
Secure Key-Updating for Lazy Revocation

Michael Backes Christian Cachin Alina Oprea∗

IBM Zurich Research Laboratory
CH-8803 Rüschlikon, Switzerland

{mbc,cca,opr}@zurich.ibm.com

September 25, 2005

Abstract

We consider the problem of efficient key management and user revocation in cryptographic file systems
that allow shared access to files. A performance-efficient solution to user revocation in such systems is
lazy revocation, a method that delays the re-encryption of afile until the next write to that file. We for-
malize the notion of key-updating schemes for lazy revocation, an abstraction to manage cryptographic
keys in file systems with lazy revocation, and give a securitydefinition for such schemes. We give two
composition methods that combine two secure key-updating schemes into a new secure scheme that
permits a larger number of user revocations. We prove the security of two slightly modified existing
constructions and propose a novel binary tree constructionthat is also provable secure in our model.
Finally, we give a systematic analysis of the computationaland communication complexity of the three
constructions and show that the novel construction improves the previously known constructions.

1 Introduction

The recent trend of storing large amounts of data on high-speed, dedicated storage-area networks (SANs)
stimulates flexible methods for information sharing, but also raises new security concerns. As the networked
storage devices are subject to attacks, protecting the confidentiality of stored data is highly desirable in such
an environment. Several cryptographic file systems have been designed for this purpose [14, 26, 21, 15], but
practical solutions for efficient key management and user revocation still need to be developed further.

We consider cryptographic file systems that allow shared access to stored information and that use
untrusted storage devices. In such systems, we can aggregate files into sets such that access permissions and
ownership are managed at the level of these sets. The users who have access to the files in a set form a group,
managed by the owner of the files, or thegroup owner. Initially, the same cryptographic key can be used to
encrypt all files in a set, but upon revocation of a user from the group, the key needs to be changed to prevent
access of revoked users to the files. The group owner generates and distributes this new key to the users in
the group. There are two options for handling user revocation: active and lazy revocation, which differ
in the way that users are revoked from a group. With active revocation, all files in a set are immediately
re-encrypted with the new encryption key. The amount of workcaused by a single revocation with this
method might, however, be prohibitive for large sets of files. With the alternative method of lazy revocation,
re-encryption of a file is delayed until the next write to thatfile and, thus, users do not experience disruptions

∗Permanent address: Computer Science Department, CarnegieMellon University, Pittsburgh, USA. Email:alina@cs.cmu.
edu

1

in the operation of the file system caused by the immediate re-encryption of all files protected by the same
revoked key. In systems adopting lazy revocation, the files in a set might be encrypted with different keys.
Storing and distributing these keys becomes more difficult than in systems using active revocation.

In this paper, we address the problem of efficient key management in cryptographic file systems with
lazy revocation. An immediate solution to this problem, adopted by the first cryptographic file systems
using delayed re-encryption [14], is to store all keys for the files in a set at the group owner. However,
we are interested in more efficient methods, in which the number of stored keys is not proportional to the
number of revocations. We formalize the notion ofkey-updating schemes for lazy revocation and give a
rigorous security definition. In our model, acenter (e.g., the group owner) initially generates some state
information, which takes the role of the master secret key. The center state is updated at every revocation.
We call the period of time between two revocations atime interval. Upon a user request, the center uses its
current local state to derive auser key and gives that to the user. From the user key of some time interval,
a user must be able to extract the key for any previous time interval efficiently. Security for key-updating
schemes requires that any polynomial-time adversary with access to the user key for a particular time interval
does not obtain any information about the keys for future time intervals. The keys generated by our key-
updating schemes can be used with a symmetric encryption algorithm to encrypt files for confidentiality or
with a message-authentication code to authenticate files for integrity protection.

We describe two generic composition methods that combine two secure key updating schemes into a
new scheme in which the number of time intervals is either thesum or the product of the number of time
intervals of the initial schemes. Additionally, we investigate three constructions of key-updating schemes.
The first scheme uses a chain of pseudorandom generator applications and is related to existing methods
using one-way hash chains. It has constant update cost for the center, but the complexity of the user-key
derivation is linear in the total number of time intervals. The second scheme can be based on arbitrary
trapdoor permutations and generalizes the key rotation construction of the Plutus file system [21]. It has
constant update and user-key derivation times, but the update algorithm uses a relatively expensive public-
key operation. These two constructions require that the total numberT of time intervals is polynomial in the
security parameter. Our third scheme uses a novel construction. It relies on a tree to derive the keys at the
leaves from the master key at the root. The tree can be seen as resulting from the iterative application of the
additive composition method and supports a practically unbounded number of time intervals. The binary-
tree construction balances the tradeoff between the center-state update and user-key derivation algorithms
(both of them have logarithmic complexity inT), at the expense of increasing the sizes of the user key and
center state by a logarithmic factor inT .

The rest of the paper is organized as follows. In Section 2 we give the definition of security for key-
updating schemes. In Section 3, we introduce the additive and multiplicative composition methods for secure
key-updating schemes. The three constructions and proofs for their security are presented in Section 4. A
systematic analysis of the computational and communication complexities of the three constructions and a
comparison with related work are given in Sections 5 and 6, respectively.

2 Definitions

2.1 Key-Updating Schemes

In our model, we divide time into intervals, not necessarilyof fixed length, and each time interval is associ-
ated with a new key that can be used in a symmetric-key cryptographic algorithm. In a key-updating scheme,
the center generates initial state information that is updated at each time interval, and from which the center
can derive a user key. The user key for intervalt permits a user to derive the keys of previous time intervals
(ki for i ≤ t), but it should not give any information about keys of futuretime intervals (ki for i > t).

2

We formalize key-updating schemes using the approach of modern cryptography and denote the security
parameter byκ. For simplicity, we assume that all the keys are bit strings of lengthκ. The number of time
intervals and the security parameter are given as input to the initialization algorithm.

Definition 1 (Key-Updating Schemes).A key-updating scheme consists of four deterministic polynomial
time algorithmsKU = (Init, Update, Derive, Extract) with the following properties:

- The initialization algorithm,Init, takes as input thesecurity parameter 1κ, thenumber of time inter-
vals T and arandom seed s ∈ {0, 1}l(κ) for a polynomiall(κ), and outputs a bit stringS0, called the
initial centerstate.

- The key update algorithm,Update, takes as input the currenttime interval t, the current centerstate St,
and outputs the centerstate St+1 for the next time interval.

- The user key derivation algorithm,Derive, is given as input atime interval t and the centerstate St,
and outputs theuser key Mt. The user key can be used to derive all keyski for 1 ≤ i ≤ t.

- The key extraction algorithm,Extract, is executed by the user and takes as input atime interval t, the
user key Mt for intervalt as received from the center, and atarget time interval i with 1 ≤ i ≤ t. The
algorithm outputs thekey ki for intervali.

2.2 Security of Key-Updating Schemes

The definition of security for key-updating schemes requires that a polynomial-time adversary with access
to the user key for a time intervalt is not able to derive any information about the keys for the next time
interval. Formally, consider a probabilistic polynomial-time adversaryA = (AU ,AG) that participates in
the following experiment:

Initialization: The initial center state is generated with theInit algorithm.

Key updating: The adversary adaptively picks a time intervalt such that0 ≤ t ≤ T−1 as follows. Starting
with t = 0, 1, . . . , algorithmAU is given the user keysMt for all consecutive time intervals untilAU

decides to outputstop or t becomes equal toT − 1. We require thatAU , a probabilistic polynomial-
time algorithm, outputsstop at least once before halting.AU also outputs some additional information
z ∈ {0, 1}∗ that is given as input to algorithmAG .

