Secure Key-Updating for Lazy Revocation

Michael Backes Christian Cachin Alina Optea

IBM Zurich Research Laboratory
CH-8803 Rischlikon, Switzerland
{nbc, cca, opr }@urich.ibmcom

September 25, 2005

Abstract

We consider the problem of efficient key management and esecation in cryptographic file systems
that allow shared access to files. A performance-efficidntienm to user revocation in such systems is
lazy revocation, a method that delays the re-encryptionfidé aintil the next write to that file. We for-
malize the notion of key-updating schemes for lazy revooatan abstraction to manage cryptographic
keys in file systems with lazy revocation, and give a secutdfjnition for such schemes. We give two
composition methods that combine two secure key-updathgrees into a new secure scheme that
permits a larger number of user revocations. We prove theriggof two slightly modified existing
constructions and propose a novel binary tree construthianis also provable secure in our model.
Finally, we give a systematic analysis of the computati@mal communication complexity of the three
constructions and show that the novel construction imgdlve previously known constructions.

1 Introduction

The recent trend of storing large amounts of data on higkepeedicated storage-area networks (SANS)
stimulates flexible methods for information sharing, babakises new security concerns. As the networked
storage devices are subject to attacks, protecting thedeiality of stored data is highly desirable in such
an environment. Several cryptographic file systems have tesigned for this purpose [14, 26, 21, 15], but
practical solutions for efficient key management and usaraation still need to be developed further.

We consider cryptographic file systems that allow shareésscto stored information and that use
untrusted storage devices. In such systems, we can aggfégatinto sets such that access permissions and
ownership are managed at the level of these sets. The useiisawvl access to the files in a set form a group,
managed by the owner of the files, or treup owner. Initially, the same cryptographic key can be used to
encrypt all files in a set, but upon revocation of a user froegtoup, the key needs to be changed to prevent
access of revoked users to the files. The group owner geaeatedistributes this new key to the users in
the group. There are two options for handling user revopataxtive and lazy revocation, which differ
in the way that users are revoked from a group. With activeaation, all files in a set are immediately
re-encrypted with the new encryption key. The amount of weaalissed by a single revocation with this
method might, however, be prohibitive for large sets of fil&th the alternative method of lazy revocation,
re-encryption of afile is delayed until the next write to tfilgt and, thus, users do not experience disruptions

*Permanent address: Computer Science Department, CaMeligm University, Pittsburgh, USA. Emaiél i na@s. cnu.
edu

in the operation of the file system caused by the immedianogyption of all files protected by the same
revoked key. In systems adopting lazy revocation, the files $set might be encrypted with different keys.
Storing and distributing these keys becomes more diffibalhtin systems using active revocation.

In this paper, we address the problem of efficient key manageim cryptographic file systems with
lazy revocation. An immediate solution to this problem, @teéd by the first cryptographic file systems
using delayed re-encryption [14], is to store all keys far fles in a set at the group owner. However,
we are interested in more efficient methods, in which the ramolb stored keys is not proportional to the
number of revocations. We formalize the notionkef-updating schemes for lazy revocation and give a
rigorous security definition. In our model,canter (e.g., the group owner) initially generates some state
information, which takes the role of the master secret kdye denter state is updated at every revocation.
We call the period of time between two revocationsnae interval. Upon a user request, the center uses its
current local state to deriveuser key and gives that to the user. From the user key of some timevaiter
a user must be able to extract the key for any previous tinevat efficiently. Security for key-updating
schemes requires that any polynomial-time adversary withss to the user key for a particular time interval
does not obtain any information about the keys for futureetintervals. The keys generated by our key-
updating schemes can be used with a symmetric encryptiamitilign to encrypt files for confidentiality or
with a message-authentication code to authenticate fitdategrity protection.

We describe two generic composition methods that combimesteure key updating schemes into a
new scheme in which the number of time intervals is eitherstiva or the product of the number of time
intervals of the initial schemes. Additionally, we investie three constructions of key-updating schemes.
The first scheme uses a chain of pseudorandom generatocatfpis and is related to existing methods
using one-way hash chains. It has constant update costdaretiter, but the complexity of the user-key
derivation is linear in the total number of time intervalshelTsecond scheme can be based on arbitrary
trapdoor permutations and generalizes the key rotatiostasetion of the Plutus file system [21]. It has
constant update and user-key derivation times, but thetedgorithm uses a relatively expensive public-
key operation. These two constructions require that tte mtmberT” of time intervals is polynomial in the
security parameter. Our third scheme uses a novel corisiudt relies on a tree to derive the keys at the
leaves from the master key at the root. The tree can be seeswdting from the iterative application of the
additive composition method and supports a practicallyoundded number of time intervals. The binary-
tree construction balances the tradeoff between the estater update and user-key derivation algorithms
(both of them have logarithmic complexity i), at the expense of increasing the sizes of the user key and
center state by a logarithmic factorin

The rest of the paper is organized as follows. In Section 2 me thhe definition of security for key-
updating schemes. In Section 3, we introduce the additigerauitiplicative composition methods for secure
key-updating schemes. The three constructions and propfadir security are presented in Section 4. A
systematic analysis of the computational and communicatmnplexities of the three constructions and a
comparison with related work are given in Sections 5 andgpeetively.

