕∑m
i=1 bixi), (2k ≤ m), then f is transformable into one of the following forms:

x1x2 ⊕ · · · ⊕ x2k−3x2k−2,

x1x2 ⊕ · · · ⊕ x2k−3x2k−2 ⊕ 1,

x1x2 ⊕ · · · ⊕ x2k−3x2k−2 ⊕ x2k−1,

x1x2 ⊕ · · · ⊕ x2k−3x2k−2 ⊕ x2k−1x2k,

x1x2 ⊕ · · · ⊕ x2k−1x2k ⊕ 1,

x1x2 ⊕ · · · ⊕ x2k−1x2k ⊕ x2k+1,

x1x2 ⊕ · · · ⊕ x2k−1x2k ⊕ x2k+1x2k+2,

wt(f) = 2m−1 − 2m−k

wt(f) = 2m−1 + 2m−k

wt(f) = 2m−1

wt(f) = 2m−1 − 2m−k−1

wt(f) = 2m−1 + 2m−k−1

wt(f) = 2m−1

wt(f) = 2m−1 − 2m−k−2
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Theorem 6. The dimension of the linear space of the functions on F
n
2 from type

IV in class C3 is either equal to n − 5 or n − 6.

Proof. Let g be a function of type IV, which belongs to the coset f3 ⊕ RM(2, n),
i.e. g(x) = x1x2x3 ⊕ x2x4x5 ⊕ q(x), where q(x) is a quadratic function. We can
assume without loss of generality that Wg(0) = 2n−2. It is well known that if all the
Walsh values of a given function are divisible by 2l then all the Walsh values of its
subfunctions with respect to a vector of weight w are divisible by 2l−w. Let ν be
the following vector: ν = (0, 0, 0, 0, 0, 1, 1, . . . , 1). Consequently, since all the Walsh
values of g are divisible by 2n−2, we obtain that gν(x) = x1x2x3 ⊕ x2x4x5 ⊕ qν(x) is
such that all its Walsh values are divisible by 8.

¿From the classification of Berlekamp and Welch [1] for Boolean functions of 5
variables we see that the only possible cosets of RM(1, n) for gν are the cosets with
representatives x1x2x3 ⊕ x2x4x5 ⊕ x1x3 and x1x2x3 ⊕ x2x4x5 ⊕ x1x3 ⊕ x1x4 ⊕ x3x5.
Therefore we have to consider the following two cases for g:

1. g(x) = x1x2x3 ⊕ x2x4x5 ⊕ x1x3 ⊕ q1(x),

2. g(x) = x1x2x3 ⊕ x2x4x5 ⊕ x1x3 ⊕ x1x4 ⊕ x3x5 ⊕ q2(x),

where each quadratic term of qi(x), i = 1, 2 contains a variable xj, for j ≥ 6.

Let us consider the first case. By Lemma 4 there are three possibilities for the
weights of the subfunctions of g(x) with respect to the variable x2. If wt(g(x|x2 =
0)) = 2n−3 = dmin(RM(2, n − 1)), we substitute x2 = 0 and get g(x|x2 = 0) =
x1x3⊕q1(x|x2 = 0). By Lemma 6 the function g(x) must be equal to let say x1x2x3⊕
x2x4x5 ⊕ x1x3 ⊕ x1y1 ⊕ x2y2, where y1, y2 are some affine functions of xj , for j ≥
6. If y1 or/and y2 vanish then dim(LS)g ≤ n − 6. If both y1 and y2 are non-
zero, since by Lemma 4 g(x|x2 = 1) is balanced they will be linearly independent.
Then g(x) cannot be a plateaued function since the Walsh spectrum of the function
x1x2x3⊕x2x4x5⊕x2x6⊕x1x7 on F

7
2 is not three-valued. Therefore dim(LS)g ≤ n−6.