Challenge: A challenge for the adversary is generated, which is either the key for time intervalt + 1
generated with theUpdate, Derive andExtract algorithms, or a random bit string of lengthκ.

Guess:AG takes the challenge andz as inputs and outputs a bitb.

The key-updating scheme is secure if the advantage of the adversary of distinguishing between the properly
generated key for time intervalt + 1 and the random key is only negligibly larger than1

2 . More formally,
the definition of a secure key-updating scheme is the following:

Definition 2 (Security of Key-Updating Schemes).Let KU = (Init, Update, Derive, Extract) be a key-
updating scheme andA a polynomial-time adversary algorithm that participates in one of the two experi-
ments defined in Figure 1. The advantage of the adversaryA = (AU ,AG) for the key-updating schemeKU

is defined as
AdvskuKU (A) =

∣

∣Pr
[

Expsku-1KU,A(1κ, T) = 1
]

−Pr
[

Expsku-0KU,A(1κ, T) = 1
]
∣

∣.

3

Expsku-0
KU,A(1κ, T) Expsku-1

KU,A(1κ, T)
S0 ← Init(1κ, T) S0 ← Init(1κ, T)
t← 0 t← 0
(d, z)← AU (t,⊥,⊥) (d, z)← AU (t,⊥,⊥)
while(d 6= stop) and (t < T − 1) while(d 6= stop) and (t < T − 1)

t← t + 1 t← t + 1
St ← Update(t− 1, St−1) St ← Update(t− 1, St−1)
Mt ← Derive(t, St) Mt ← Derive(t, St)
(d, z)← AU (t, Mt, z) (d, z)← AU (t, Mt, z)

St+1 ← Update(t, St) kt+1 ←R {0, 1}κ

Mt+1 ← Derive(t + 1, St+1) b← AG(kt+1, z)
kt+1 ← Extract(t + 1, Mt+1) return b

b← AG(kt+1, z)
return b

Figure 1: Experiments defining the security of key-updatingschemes.

Without loss of generality, we can relate the success probability of adversaryA of distinguishing between
the two experiments and its advantage as

Pr[A succeeds] =
1

2

[

Pr
[

Expsku-0KU,A = 0
]

+ Pr
[

Expsku-1KU,A = 1
]

]

=
1

2

[

1 + AdvskuKU (A)
]

. (1)

The maximum advantage of all probabilistic polynomial-time adversaries is denoted

AdvskuKU = max
A
{AdvskuKU (A)}.

The key-updating schemeKU is secure if there exists a negligible functionǫ such thatAdvskuKU = ǫ(κ).

Remark. The security notion we have defined is equivalent to a seemingly stronger security definition, in
which the adversary can choose the challenge time intervalt∗ with the restriction thatt∗ is greater than the
time interval at which the adversary outputsstop and thatt∗ is polynomial in the security parameter. This
second security definition guarantees, intuitively, that the adversary is not gaining any information about the
keys of any future time intervals after it outputsstop.

3 Composition of Key-Updating Schemes

Let KU1 = (Init1, Update1, Derive1, Extract1) andKU2 = (Init2, Update2, Derive2, Extract2) be two se-
cure key-updating schemes using the same security parameter κ with T1 andT2 time intervals, respectively.
In this section, we show how to combine the two schemes into a secure key-updating schemeKU = (Init,

Update, Derive, Extract), which is either the additive or multiplicative composition of the two schemes with
T = T1 + T2 andT = T1 · T2 time intervals, respectively. Similar generic composition methods have been
given previously for forward-secure signature schemes [24].

For simplicity, we assume the length of the random seed in theInit algorithm of the schemeKU to beκ

for both composition methods. LetG : {0, 1}κ → {0, 1}l1(κ)+l2(κ) be a pseudorandom generator; it can be
used to expand a random seed of lengthκ into two random bit strings of lengthl1(κ) andl2(κ), respectively,
as needed forInit1 andInit2. We writeG(s) = G1(s)‖G2(s) with |G1(s)| = l1(κ) and|G2(s)| = l2(κ) for
s ∈ {0, 1}κ.

4

Init(1κ, T, s) Derive(t, (S1
t , S2

t))
S1

0 ← Init1(1
κ, T1, G1(s)) if t < T1

S2
0 ← Init2(1

κ, T2, G2(s)) M1
t ← Derive1(t, S

1
t)

return (S1
0 , S2

0) M2
t ← ⊥

else

M1
t ← Derive1(T1, S

1
t)

M2
t ← Derive2(t− T1, S

2
t)

return(M1
t , M2

t)
Update(t, (S1

t , S2
t)) Extract(t, (M1

t , M2
t), i)

if t < T1 if i > T1

S1
t+1 ← Update1(t, S

1
t) ki ← Extract2(t− T1, M

2
t , i− T1)

S2
t+1 ← S2

t else

else if t < T1

S1
t+1 ← S1

t ki ← Extract1(t, M
1
t , i)

S2
t+1 ← Update2(t− T1, S

2
t) else

return (S1
t+1, S

2
t+1) ki ← Extract1(T1, M

1
t , i)

return ki

Figure 2: The additive composition ofKU1 andKU2.

3.1 Additive Composition

The additive composition of two key-updating schemes uses the keys generated by the first scheme for the
first T1 time intervals and the keys generated by the second scheme for the subsequentT2 time intervals.
The user key for the firstT1 intervals inKU is the same as that of schemeKU1 for the same interval. For
an intervalt greater thanT1, the user key includes both the user key for intervalt− T1 of schemeKU2, and
the user key for intervalT1 of schemeKU1. The details of the additive composition method are described in
Figure 2. The security of the composition operation is analyzed in the following theorem.

Theorem 1. Suppose that KU1 = (Init1, Update1, Derive1, Extract1) and KU2 = (Init2, Update2, Derive2,

Extract2) are two secure key-updating schemes with T1 and T2 time intervals, respectively, and that G is
a pseudorandom generator as above. Then KU = (Init, Update, Derive, Extract) described in Figure 2
denoted as KU1 ⊕ KU2 is a secure key-updating scheme with T1 + T2 time intervals.

Proof. Let A = (AU ,AG) be a polynomial-time adversary forKU. We build two adversary algorithms
A1 = (A1

U ,A1
G) andA2 = (A2

U ,A2
G) for KU1 andKU2, respectively.

Construction ofA1. A1 simulates the environment forA, by giving toAU at each iterationt the user key
M1

t thatA1
U receives from the center. IfA aborts orAU does not outputstop until time intervalT1−1, then

A1 outputs⊥ and aborts. Otherwise,A1
U outputsstop at the same time interval asAU . In the challenge

phase,A1
G receives as input a challenge keykt+1 and gives that toAG. A1

G outputs the same bit asAG . The
success probability ofA1 for b ∈ {0, 1} is

Pr
[

Expsku-b
KU1,A1 = b

]

= Pr
[

Expsku-bKU,A = b|E1 ∩E2

]

, (2)

whereE1 is the event thatAU outputsstop at a time interval strictly less thanT1 andE2 the event thatA
does not distinguish the simulation done byA1 from the protocol execution. The only difference between
the simulation and the protocol execution is that the initial state forKU1 is a random seed in the simulation
and it is generated using a pseudorandom generatorG in the protocol. IfA distinguishes the simulation from
the protocol, then a distinguisher algorithmD for the pseudorandom generator with advantageAdv

prg

G (D)
can be constructed. By the definition ofE2, we havePr[Ē2] = Adv

prg

G (D).