2 Definitions

2.1 Key-Updating Schemes

In our model, we divide time into intervals, not necessanilyixed length, and each time interval is associ-
ated with a new key that can be used in a symmetric-key cryapbdc algorithm. In a key-updating scheme,
the center generates initial state information that is tgmtlat each time interval, and from which the center
can derive a user key. The user key for intemvpermits a user to derive the keys of previous time intervals
(k; for i < t), but it should not give any information about keys of futtiree intervals k; for i > ¢).

We formalize key-updating schemes using the approach oémamyptography and denote the security
parameter by.. For simplicity, we assume that all the keys are bit stringeiegth <. The number of time
intervals and the security parameter are given as inpugtinihialization algorithm.

Definition 1 (Key-Updating Schemes).A key-updating scheme consists of four deterministic poigial
time algorithmsKU = (Init, Update, Derive, Extract) with the following properties:

- The initialization algorithm|nit, takes as input theecurity parameter 1*, the number of time inter-
vals T and arandom seed s € {0, 1}/(*) for a polynomiall(x), and outputs a bit string, called the
initial centerstate.

- The key update algorithnt/pdate, takes as input the curretitneinterval ¢, the current centestate S;,
and outputs the centetate S, for the next time interval.

- The user key derivation algorithnDerive, is given as input dme interval ¢ and the centestate S;,
and outputs theser key M;. The user key can be used to derive all keyfor 1 < i < ¢.

- The key extraction algorithngxtract, is executed by the user and takes as inginainterval ¢, the
user key M, for intervalt as received from the center, antheget timeinterval i with 1 < i < t. The
algorithm outputs thé&ey k; for intervali.

2.2 Security of Key-Updating Schemes

The definition of security for key-updating schemes requihat a polynomial-time adversary with access
to the user key for a time intervalis not able to derive any information about the keys for thet tiene
interval. Formally, consider a probabilistic polynomiahe adversaryd = (A, Ag) that participates in
the following experiment:

Initialization: The initial center state is generated with tha algorithm.

Key updating: The adversary adaptively picks a time interivatich thad < ¢ < T—1 as follows. Starting
witht =0,1,..., algorithm A4, is given the user keya/; for all consecutive time intervals unti;,
decides to outpuitop or ¢t becomes equal t6' — 1. We require that4,;,, a probabilistic polynomial-
time algorithm, outputstop at least once before haltingl;, also outputs some additional information
z € {0,1}* that is given as input to algorithtdg.

Challenge: A challenge for the adversary is generated, which is eitherkey for time intervak + 1
generated with th&pdate, Derive andExtract algorithms, or a random bit string of length

Guess: Ag takes the challenge andas inputs and outputs a Ibit

The key-updating scheme is secure if the advantage of trersaty of distinguishing between the properly
generated key for time interval+ 1 and the random key is only negligibly larger thén More formally,
the definition of a secure key-updating scheme is the foligwi

Definition 2 (Security of Key-Updating Schemes).Let KU = (Init, Update, Derive, Extract) be a key-
updating scheme and a polynomial-time adversary algorithm that participate®me of the two experi-
ments defined in Figure 1. The advantage of the adverdary(.A;,, . Ag) for the key-updating schenteU
is defined as

AdvES(A) = ‘Pr[Expﬁk&:}l(l’ﬁ,T) =1]- Pr[ExpszJ;g(lﬁ,T) =1] ‘

Expiy (1",)
So «— Init(17,T)
t—0
(d,z) «— Au(t, L, 1)
while(d # stop) and (t < T — 1)
t—t+1
St «— Update(t — 1,5:—1)
M < Derive(t, St)
(d, z) — Au(t, My, z)
St+1 < Update(t, St)
M;i4q <+ Derive(t + 1, S¢41)
kiy1 < Extract(t + 1, M¢41)
b — Ag(kit1, 2)
return b

Expiia(1%,7)

So «— Init(1%,7T)

t+—0

(d,z) — Au(t, L, 1)

while(d # stop) and (t < T — 1)
t—t+1
St < Update(t — 1,5:—1)
M «— Derive(t, St)
(d, z) — Au(t, My, z)

kt+1 “—R {0, 1}K

b — .Ag(kt+172)

return b

Figure 1: Experiments defining the security of key-updatogemes.