Proceeding in a similar way, if wt(g(x|x2 = 0)) = 2n−2 we arrive at the same
conclusion, i.e. dim(LS)g ≤ n − 6. Finally, by using Lemma 6 and consecutively
substituting x2 = 0 and x2 = 1 we conclude that a function g(x), with wt(g(x|x2 =
0)) = wt(g(x|x2 = 1)) = 3 · 2n−4 = 1.5dmin(RM(2, n − 1)) cannot be plateaued.

Consider now the second case, when g(x) = x1x2x3 ⊕ x2x4x5 ⊕ x1x3 ⊕ x1x4 ⊕
x3x5 ⊕ q2(x). The subfunction g(x|x2 = 0) = x1x3 ⊕ x1x4 ⊕ x3x5 ⊕ q2(x|x2 = 0)
has weight 1.5 dmin(RM(2, n − 1)). Then using Lemma 6 the function g(x) is equal
for example to x1x2x3 ⊕ x2x4x5 ⊕ x1(x3 ⊕ x4 ⊕ y1) ⊕ x3x5 ⊕ x2y2, where y1 and
y2 are some affine functions of xj, for j ≥ 6. By substituting x2 = 1 we get that
g(x|x2 = 1) = x5(x3 ⊕x4)⊕x1x4 ⊕x1y1 ⊕ y2 and by Lemma 6 we can conclude that
y2 = 0, and if y1 6= 0 the function g(x) is not plateaued. Hence the dimension of the
linear space is n − 5. ⊓⊔
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Theorem 7. The dimension of the linear space of the functions from type IV in
class C5 on F

n
2 is equal to n − 6.

Proof. Let g be a function of type IV, which belongs to the coset f5⊕RM(2, n), i.e.
g(x) = x1x2x3⊕x2x4x5⊕x3x4x6⊕q(x), where q(x) is a quadratic function. Similarly
as in the proof above, we assume that Wg(0) = 2n−2. We consider the vector ν =
(0, 0, 0, 0, 0, 0, 1, 1, . . . , 1) and obtain that gν(x) = x1x2x3 ⊕ x2x4x5 ⊕ x3x4x6 ⊕ qν(x)
satisfies the property that all its Walsh values are divisible by 16.
¿From the classification of cubic functions of 6 variables, we conclude that only the
following function has to be investigated: g(x) = x1x2x3⊕x2x4x5⊕x3x4x6⊕x1x2⊕
x1x3 ⊕ x2x5 ⊕ q(x), where each quadratic term of q(x) contains a variable xj for
j ≥ 7.
Let us first consider the subfunctions with respect to the variable x3. We have that
g(x|x3 = 0) = x2x4x5 ⊕ x2(x1 ⊕ x5) ⊕ q(x|x3 = 0). Suppose that Wg(e3) = 2n−2

(the case Wg(e3) = −2n−2 is treated in a similar way, substituting x3 = 1 ) then
wt(g(x|x3 = 0)) = 2n−3 = 2dminRM(3, n − 1). Then by Lemma 5 the function
g(x) = x1x2x3 ⊕ x2x4x5 ⊕ x3x4x6 ⊕ x1x2 ⊕ x1x3 ⊕ x2x5 ⊕ x2y1 ⊕ x3y2, where y1, y2

are affine functions of xj, j ≥ 7. If one of y1 or y2 is not equal to zero then by
computing the Walsh spectra we see that g(x) cannot be a plateaued function.
It remains the case, when Wg(e3) = 0. We will show that this is impossible. Consider
the subfunctions with respect to the variable x4. We obtain that g(x|x4 = 0) =
x1x2x3⊕x1x2⊕x1x3⊕x2x5⊕q(x|x4 = 0). By Lemma 5 we see that wt(g(x|x4 = 0))
cannot be 2dminRM(3, n − 1). If this weight is equal to 2n−2, then wt(g(x|x4 =
1)) = 2dminRM(3, n − 1), but since g(x|x4 = 1) = x1x2x3 ⊕ x1x2 ⊕ x1x3 ⊕ x3x6 ⊕
q(x|x4 = 1) we arrive at a contradiction with Lemma 5. Therefore wt(g(x|x4 = 0)) =
wt(g(x|x4 = 1)) = 3 · 2n−4 and the Walsh value Wg(e4) = 0.
Now by using (2) for the vector ω = (0, 0, 1, 1, 0, . . . , 0) we obtain Wg(0) + Wg(e3) +
Wg(e4) + Wg(ω) = 2n − 8wt(gω). Then

wt(gω) = 3 · 2n−5 −
Wg(ω)

8
.