5

Construction of A2. A2 simulates the environment forA: it first picks a random seeds of lengthκ and
generates fromG1(s) an instance of the schemeKU1. For the firstT1 iterations ofAU , A2 gives toAU

the user keys generated froms. If A aborts orAU stops at a time interval less thanT1, thenA2 aborts
the simulation. For the nextT2 time interval,A2 feedsAU the user keys received from the center. IfAU

outputsstop at a time intervalt ≥ T1, thenA2
U outputsstop at time intervalt− T1. In the challenge phase,

A2
G receives a challengekt−T1+1, gives this challenge toAG and outputs whatAG outputs. The success

probability ofA2 for b ∈ {0, 1} is

Pr
[

Expsku-b
KU2,A2 = b

]

= Pr
[

Expsku-bKU,A = b|Ē1 ∩E2

]

. (3)

We can relate the success probabilities ofA,A1, andA2 for b ∈ {0, 1} as follows:

Pr
[

Expsku-bKU,A = b
]

= Pr
[

Expsku-bKU,A = b ∩ E2

]

+ Pr
[

Expsku-bKU,A = b ∩ Ē2

]

= Pr
[

Expsku-bKU,A = b ∩ E2 ∩E1

]

+ Pr
[

Expsku-bKU,A = b ∩ E2 ∩ Ē1

]

+

Pr
[

Expsku-bKU,A = b ∩ Ē2

]

≤ Pr
[

Expsku-bKU,A = b|E1 ∩ E2

]

Pr
[

E1 ∩ E2

]

+

Pr
[

Expsku-bKU,A = b|E2 ∩ Ē1

]

Pr
[

E2 ∩ Ē1

]

+ Pr
[

Ē2

]

= Pr
[

Expsku-b
KU1,A1 = b

]

Pr
[

E1 ∩ E2

]

+ Pr
[

Expsku-b
KU2,A2 = b

]

Pr
[

E2 ∩ Ē1

]

+

Pr
[

Ē2

]

(4)

≤ Pr
[

Expsku-b
KU1,A1 = b

]

+ Pr
[

Expsku-b
KU2,A2 = b

]

+ Pr
[

Ē2

]

,

where (4) follows from (2) and (3). Finally, we can infer from(1)

AdvskuKU (A) ≤ AdvskuKU1
(A1) + AdvskuKU2

(A2) + Adv
prg

G (D).

SinceAdvskuKU1
(A1), AdvskuKU2

(A2) andAdv
prg

G (D) are negligible from the assumptions of the theorem, the
statement of the theorem follows.

Extended Additive Composition. It is immediate to extend the additive composition to construct a new
scheme withT1+T2+1 time intervals. The idea is to use the first scheme for the keysof the firstT1 intervals,
the second scheme for the keys of the nextT2 intervals, and the seeds as the key for the(T1 + T2 + 1)-th
interval. By revealing the seeds as the user key at intervalT1 + T2 + 1, all previous keys ofKU1 andKU2

can be derived. This idea will be useful in our later construction of a binary tree key-updating scheme. We
call this composition methodextended additive composition.

3.2 Multiplicative Composition

The idea behind the multiplicative composition operation is to use every key of the first scheme to seed an
instance of the second scheme. Thus, for each one of theT1 time intervals of the first scheme, we generate
an instance of the second scheme withT2 time intervals.

In the sequel, we denote a time intervalt for 1 ≤ t ≤ T1 · T2 of schemeKU as a pairt = <i, j>, where
i andj are such thatt = (i − 1)T2 + j for 1 ≤ i ≤ T1 and1 ≤ j ≤ T2. The user key for a time interval
t = <i, j> includes both the user key for time intervali−1 of schemeKU1 and the user key for time interval
j of schemeKU2. A user receivingM<i,j> can extract the key for any time interval<m,n> ≤ <i, j>

by first extracting the keyK for time intervalm of KU1 (this step needs to be performed only ifm < i),
then usingK to derive the initial state of them-th instance of the schemeKU2, and finally, deriving the key
k<m,n>. The details of the multiplicative composition method are shown in Figure 3. The security of the
multiplicative composition method is analyzed in the following theorem.

6

Init(1κ, T, s) Derive(<i, j>, (S1
i−1, S

1
i , S2

j))
S0 ← Init1(1

κ, T1, G1(s)) if i > 1
return (⊥, S0, S0) M1

i−1 ← Derive1(i− 1, S1
i−1)

else

M1
i−1 ← ⊥

M2
j ← Derive2(j, S

2
j)

return (M1
i−1, M

2
j)

Update(<i, j>, (S1
i−1, S

1
i , S2

j)) Extract(<i, j>, (M1
i−1, M

2
j), <m, n>)

if j = T2 if i = m

S1
i+1 ← Update1(i, S

1
i) k<m,n> ← Extract2(j, M

2
j , m)

k1
i+1 ← Extract1(i + 1, else

Derive1(i + 1, S1
i+1), i + 1) K ← Extract1(i− 1, M1

i−1, m)
S2

0 ← Init2(1
κ, T2, G2(k

1
i+1)) S2

0 ← Init2(1
κ, T2, G2(K))

S2
1 ← Update2(0, S2

0) k<m,n> ← Extract2(T2, S
2
0 , n)

return (S1
i , S1

i+1, S
2
1) return k<m,n>

else

S2
j+1 ← Update2(j, S

2
j)

return (S1
i−1, S

1
i , S2

j+1)

Figure 3: The multiplicative composition ofKU1 andKU2.

Theorem 2. Suppose that KU1 = (Init1, Update1, Derive1, Extract1) and KU2 = (Init2, Update2, Derive2,

Extract2) are two secure key-updating schemes with T1 and T2 time intervals, respectively, and that G is
a pseudorandom generator as above. Then KU = (Init, Update, Derive, Extract) described in Figure 3
denoted as KU1 ⊗ KU2 is a secure key-updating scheme with T1 · T2 time intervals.

Proof. LetA = (AU ,AG) be a polynomial-time adversary forKU. Similarly to the proof of Theorem 1, we
build two adversary algorithmsA1 = (A1

U ,A1
G) andA2 = (A2

U ,A2
G) for KU1 andKU2, respectively.

Construction of A1. A1
U gets from the center the user keysM1

i of schemeKU1 for all time intervalsi
until it outputsstop. A1 simulates the environment forA by sending the following user keys:

1. At interval<i, 1>, for 1 ≤ i ≤ T1, A1 runski ← Extract1(i,M
1
i , i); S2

0 ← Init2(1
κ, T2, G2(ki));

S2
1 ← Update2(0, S

2
0); M2

1 ← Derive2(1, S
2
1) and givesAU the user keyM<i,1> = (M1

i−1,M
2
1).

2. At time interval<i, j>, for 1 ≤ i ≤ T1 and1 < j ≤ T2,A1
U computesS2

j ← Update2(j − 1, S2
j−1)

andM2
j ← Derive2(j, S

2
j) and gives toAU the user keyM<i,j> = (M1

i−1,M
2
j).