We have to consider 3 cases according to the values of Wg(ω). The corresponding
weights for gω are: 3 · 2n−5, 2n−4, 2n−3. Since (g(x|x3 = 1, x4 = 1)) = x1 ⊕ x6, the
weight 2n−3 for gω will not appear. Consider the most complex case, when wt(gω) =
3 · 2n−5. It easy to verify that also the weights of g(x|x3 = 0, x4 = 1), (g(x|x3 =
1, x4 = 0)) and (g(x|x3 = 1, x4 = 1)) are equal to 3·2n−5. By using Lemma 6 we have
g(x) = x1x2x3 ⊕ x2x4x5 ⊕ x3x4x6 ⊕ x1x2 ⊕ x1x3 ⊕ x2x5 ⊕ x3y1 ⊕ x4y2 ⊕ y3y4, where
y1, y2 are affine functions of xj, j ≥ 7 and y3, y4 are affine functions independent
from x2 and x1 ⊕ x5.
Since the weights of the restrictions of g(x) over the hyperplanes a3x3 ⊕ a4x4 = 1,
(a3, a4) ∈ F

2
2 \ 0 are equal to 3 · 2n−4 and by using the randomization Lemma from
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[13, pp. 372] we obtain that y1, y2 are linearly dependent on y3, y4. Considering all
the possible linear combinations of y3 and y4 we see that g(x) cannot be a plateaued
function. The other possible weight of gω leads to the same conclusion and hence
Wg(e3) = 0 is impossible. So, g(x) is plateaued only if q(x) ≡ 0 and therefore the
dimension of the linear space is n − 6. ⊓⊔

Corollary 2. Plateaued cubic functions with amplitude n − 2 without linear struc-
ture for n ≥ 7 do not exist.

3.2 ANF

Theorem 8. The 4 types of (n − 4)-resilient cubic Boolean functions on F
n
2 belong

(up to linear transformations) to the following cosets of RM(1, n):

I. x1x2x3 ⊕ RM(1, n)
II. x1x2x3 ⊕ x1x4 ⊕ RM(1, n)

III. x1x2x3 ⊕ x2x4x5 ⊕ x1x3 ⊕ RM(1, n)
IV. If dim(LSf ) = n − 5:

(i) x1x2x3 ⊕ x2x4 ⊕ x1x5 ⊕ RM(1, n)
(ii) x1x2x3 ⊕ x2x4x5 ⊕ x3x4 ⊕ x1x3 ⊕ x1x5 ⊕ RM(1, n)
If dim(LSf ) = n − 6:
(i) x1x2x3 ⊕ x2x4x5 ⊕ x2x6 ⊕ x1x3 ⊕ RM(1, n)
(ii) x1x2x3 ⊕ x2x4x5 ⊕ x3x4x6 ⊕ x1x2 ⊕ x1x3 ⊕ x2x5 ⊕ RM(1, n)

Proof. It is well-known (see for instance [8],[12]) that any function with linear space
of dimension k can be transformed by an affine transformation in the sum of two
functions f1 and f2 where f1 is a nonlinear function that nonlinearly depends on n−k
variables and f2 a linear function. As a consequence, up to an affine transformation,
the nonlinear part of the functions of type I, II, and III depends on 3, 4, resp. 5
variables, while the nonlinear part of the functions of type IV depends on 5 or 6
variables. From Table 1 in Appendix B, we derive the corresponding ANF. ⊓⊔