If A aborts orAU outputsstop at a time interval<i, j> with j 6= T2, thenA1
U aborts the simulation and

outputs⊥. Otherwise,A1
U outputsstop at time intervali. In the challenge interval,A1

G is given a challenge
key ki+1 and it executesS2

0 ← Init2(1
κ, T2, G2(ki+1)); S2

1 ← Update2(0, S
2
0); M ← Derive2(1, S

2
1);

k2
1 ← Extract2(1,M, 1). It then gives the challengek2

1 toAG. A1
G outputs the same bit asAG. The success

probability ofA1 for b ∈ {0, 1} is

Pr
[

Expsku-b
KU1,A1 = b

]

= Pr
[

Expsku-bKU,A = b|E1 ∩E2

]

, (5)

whereE1 is the event thatAU outputsstop at a time interval(i, j) with j = T2 andE2 the event thatA
does not distinguish the simulation done byA1 from the protocol execution. IfA distinguishes the simu-
lation from the protocol, then a distinguisher algorithmD for the pseudorandom generator with advantage
Adv

prg

G (D) can be constructed. By the definition ofE2, we havePr[Ē2] = Adv
prg

G (D).

7

Construction of A2. Assuming thatAU runs at mostq times (andq is polynomial inκ), A2 makes a
guess for the time intervali∗ in which AU outputsstop. A2 picks i∗ uniformly at random from the set
{1, . . . , q}. A2 generates an instance of the schemeKU1 with i∗ time intervals. For any interval<i, j> with
i < i∗,A2 generates the user keys using the keys from this instance ofKU1. For time intervals<i∗, j> with
1 ≤ j ≤ T2,A2 outputs user key(M1

i∗−1,M
2
j), whereM1

i∗−1 is the user key for time intervali∗− 1 of KU1

that it generated itself andM2
j is the user key for time intervalj of KU2 that it received from the center.

If A aborts orAU outputsstop at a time interval<i, j> with i 6= i∗ or with i = i∗ andj = T2, then
A2 aborts the simulation and outputs⊥. Otherwise, ifAU outputsstop at a time interval<i∗, j>, thenA2

U

outputsstop at time intervalj. In the challenge phase,A2 receives a challenge keykj+1 and gives that to
AG. A2

G outputs the same bit asAG. The success probability ofA2 for b ∈ {0, 1} is

Pr
[

Expsku-b
KU2,A2 = b

]

=
1

q
Pr

[

Expsku-bKU,A = b|Ē1 ∩ E2

]

. (6)

As in the proof of Theorem 1, we can infer

Pr
[

Expsku-bKU,A = b
]

≤ Pr
[

Expsku-bKU,A = b|E1 ∩ E2

]

Pr
[

E1 ∩E2

]

+

Pr
[

Expsku-bKU,A = b|Ē1 ∩ E2

]

Pr
[

Ē1 ∩E2

]

+ Pr[Ē2]

= Pr
[

Expsku-b
KU1,A1 = b

]

Pr
[

E1 ∩ E2

]

+q Pr
[

Expsku-b
KU2,A2 = b

]

Pr
[

Ē1 ∩ E2

]

+ Pr[Ē2] (7)

≤ Pr
[

Expsku-b
KU1,A1 = b

]

+q Pr
[

Expsku-b
KU2,A2 = b

]

+ Pr[Ē2],

where (7) follows from (5) and (6). Finally we can infer from (1) that

AdvskuKU (A) ≤ AdvskuKU1
(A1) + qAdvskuKU2

(A2) + Adv
prg

G (D).

SinceAdvskuKU1
(A1), AdvskuKU2

(A2) andAdv
prg

G (D) are negligible from the assumptions of the theorem, the
statement of the theorem follows.

4 Constructions

In this section, we describe three constructions of key-updating schemes with different complexity and
communication tradeoffs. The first two constructions are based on previously proposed methods, whose
security has never been formally analyzed. We give cryptographic proofs that demonstrate the security of
the existing constructions after some subtle modifications. Additionally, we propose a third construction that
is more efficient than the known schemes. It uses a binary treeto derive the user keys and is also provably
secure in our model.

4.1 Chaining Construction (CKU)

In this construction the user keys and keys are generated iteratively from a random seed using a pseudoran-
dom generatorG : {0, 1}κ → {0, 1}2κ. We writeG(s) = G1(s)‖G2(s) with |G1(s)| = |G2(s)| = κ for
s ∈ {0, 1}κ. The algorithms of the chaining construction, calledCKU, are the following:

- Init(1κ, T, s) generates a random seeds0 of lengthκ from s and outputsS0 = s0.

- Update(t, St) copies the stateSt into St+1.

- Derive(t, St) andExtract(t,Mt, i) are given in Figure 4.

8

Derive(t, St) Extract(t, Mt, i)
BT+1 ← St (Bt, kt)←Mt

for i = T downto t for j = t− 1 downto i

(Bi, ki)← G(Bi+1) (Bj , kj)← G(Bj+1)
return (Bt, kt) return ki

Figure 4: TheDerive(t, St) andExtract(t,Mt, i) algorithms of the chaining construction.

This construction has constant center-state size and linear cost for the user-key derivation algorithm. An
alternative construction with linear center-state size and constant user-key derivation is to precompute all
the keyski and user keysMi, for 1 ≤ i ≤ T in the Init algorithm and store all of them in the initial center
stateS0.

Theorem 3. Given a pseudorandom generator G, CKU is a secure key-updating scheme.

Proof. LetA = (AU ,AG) be a polynomial-time adversary successful in breaking the security of the key-
updating scheme. We construct an algorithmD that distinguishes the output of the pseudorandom generator
from a random string of length2κ with sufficiently large probability.

Algorithm D has to simulate the environment forA. D picksBT+1 uniformly at random from{0, 1}κ

and computes the user keys for previous time intervals as(Bi, ki) = G(Bi+1), for i = T, . . . , 1. D gives to
AU user keyMi = (Bi, ki) at iterationi.

Algorithm D is given a challenge stringr = r0‖r1 of length2κ, which in experiment 0 is the output of
the pseudorandom generator on input a random seed of lengthκ, and in experiment 1 is a random string of
length2κ. Formally, theprg experiments are defined in Figure 5.

Exp
prg-0
G,D Exp

prg-1
G,D

s←R {0, 1}κ r0‖r1 ←R {0, 1}2κ

r0‖r1 ← G(s) b← D(r0‖r1)
b← D(r0‖r1) return b

return b

Figure 5: Experiments defining the security of pseudorandomgeneratorG.

If AU outputsstop at time intervalt, D gives toAG the challenge keykt+1 = r1 andD outputs what
AG outputs. Denote bypb = Pr

[

Expsku-bCKU,A = b
]

. It is immediate that

Pr
[

Exp
prg-1
G,D = 1

]

= Pr
[

Expsku-1CKU,A = 1
]

= p1, (8)

and
Pr

[

Exp
prg-0
G,D = 0

]

= p′0, (9)

wherep′0 is the probability thatA, given the user keys as in experimentExpsku-0, but challenge keykt+1 =
G2(s) for a random seeds ∈ {0, 1}κ, outputs 0. The challenge key given toA in experimentExpsku-0 is
G2(G

T−t−1
1 (s)), whereGi

1(s) = G1(. . . G1(s) . . .) for i applications ofG1. We can bound the absolute
difference betweenp0 andp′0 as

|p′0 − p0| ≤ Pr
[

A distinguishes betweenG2(s) andG2(G
T−t−1
1 (s))

]

≤ (T − t) Pr
[

A distinguishes betweens←R {0, 1}
κ andG1(s)

]

≤ (T − t)Adv
prg

G . (10)

9

Using (8), (9) and (10), we can relate the success probabilities ofA andD by

Pr
[

D succeeds
]

=
1

2

(

Pr
[

Exp
prg-0
G,D = 0

]

+ Pr
[

Exp
prg-1
G,D = 1

])

=
1

2

(

p′0 + p1

)

=
1

2
(p0 + p1 + p′0 − p0)

≥ Pr
[

A succeeds
]

−
1

2
(T − t)Adv

prg

G .