3.3 Autocorrelation Spectrum

The set of tuples in which the first element denotes the absolute value in the auto-
correlation spectrum and the second element the number of times it occurs form the
absolute autocorrelation spectrum of f . Since all the functions in a fixed coset of
RM(1, n) have the same absolute autocorrelation spectrum, we immediately obtain:

Theorem 9. The 4 types of (n − 4)-resilient cubic Boolean functions on F
n
2 have

the following absolute autocorrelation spectrum

I. {(2n, 2n−3), (2n−1, 2n − 2n−3)}
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II. {(2n, 2n−4), (2n−1, 2n−1 − 2n−3), (0, 2n−1 + 2n−4)}
III. {(2n, 2n−5), (2n−1, 2n−2 − 2n−4), (2n−2, 2n−1), (0, 2n−2 + 2n−5)}
IV. If dim(LSf ) = n − 5:

(i) {(2n, 2n−5), (2n−1, 2n−3), (0, 2n − 2n−5 − 2n−3)}

(ii) {(2n, 2n−5), (2n−2, 2n−1), (0, 2n − 2n−5 − 2n−1)}
If dim(LSf ) = n − 6:

(i) {(2n, 2n−6), (2n−1, 2n−2 − 2n−4), (0, 2n − 2n−3 − 2n−4 − 2n−6)}

(ii) {(2n, 2n−6), (2n−1, 2n−4), (2n−2, 2n−1), (0, 2n−1 − 2n−4 − 2n−6)}

For classes I and II, we note that the autocorrelation values are all divisible by
2n−1. This can be proven similarly as in [5, Lemma 3], but by taking into account
that the 8 vectors which yield non-zero value in the Walsh spectrum of a function
of type I, and the 8 vectors with value 2n−2 in the Walsh spectrum of a function of
type II belong to a flat of dimension 3, also proven in [5].

4 Conclusion

Based on the classification of RM(3, 6)/RM(1, 6), we have solved the open problem
from [5] concerning the dimension of the linear space of cubic plateaued (n − 4)-
resilient Boolean functions. Moreover, we have extended the classification of the
cubic (n − 4)-resilient functions with the ANF representation and autocorrelation
spectrum.
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A Representatives of the GL(n, 2) orbits in RM(3, n)/RM(2, n)
with n ≤ 8

Theorem 10. [11] Let s(r, n) denote the number of GL(n, 2)-orbits in RM(3, n)/RM(2, n).
Then

1. s(3, 6) = 6 and fi ⊕ RM(2, 6) for 1 ≤ i ≤ 6 are the representatives of the
GL(6, 2)-orbits in RM(3, 6)/RM(2, 6),

2. s(3, 7) = 12 and fi ⊕ RM(2, 7) for 1 ≤ i ≤ 12 are the representatives of the
GL(7, 2)-orbits in RM(3, 7)/RM(2, 7),

3. s(3, 8) = 32 and fi ⊕ RM(2, 8) for 1 ≤ i ≤ 32 are the representatives of the
GL(8, 2)-orbits in RM(3, 8)/RM(2, 8), where the Boolean functions fi are given
by
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f1 = 0