It follows that

Pr
[

A succeeds
]

≤ Pr
[

D succeeds
]

+
1

2
(T − t)Adv

prg

G ,

and
AdvskuCKU(A) ≤ Adv

prg

G (D) + (T − t)Adv
prg

G ≤ TAdv
prg

G .

The statement of the theorem follows from the fact thatAdv
prg

G is negligible.

4.2 Trapdoor Permutation Construction (TDKU)

In this construction, the center picks an initial random state that is updated at each time interval by applying
the inverse of a trapdoor permutation. The trapdoor is knownonly to the center, but a user, given the state
at a certain moment, can apply the permutation iteratively to generate all previous states. The key for a time
interval is generated by applying a hash function, modeled as a random oracle, to the current state. This
idea underlies the key rotation mechanism of the Plutus file system [21], with the difference that Plutus uses
the output of an RSA trapdoor permutation directly for the encryption key. We could not prove the security
of this scheme in our model for key-updating schemes, even when the trapdoor permutation is not arbitrary,
but instantiated with the RSA permutation.

This construction has the advantage that knowledge of the total number of time intervals is not needed
in advance; on the other hand, its security can only be provedin the random oracle model. Let a family of
trapdoor permutations be given such that the domain size of the permutations with security parameterκ is
l(κ), for some polynomiall. Let h : {0, 1}l(κ) → {0, 1}κ be a hash function modeled as a random oracle.
The detailed construction of the trapdoor permutation scheme, calledTDKU, is presented below:

- Init(1κ, T, s) generates a randoms0 ←R {0, 1}
l(κ) and a trapdoor permutationf : {0, 1}l(κ) →

{0, 1}l(κ) with trapdoorτ from seeds using a pseudorandom generator. Then it outputsS0 =
(s0, f, τ).

- Update(t, St) with St = (st, f, τ) computesst+1 = f−1(st) and outputsSt+1 = (st+1, f, τ).

- Derive(t, St) outputsMt ← (st, f).

- Extract(t,Mt, i) applies the permutation iterativelyt − i times to generate statesi = f t−i(Mt) and
then outputsh(si).

Theorem 4. Given a family of trapdoor permutations and a hash function h, TDKU is a secure key-updating
scheme in the random oracle model.

Proof. LetA = (AU ,AG) be a polynomial-time adversary successful in breaking the security of the key-
updating scheme. Assuming thatAU runs at mostq times, we construct an algorithmI, which givenf and
y ← f(x) with x←R {0, 1}

l(κ) computesf−1(y) with sufficiently large probability.

10

Algorithm I has to simulate the environment forA. I makes a guess at the time intervalt∗ in whichAU

outputsstop. I picks t∗ uniformly at random from the set{1, . . . , q}. If AU does not outputstop at time
interval t∗, thenI aborts the simulation. Otherwise, at time intervalt less thant∗, I gives toAU the user
keyMt = (f t∗−t(y), f).

Algorithm Extract is executed byA as in the description of the scheme, butI simulates the random
oracle forA. If A queriesx to the random oracle for whichf(x) = y, thenI outputsx. Let E be the event
thatA asks queryx = f−1(y) to the oracle and̄E the negation of this event. Since the adversary has no
advantage in distinguishing the properly generated keykt+1 from a randomly generated key if it does not
query the random oracle atx, it follows that

Pr
[

A succeeds|Ē
]

≤
1

2
,

from which we can infer

Pr
[

A succeeds
]

= Pr
[

A succeeds|E
]

Pr
[

E
]

+ Pr
[

A succeeds|Ē
]

Pr
[

Ē
]

≤ Pr
[

E
]

+
1

2
. (11)

Equations (1) and (11) imply thatPr
[

E
]

≥ 1
2AdvskuTDKU(A). Then the success probability of algorithmI is

at least1
q
Pr

[

E
]

≥ 1
2q

AdvskuTDKU(A). The statement of the theorem follows from the fact that algorithm I has
only a negligible probability of success.

4.3 Tree Construction (TreeKU)

In the two schemes above, at least one of the algorithmsUpdate, Derive andExtract has worst-case com-
plexity linear in the total number of time intervals. We present a tree construction based on ideas of Canetti,
Halevi and Katz [9] with constant complexity for theDerive algorithm and logarithmic worst-case com-
plexity in the number of time intervals for theUpdate andExtract algorithms. Moreover, the amortized
complexity of theUpdate algorithm is constant. In this construction, the user key size is increased by at
most a logarithmic factor inT compared to the user key size of the two constructions described above.

Our tree-based key-updating scheme, calledTreeKU, generates keys using a complete binary tree with
T nodes, assuming w.l.o.g. thatT = 2d − 1 for somed ∈ Z. Each node in the tree is associated with a time
interval between 1 andT , a unique label in{0, 1}∗, a tree-key in {0, 1}κ and anexternal key in {0, 1}κ such
that:

1. Time intervals are assigned to tree nodes using post-order tree traversal, i.e., a node corresponds to
interval i if it is the i-th node in the post-order traversal of the tree. We refer to the node associated
with intervalt as nodet.

2. We define a functionlabel that maps nodet with 1 ≤ t ≤ T to its label in{0, 1}∗ as follows. The
root of the tree is labeled by the empty stringε, and the left and right children of a node with labelℓ

are labeled byℓ‖0 and byℓ‖1, respectively. The parent of a node with labelℓ is denoted byparent(ℓ),
thusparent(ℓ‖0) = parent(ℓ‖1) = ℓ. We denote the length of a labelℓ by |ℓ|.

3. The tree-key for the root node is chosen at random. The tree-keys for the two children of an internal
node in the tree are derived from the tree-key of the parent node using a pseudorandom generator
G : {0, 1}κ → {0, 1}2κ. For an inputs ∈ {0, 1}κ, we writeG(s) = G1(s)‖G2(s) with |G1(s)| =
|G2(s)| = κ. If the tree-key for the internal node with labelℓ is denoteduℓ, then the tree-keys for its
left and right children areuℓ‖0 = G0(uℓ) anduℓ‖1 = G1(uℓ), respectively. This implies that once the
tree-key for a node is revealed, then the tree-keys of its children can be computed, but knowing the
tree-keys of both children of a node does not reveal any information about the tree-key of the node.

11

Update(t, (Pt, Lt))
if t = 0

P1 ← leftkeys(ε, uT)
L1 ← ∅

else

ℓt ← label(t)
ut ← searchkey(ℓt, Pt)
if ℓt ends in 0

(ℓs, us)← rightsib(ℓt, Pt)
Pt+1 ← Pt \ {(ℓt, ut)} ∪ leftkeys(ℓs, us)
Lt+1 ← Lt ∪ {(ℓt, ut)}

else

(ℓs, us)← leftsib(ℓt, Lt)
Pt+1 ← Pt \ {(ℓt, ut)}
Lt+1 ← Lt \ {(ℓs, us)}

return (Pt+1, Lt+1)

leftkeys(ℓ, u)
A← ∅
while |ℓ| ≤ d

A← A ∪ {(ℓ, u)}
ℓ← ℓ‖0
u← G0(u)

return A

/* P1 contains the label/tree-key pairs of all the left-most nodes */
/* the set of left siblings is empty */

/* compute the label of nodet */
/* compute the tree-key of nodet */
/* t is the left child of its parent */
/* compute the label/tree-key pair of the right sibling oft */
/* update the label/tree-key pairs inPt+1 */
/* add the label/tree-key pair oft to set of left siblings fort + 1 */
/* t is the right child of its parent */
/* compute the label/tree-key pair of the left sibling oft */
/* remove label/tree-key pair oft from Pt+1 */
/* remove label/tree-key pair of left sibling oft from Lt+1 */

/* initialize setA with the empty set */
/* advance to the left until we reach a leaf */
/* add the label and tree-key of the current node inA */
/* move to left child of the node with labelp */
/* compute the tree-key of the left child */

Figure 6: TheUpdate(t, (Pt, Lt)) algorithm.

4. The external key of a nodet is the keykt output by the scheme to the application for intervalt.
For a nodet with tree-keyulabel(t), the external keykt is obtained by computingFulabel(t)

(1), where
Fu(b) = F (u, b) andF : {0, 1}κ × {0, 1} → {0, 1}κ is a pseudorandom function on bits.

We describe the four algorithms of the binary tree key-updating scheme:

- Init(1κ, T, s) generates the tree-key for the root node randomly,uT ←R {0, 1}
κ, using seeds, and

outputsS0 = ({(ε, uT)}, ∅).

- Update(t, St) updates the stateSt = (Pt, Lt) to the next center stateSt+1 = (Pt+1, Lt+1). The center
state for intervalt consists of two sets:Pt that contains pairs of (label, tree-key) for all nodes on the
path from the root to nodet (including nodet), andLt that contains label/tree-key pairs for all left
siblings of the nodes inPt that are not inPt.

We use several functions in the description of theUpdate algorithm. For a labelℓ and a setA of
label/tree-key pairs, we define a functionsearchkey(ℓ,A) that outputs a tree-keyu for which (ℓ, u) ∈
A, if the label exists in the set, and⊥ otherwise. Given a labelℓ and a set of label/tree-key pairsA,
function rightsib(ℓ,A) returns the label and the tree-key of the right sibling of thenode with labelℓ,
and, similarly, functionleftsib(ℓ,A) returns the label and the tree-key of the left sibling of the node
with labelℓ (assuming the labels and tree-keys of the siblings are inA). The functionleftkeys is given
as input a label/tree-key pair of a node and returns all label/tree-key pairs of the left-most nodes in the
subtree rooted at the input node, including label and tree-key of the input node.

The code for theUpdate andleftkeys algorithms is given in Figure 6. We omit the details of functions
searchkey, rightsib andleftsib. TheUpdate algorithm distinguishes three cases:

1. If t = 0, theUpdate algorithm computes the label/tree-key pairs of all left-most nodes in the

12

Extract(t, Mt, i)
ℓ1 . . . ℓs ← label(i)
v ← s

ℓ← ℓ1 . . . ℓv

while v > 0 and searchkey(ℓ, Mt) = ⊥
v ← v − 1
ℓ← ℓ1 . . . ℓv

for j = v + 1 to s

uℓ1...ℓj
← Gℓj

(uℓ1...ℓj−1
)

kℓ1...ℓs ← Fuℓ1...ℓs
(1)

return kℓ1...ℓs

/* the label ofi has lengths */

/* find a predecessor ofi that is inMt */

/* compute tree-keys of all nodes on path from predecessor toi */

/* return external key of nodei */

Figure 7: TheExtract(t,Mt, i) algorithm.

complete tree using functionleftkeys and stores them inP1. The setL1 is empty in this case, as
nodes inP1 do not have left siblings.

2. If t is the left child of its parent, the successor of nodet in post-order traversal is the left-most
node in the subtree rooted at the right siblingt′ of nodet. Pt+1 contains all label/tree-key pairs
in Pt except the tuple for nodet, and, in addition, all label/tree-key pairs for the left-most nodes
in the subtree rooted att′, which are computed byleftkeys. The set of left siblingsLt+1 contains
all label/tree-key pairs fromLt and, in addition, the label/tree-key pair for nodet.

3. If t is the right child of its parent, nodet+1 is its parent, soPt+1 contains all label/tree-key pairs
from Pt except the tuple for nodet, andLt+1 contains all the label/tree-key pairs inLt except
the pair for the left sibling of nodet.

- Algorithm Derive(t, (Pt, Lt)) outputs the user tree-keyMt, which is the minimum information needed
to generate the set of tree-keys{ui : i ≤ t}. Since the tree-key of any node reveals the tree-keys for
all nodes in the subtree rooted at that node,Mt consists of the label/tree-key pairs for the left siblings
(if any) of all nodes on the path from the root to the parent of nodet and the label/tree-key pair of node
t. This information has already been pre-computed such that one can setMt ← {(label(t), ut)} ∪Lt.

- Algorithm Extract(t,Mt, i) first finds the maximum predecessor of nodei in post-order traversal
whose label/tree-key pair is included in the user tree-keyMt. Then it computes the tree-keys for all
nodes on the path from that predecessor to nodei. The external keyki is derived from the tree-keyui

aski = Fui
(1) using the pseudorandom function. The algorithm is in Figure7.

Analysis of Complexity. The worst-case complexity of the cryptographic operationsused in theUpdate

andExtract algorithms is logarithmic in the number of time intervals, and that ofDerive is constant. How-
ever, it is easy to see that the key for each node is computed exactly once ifT updates are executed. This
implies that the total cost of all update operations isT pseudorandom-function applications, so the amortized
cost per update is constant.

Now we prove the security of the binary tree construction.

Theorem 5. Given a pseudorandom generator G and a pseudorandom function F , TreeKU is a secure
key-updating scheme.

Proof. SchemeTreeKU with T = 2d − 1 time intervals can be obtained fromd extended additive composi-
tions of a trivial key-updating schemeTrivKU with one time interval, defined as follows:

13

CKU TDKU TreeKU

Update(t, St) time 0 1 PK op. O(log T) PRG op.∗

Derive(t, St) time T − t PRG op. 0 0
Extract(t, Mt, i) time t− i PRG op. t− i PK op. O(log T) PRG op.

Center state size κ poly(κ) O(κ log T)
User key size κ κ O(κ log T)

Figure 8: Worst-case time and space complexities of the constructions.∗Note: the amortized complexity of
Update(t, St) in the binary tree scheme is constant.

- Init(1κ, T, s) generates a random user keyM ←R {0, 1}
κ from the seeds and outputsS0 = M .

- Update(t, St) outputsSt+1 ← St only for t = 0.

- Derive(t, St) outputsMt ←M for t = 1.

- Extract(t,Mt, i) returnsk = FM (1) for t = i = 1.

Given thatF is a pseudorandom function, it is easy to see thatTrivKU is a secure key-updating scheme.
Consider an adversaryA that has a non-negligible advantage in breakingTrivKU. Since the scheme has one
time interval,A is not given any user keys and it has to outputstop at time interval 0. We build a distinguisher
algorithmD for the pseudorandom function.D is given access to an oracleG : {0, 1} → {0, 1}κ, which is
eitherF (k, ·) with k ←R {0, 1}

κ, or a random functiong ←R {f : {0, 1} → {0, 1}κ}. D gives toA the
challengek1 = G(1) and outputs the same bit asA. It is immediate that the advantage ofD in distinguishing
the pseudorandom function from random functions is the sameas the advantage of adversaryA in breaking
TrivKU.