f2 = x1x2x3

f3 = x1x2x3 ⊕ x2x4x5

f4 = x1x2x3 ⊕ x4x5x6

f5 = x1x2x3 ⊕ x2x4x5 ⊕ x3x4x6

f6 = x1x2x3 ⊕ x1x4x5 ⊕ x2x4x6 ⊕ x3x5x6 ⊕ x4x5x6

f7 = x1x2x7 ⊕ x3x4x7 ⊕ x5x6x7

f8 = x1x2x3 ⊕ x4x5x6 ⊕ x1x4x7

f9 = x1x2x3 ⊕ x2x4x5 ⊕ x3x4x6 ⊕ x1x4x7

f10 = x1x2x3 ⊕ x4x5x6 ⊕ x1x4x7 ⊕ x2x5x7

f11 = x1x2x3 ⊕ x1x4x5 ⊕ x2x4x6 ⊕ x3x5x6 ⊕ x4x5x6 ⊕ x1x6x7

f12 = x1x2x3 ⊕ x1x4x5 ⊕ x2x4x6 ⊕ x3x5x6 ⊕ x4x5x6 ⊕ x1x6x7 ⊕ x2x4x7

f13 = x1x2x3 ⊕ x4x5x6 ⊕ x1x7x8

f14 = x1x2x3 ⊕ x4x5x6 ⊕ x1x7x8 ⊕ x4x7x8

f15 = x1x2x3 ⊕ x2x4x5 ⊕ x6x7x8 ⊕ x1x4x7

f16 = x1x2x3 ⊕ x2x4x5 ⊕ x3x4x6 ⊕ x3x7x8

f17 = x1x2x3 ⊕ x1x4x5 ⊕ x2x4x6 ⊕ x3x5x6 ⊕ x4x5x6 ⊕ x1x7x8

f18 = x1x2x3 ⊕ x1x4x5 ⊕ x2x4x6 ⊕ x3x5x6 ⊕ x4x5x6 ⊕ x1x6x7 ⊕ x2x3x8

f19 = x1x2x3 ⊕ x1x4x5 ⊕ x2x4x6 ⊕ x3x5x6 ⊕ x4x5x6 ⊕ x1x5x8 ⊕ x2x3x7 ⊕ x6x7x8

f20 = x1x2x3 ⊕ x1x4x5 ⊕ x2x4x6 ⊕ x3x5x6 ⊕ x4x5x6 ⊕ x2x7x8 ⊕ x2x4x7 ⊕ x1x6x8

f21 = x1x4x5 ⊕ x2x4x6 ⊕ x3x5x6 ⊕ x4x5x6 ⊕ x2x7x8 ⊕ x3x4x7 ⊕ x1x6x8 ⊕ x2x3x7 ⊕ x1x4x7

f22 = x1x2x3 ⊕ x2x3x4 ⊕ x3x4x5 ⊕ x4x5x6 ⊕ x5x6x7 ⊕ x6x7x8 ⊕ x1x2x8 ⊕ x2x3x8

⊕x3x4x8 ⊕ x4x5x8 ⊕ x5x6x8 ⊕ x1x7x8

f23 = x1x2x3 ⊕ x1x4x5 ⊕ x2x4x6 ⊕ x3x5x6 ⊕ x4x5x6 ⊕ x1x6x7 ⊕ x5x7x8

f24 = x1x2x3 ⊕ x1x4x5 ⊕ x2x4x6 ⊕ x3x5x6 ⊕ x4x5x6 ⊕ x1x6x7 ⊕ x5x6x8

f25 = x1x2x3 ⊕ x1x4x5 ⊕ x2x4x6 ⊕ x3x5x6 ⊕ x4x5x6 ⊕ x1x6x7 ⊕ x2x4x8

f26 = x1x2x3 ⊕ x4x5x6 ⊕ x1x4x7 ⊕ x2x5x7 ⊕ x2x6x8 ⊕ x2x7x8 ⊕ x3x4x8

f27 = x1x2x3 ⊕ x4x5x6 ⊕ x1x4x7 ⊕ x2x5x7 ⊕ x1x6x8 ⊕ x1x7x8 ⊕ x2x4x8 ⊕ x3x5x8

f28 = x1x2x7 ⊕ x3x4x7 ⊕ x5x6x7 ⊕ x2x5x8 ⊕ x3x6x8

f29 = x1x2x3 ⊕ x4x5x6 ⊕ x1x4x7 ⊕ x3x6x8

f30 = x1x2x3 ⊕ x4x5x6 ⊕ x1x4x7 ⊕ x3x6x8 ⊕ x5x7x8

f31 = x1x2x3 ⊕ x4x5x6 ⊕ x1x4x7 ⊕ x3x6x8 ⊕ x4x7x8 ⊕ x5x6x8

f32 = x1x2x3 ⊕ x4x5x6 ⊕ x1x4x7 ⊕ x1x6x8 ⊕ x2x5x8 ⊕ x3x4x8
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B Classification of RM(3, 6)/RM(1, 6) under the action of
AGL(2, 6)

Table 1. The number of cosets, weight distribution and autocorrelation spectra of affine equivalent
classes of RM(3, 6)/RM(1, 6). The functions are represented in abbreviated notation (only the
number of the variables) and the sum should be considered modulo 2.