The tree scheme withT time intervals can be constructed as follows: generate2d−1 instances ofTrivKU

and make them leaves in the tree; build the tree bottom-up by additively composing (using the extended
method) two adjacent nodes at the same level in the tree. The security of the binary tree scheme obtained by
additive composition as described above follows from Theorem 1.

5 Performance of the Constructions

In this section we analyze the complexity of the cryptographic operations in the four algorithms and the
space complexities of the center state and the user keys for all three proposed constructions. Recall that all
schemes generate keys of lengthκ. In analyzing the time complexity of the algorithms, we specify what
kind of operations we measure and distinguish public-key operations (PK op.) from pseudorandom generator
applications (PRG op.) because PK operations are typicallymuch more expensive than PRG applications.
We omit the time complexity of theInit algorithm, as it involves only the pseudorandom generator for all
schemes except for the trapdoor permutation scheme, in which Init also generates the trapdoor permutation.
The space complexities are measured in bits. The detailed analysis is in Figure 8.

The chaining schemeCKU has efficientUpdate andExtract algorithms, but the complexity of the user-
key derivation algorithm is linear in the number of time intervals. On the other hand, the trapdoor permu-
tation schemeTDKU has efficient user-key derivation, but the complexity of theUpdate algorithm is one
application of the trapdoor permutation inverse and that oftheExtract(t,Mt, i) algorithm ist−i applications
of the trapdoor permutation. The tree-based schemeTreeKU balances the tradeoffs between the complex-
ity of the three algorithms: the cost ofDerive algorithm is constant and that of theUpdate andExtract

algorithms is logarithmic in the number of time intervals inthe worst-case, at the expense of increasing the

14

center-state and user-key sizes toO(κ log T). Moreover, the amortized cost of theUpdate algorithm in the
binary tree construction is constant.

BothCKU andTreeKU require the number of time intervals to be known in advance; this is not needed
for TDKU. As the chaining and the trapdoor permutation schemes have worst-case complexities linear inT
for at least one algorithm, both of them require the number oftime intervals to be rather small. In contrast,
the binary tree construction can be used for a practically unbounded number of time intervals.

In practical applications, such as key management for cryptographic storage systems, we recommend
using a construction similar to the generic forward-securesignature scheme with practically unbounded
number of time periods of Malkin, Micciancio, and Miner [24]. The idea is to construct the multiplicative
composition of the chaining scheme with binary tree schemesof different sizes. At time intervali of the
chaining scheme, the center generates an instance of the binary tree scheme with2i − 1 time intervals. In
addition to allowing a practically unbounded number of timeintervals, this construction has the property
that the complexity of theUpdate, Derive andExtract algorithms increases with the number of past time
intervals.

6 Related Work

Time-Evolving Cryptography. The notion of secure key-updating schemes is closely related to forward-
and backward-secure cryptographic primitives. Indeed, a secure key-updating scheme is forward-secure as
defined originally by Anderson [4], in the sense that it maintains security in the time intervals following
a key exposure. However, this is the opposite of the forward security notion formalized by Bellare and
Miner [6] and used in subsequent work. Here we use the term forward security to refer to the latter notion.

Time-evolving cryptography protects a cryptographic primitive against key exposure by dividing the
time into intervals and using a different secret key for every time interval. Forward-secure primitives protect
past uses of the secret key: if a device holding all keys is compromised, the attacker can not have access
to past keys. In the case of forward-secure signatures, the attacker can not generate past signatures on
behalf of the user, and in the case of forward-secure encryption, the attacker can not decrypt old cipher-
texts. There exist many efficient constructions of forward-secure signatures [6, 2, 19] and several generic
constructions [22, 24]. Bellare and Yee [7] analyze forward-secure private-key cryptographic primitives
(forward-secure pseudorandom generators, message authentication codes and symmetric encryption) and
Canetti, Halevi and Katz [9] construct the first forward-secure public-key encryption scheme.

Forward security has been combined with backward security in models that protect both the past and
future time intervals, called key-insulated [12, 13] and intrusion-resilient models [20, 11]. In both models,
there is a center that interacts with the user in the key update protocol. The basic key insulation model
assumes that the center is trusted and the user is compromised in at mostt time intervals and guarantees
that the adversary does not gain information about the keys for the intervals the user is not compromised. A
variant of this model, called strong key insulation, allowsthe compromise of the center as well. Intrusion-
resilience tolerates arbitrarily many break-ins into boththe center and the user, as long as the break-ins do not
occur in the same time interval. The relation between forward-secure, key-insulated and intrusion-resilient
signatures has been analyzed by Malkin, Obana and Yung [25].A survey of forward-secure cryptography is
given by Itkis [18].

Re-keying, i.e., deriving new secret keys periodically from a master secret key, is a standard method
used by many applications. It has been formalized by Abdallaand Bellare [1]. The notion of key-updating
schemes that we define is closely related to re-keying schemes, with the difference that in our model, we
have the additional requirement of being able to derive pastkeys efficiently.

15

Multicast Key Distribution. In key distribution schemes for multicast, a group controller distributes a
group encryption key to all users in a multicast group. The group of users is dynamic and each join or
leave event requires the change of the encryption key. The goal is to achieve both forward and backward
security. In contrast, in our model of key-updating schemesusers should be able to derive past encryption
keys efficiently.

A common key distribution model for multicast is that ofkey graphs, introduced by Wong et al. [30]
and used subsequently in many constructions [28, 27, 17, 16]. In these schemes, each user knows its own
secret key and, in addition, a subset of secret keys used to generate the group encryption key and to perform
fast update operations. The relation between users and keysis modeled in a directed acyclic graphs, in
which the source nodes are the users, intermediary nodes arekeys and the unique sink node is the group
encryption key. A path from a user node to the group key contains all the keys known to that user. The
complexity and communication cost of key update operationsis optimal for tree structures [29], and in this
case it is logarithmic in the number of users in the multicastgroup. We also use trees for generating keys,
but our approach is different in considering the nodes of thetree to be only keys, and not users. We obtain
logarithmic update cost in the number of revocations, not inthe number of users in the group.

Key Management in Cryptographic Storage Systems. Early cryptographic file systems [8, 10] did not
address key management. Cepheus [14] is the first cryptographic file system that considers sharing of
files and introduces the idea of lazy revocation for improving performance. However, key management in
Cepheus is centralized by using a trusted key server for key distribution. More recent cryptographic file
systems, such as Oceanstore [23] and Plutus [21], acknowledge the benefit of decentralized key distribution
and propose that key management is handled by file owners themselves. For efficient operation, Plutus
adopts a lazy revocation model and uses a key-updating scheme based on RSA, as described in Section 4.2.

Farsite [3], SNAD [26] and SiRiUS [15] use public-key cryptography for key management. The group
encryption key is encrypted with the public keys of all groupmembers and these lockboxes are stored on
the storage servers. This approach simplifies key management, but the key storage per group is proportional
to the number of users in the group. Neither of these systems addresses efficient user revocation.

7 Conclusions

Motivated by the practical problem of efficient key management for cryptographic file systems that adopt
lazy revocation, we define formally the notion of key-updating schemes for lazy revocation and its security.
In addition, we give two methods for additive and multiplicative composition of two secure key-updating
scheme into a new scheme which can handle a larger number of user revocations, while preserving security.
We also prove the security of two slightly modified existing constructions and propose a new construction,
the binary-tree scheme, that balances the tradeoffs of the existing constructions. Finally, we provide a
systematic analysis of the computational and communication complexities of the three constructions.