Representative Number of Cosets Walsh transform Autocorrelation Transform

f1 0 1 (0,63),(64,1) (0,63),(64,1)
12 651 (0,60),(32,4) (0,48),(64,16)

14+23 18 228 (0,48),(16,16) (0,60),(64,16)
16+25+34 13 888 (8,64) (0,63),(64,1)

f2 0 1 395 × 8 (0,56),(16,7),(48,1) (32,56),(64,8)
14 1 395 × 392 (0,54),(16,8),(32,2) (0,36),(32,24),(64,4)

24+15 1 395 × 2 352 (0,48),(16,16) (0,54),(32,8),(64,2)
16+25+34 1 395 × 1 344 (64,8) (0,63),(64,1)

45 1 395 × 3 584 (0,32),(8,28),(24,2) (0,48),(32,14),(64,2)
16+45 1 395 × 25 088 (0,24),(8,32),(16,8) (0,57),(32,6),(64,1)

f3 0 54 684 × 32 (0,32),(8,30),(24,1),(40,1) (16,32),(32,30),(64,2)
13 54 684 × 320 (0,51),(16,12),(32,1) (0,18),(16,32),(32,12),(64,2)
14 54 684 × 480 (0,32),(8,28),(24,4) (0,24),(16,32),(32,6),(64,2)
16 54 684 × 7 680 (0,28),(8,30),(16,4),(24,2) (0,39),(16,16),(32,8),(64,1)
26 54 684 × 32 (0,30),(8,32),(32,2) (0,32),(32,30),(64,2)

26+13 54 684 × 320 (0,48),(16,16) (0,51),(32,12),(64,1)
26+14 54 684 × 480 (0,24),(8,32),(16,8) (0,57),(32,6),(64,1)

13+15+26+34 54 684 × 192 (8,64) (0,63),(64,1)
34+13+15 54 684 × 23 040 (0,48),(16,16) (0,30),(16,32),(64,2)

34+16 54 684 × 192 (0,24),(8,32),(16,8) (0,45),(16,16),(64,1)

f4 0 357 120 × 64 (4,49),(12,14),(36,1) (16,49),(32,14),(64,1)
14 357 120 × 3 136 (4,49),(12,12),(28,1),(20,2) (0,24),(16,33),(32,6),(64,1)

15+24 357 120 × 64 (4,46),(20,3),(12,15) (0,36),(16,25),(32,2),(64,1)
34+25+16 357 120 × 64 (4,42),(12,21),(20,1) (0,42),(16,21),(64,1)

f5 0 468 720 × 448 (0,27),(8,32),(16,4),(32,1) (0,9),(16,48),(32,6),(64,1)
12+13 468 720 × 18 (0,28),(8,30),(16,4),(24,2) (0,27),(16,32),(32,4),(64,1)

15 468 720 × 14 336 (0,26),(8,31),(24,1),(16,6) (0,30),(16,32),(32,1),(64,1)
12+13+25 468 720 × 2 222 (0,48),(16,16) (0,27),(16,32),(32,4),(64,1)

14+25 468 720 × 1 344 (0,24),(8,32),(16,8) (0,45),(16,16),(64,1)
35+26+25+12+13+14 468 720 × 14 336 (8,64) (0,63),(64,1)

25+15+16 468 720 × 64 (0,24),(8,32),(16,8) (0,39),(16,24),(64,1)

f6 0 166 656 × 3 584 (4,45),(12,18),(28,1) (0,18),(16,45),(64,1)
12+13 166 656 × 21 504 (4,46),(12,15),(20,3) (0,30),(16,33),(64,1)

23+15+14 166 656 × 7 680 (4,42),(12,21),(20,1) (0,42),(16,21),(64,1)