We can extend the definition of key-updating schemes to support user keys for intervalt, from which
only keys of the time intervals betweeni andt can be extracted, for any1 ≤ i ≤ t. This is useful in a model
in which users joining the group at a later time interval should not have access to past information. The
extension can be incorporated in the tree construction without additional cost, but the chaining and trapdoor
permutation constructions do not work in this model becausethe user key reveals all previous keys.

In a companion paper [5], we show how to extend secure key-updating schemes to cryptosystems with
lazy revocation, and introduce the notions of symmetric encryption, message-authentication codes, and
signature schemes with lazy revocation. Furthermore, we demonstrate that using these cryptosystems in
some existing distributed cryptographic file systems improves their efficiency and security.

16

References

[1] M. Abdalla and M. Bellare, “Increasing the lifetime of a key: A comparitive analysis of the security
of rekeying techniques,” inProc. Asiacrypt 2000, vol. 1976 ofLecture Notes in Computer Science,
pp. 546–559, Springer-Verlag, 2000.

[2] M. Abdalla and L. Reyzin, “A new forward-secure digital signature scheme,” inProc. Asiacrypt 2000,
vol. 1976 ofLecture Notes in Computer Science, pp. 116–129, Springer-Verlag, 2000.

[3] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R. Douceur, J. Howell, J. R. Lorch,
M. Theimer, and R. P. Wattenhofer, “FARSITE: Federated, available, and reliable storage for an in-
completely trusted environment,” inProc. 5th Symposium on Operating System Design and Implemen-
tation (OSDI), Usenix, 2002.

[4] R. Anderson, “Two remarks on public-key cryptology,” Technical Report UCAM-CL-TR-549, Uni-
versity of Cambridge, 2002.

[5] M. Backes, C. Cachin, and A. Oprea, “Lazy revocation in cryptographic file systems,” Research Report
RZ 3628, IBM Research, Aug. 2005.

[6] M. Bellare and S. Miner, “A forward-secure digital signature scheme,” inProc. Crypto 1999, vol. 1666
of Lecture Notes in Computer Science, pp. 431–448, Springer-Verlag, 1999.

[7] M. Bellare and B. Yee, “Forward-security in private-keycryptography,” inProc. CT-RSA 2003,
vol. 2612 ofLecture Notes in Computer Science, pp. 1–18, Springer-Verlag, 2003.

[8] M. Blaze, “A cryptographic file system for Unix,” inProc. First ACM Conference on Computer and
Communication Security (CCS), pp. 9–16, 1993.

[9] R. Canetti, S. Halevi, and J. Katz, “A forward-secure public-key encryption scheme,” inProc. Euro-
crypt 2003, vol. 2656 ofLecture Notes in Computer Science, pp. 255–271, Springer-Verlag, 2003.

[10] G. Cattaneo, L. Catuogno, A. D. Sorbo, and P. Persiano, “The design and implementation of a transpar-
ent cryptographic file system for Unix,” inProc. USENIX Annual Technical Conference 2001, Freenix
Track, pp. 199–212, 2001.

[11] Y. Dodis, M. Franklin, J. Katz, A. Miyaji, and M. Yung, “Intrusion-resilient public-key encryption,”
in Proc. CT-RSA 2003, vol. 2612 ofLecture Notes in Computer Science, pp. 19–32, Springer-Verlag,
2003.

[12] Y. Dodis, J. Katz, S. Xu, and M. Yung, “Key insulated public-key cryptosystems,” inProc. Eurocrypt
2002, vol. 2332 ofLecture Notes in Computer Science, pp. 65–82, Springer-Verlag, 2002.

[13] Y. Dodis, J. Katz, and M. Yung, “Strong key-insulated signature schemes,” inProc. Workshop of Public
Key Cryptography (PKC), vol. 2567 ofLecture Notes in Computer Science, pp. 130–144, Springer-
Verlag, 2002.

[14] K. Fu, “Group sharing and random access in cryptographic storage file systems,” Master’s thesis,
Massachusetts Institute of Technology, 1999.

[15] E. Goh, H. Shacham, N. Modadugu, and D. Boneh, “SiRiUS: Securing remote untrusted storage,” in
Proc. Network and Distributed Systems Security (NDSS) Symposium 2003, pp. 131–145, ISOC, 2003.

17

[16] M. T. Goodrich, J. Z. Sun, and R. Tamassia, “Efficient tree-based revocation in groups of low-state de-
vices,” inProc. Crypto 2004, vol. 3152 ofLecture Notes in Computer Science, pp. 511–522, Springer-
Verlag, 2004.

[17] J. Goshi and R. E. Ladner, “Algorithms for dynamic multicast key distribution trees,” inProc. 22nd
Symposium on Principles of Distributed Computing (PODC), pp. 243–251, ACM, 2003.

[18] G. Itkis, “Forward security, adaptive cryptography: Time evolution.” Survey, available fromhttp:
//www.cs.bu.edu/fac/itkis/pap/forward-secure-survey.pdf.

[19] G. Itkis and L. Reyzin, “Forward-secure signatures with optimal signing and verifying,” inProc.
Crypto 2001, vol. 2139 ofLecture Notes in Computer Science, pp. 332–354, Springer-Verlag, 2001.

[20] G. Itkis and L. Reyzin, “SiBIR: Signer-base intrusion-resilient signatures,” inProc. Crypto 2002,
vol. 2442 ofLecture Notes in Computer Science, pp. 499–514, Springer-Verlag, 2002.

[21] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu, “Plutus: Scalable secure file sharing
on untrusted storage,” inProc. 2nd USENIX Conference on File and Storage Technologies (FAST),
2003.

[22] H. Krawczyk, “Simple forward-secure signatures from any signature scheme,” inProc. 7th ACM Con-
ference on Computer and Communication Security (CCS), pp. 108–115, 2000.

[23] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao, “Oceanstore: An architecture for global-scale
persistent storage,” inProc. 9th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pp. 190–201, ACM, 2000.

[24] T. Malkin, D. Micciancio, and S. Miner, “Efficient generic forward-secure signatures with an un-
bounded number of time periods,” inProc. Eurocrypt 2002, vol. 2332 ofLecture Notes in Computer
Science, pp. 400–417, Springer-Verlag, 2002.

[25] T. Malkin, S. Obana, and M. Yung, “The hierarchy of key evolving signatures and a characterization of
proxy signatures,” inProc. Eurocrypt 2004, vol. 3027 ofLecture Notes in Computer Science, pp. 306–
322, Springer-Verlag, 2004.

[26] E. Miller, D. Long, W. Freeman, and B. Reed, “Strong security for distributed file systems,” inProc.
the First USENIX Conference on File and Storage Technologies (FAST), 2002.

[27] O. Rodeh, K. Birman, and D. Dolev, “Using AVL trees for fault tolerant group key management,”
International Journal on Information Security, vol. 1, no. 2, pp. 84–99, 2001.

[28] A. T. Sherman and D. A. McGrew, “Key establishment in large dynamic groups using one-way function
trees,”IEEE Transactions on Software Engineering, vol. 29, no. 5, pp. 444–458, 2003.

[29] R. Tamassia and N. Triandopoulos, “Computational bounds on hierarchical data processing with ap-
plications to information security,” inProc. 32nd International Colloquium on Automata, Languages
and Programming (ICALP), 2005.

[30] C. K. Wong, M. Gouda, and S. S. Lam, “Secure group communications using key graphs,”IEEE/ACM
Transactions on Networking, vol. 8, no. 1, pp. 16–30, 2000.

18