Without loss of generality, we can relate the success pitilyabf adversary.A of distinguishing between

the two experiments and its advantage as

1 -
Pr[A succeeds= 3 [Pr[EXPSKkJ,ft =

O] +Pr [ExpszJ;l‘ 1]]

;[1 +AdvER ()] (1)

The maximum advantage of all probabilistic polynomialidversaries is denoted

AdVES = max{AdVSku(A)}.
The key-updating schent€U is secure if there exists a negligible functionsuch thatddvyy} = e(x).

Remark. The security notion we have defined is equivalent to a sedyngtigpnger security definition, in
which the adversary can choose the challenge time intéfrwaith the restriction that* is greater than the
time interval at which the adversary outpstsp and that:* is polynomial in the security parameter. This
second security definition guarantees, intuitively, thatadversary is not gaining any information about the
keys of any future time intervals after it outputsp.

3 Composition of Key-Updating Schemes

Let KU; = (Init;, Update;, Derive;, Extract;) andKUy = (Inity, Update,, Derives, Extracts) be two se-
cure key-updating schemes using the same security pamameith 77 and7, time intervals, respectively.
In this section, we show how to combine the two schemes intexare key-updating schenkd) = (Init,
Update, Derive, Extract), which is either the additive or multiplicative compositiof the two schemes with
T =T, + Ty, andT = T - Ty time intervals, respectively. Similar generic compositinethods have been
given previously for forward-secure signature schemeg [24

For simplicity, we assume the length of the random seed ifnflh@lgorithm of the schemKEU to bex
for both composition methods. Lét: {0,1}* — {0, 1}1()+=(*) be a pseudorandom generator; it can be
used to expand a random seed of lengthto two random bit strings of length(x) andis(k), respectively,
as needed famit; andlnity. We writeG(s) = G1(s)||G2(s) with |G1(s)| = I1(k) and|Ga(s)| = l2(k) for
s € {0,1}".

Init(1~, 7, s)
S(% — |nit1(1N,T1,G1(S))
Sg — |nit2(1'€,Tg,G2(S))
return (Sg, S3)

Derive(t, (S}, S?))
if t <1}
M} — Derive;(t,S})
M? — 1
else
M} < Derive; (T%, S})
M7 « Derives(t — T4, 5%?)
return(M}, M?)

Update(t, (S, 57))

Extract(t, (M}, M?),14)

if t <1} if i >1T
S}, < Update, (¢, S}) k; « Extracta(t — Ty, M?2,i — T})
S7., — S? else
else if t <T}
Stl_‘_l — Stl k; «— Extracty (t, Mtl,i)
S7., « Updatey(t — T3, S7) else
return (St 1, S7v 1) k; « Extracty (Ty, M}, i)
return k;

Figure 2: The additive composition 8U; andKU,.

3.1 Additive Composition

The additive composition of two key-updating schemes useskeys generated by the first scheme for the
first 71 time intervals and the keys generated by the second schentleefsubsequerif’, time intervals.
The user key for the first; intervals inKU is the same as that of scherdt); for the same interval. For
an intervalt greater thariy, the user key includes both the user key for intetvalT; of schemeKU,, and

the user key for intervdl} of schemeKU,. The details of the additive composition method are deedrib
Figure 2. The security of the composition operation is azedyin the following theorem.

Theorem 1. Suppose that KU; = (Inity, Update;, Derive, Extract;) and KUy = (Inite, Update,, Derive,,
Extractg) are two secure key-updating schemes with 77 and 75 time intervals, respectively, and that G is
a pseudorandom generator as above. Then KU = (Init, Update, Derive, Extract) described in Figure 2
denoted as KU; & KU, is a secure key-updating scheme with 77 + T time intervals.

Proof. Let A = (Ay,.Ag) be a polynomial-time adversary féfU. We build two adversary algorithms
Al = (A}, AL) and A% = (A7, A%) for KU; andKUs, respectively.

Construction of A'. A! simulates the environment fot, by giving to.4;, at each iteration the user key
M} that A}, receives from the center. 4 aborts or4;, does not outputtop until time intervalT} — 1, then

A' outputs_L and aborts. Otherwiseé,li, outputsstop at the same time interval a4;,. In the challenge
phase,A}; receives as input a challenge key ; and gives that todg. Aé outputs the same bit a$g. The

success probability oft* for b € {0, 1} is

Pr[Expi Vs = b]= Pr[ExpR L = blE1 N B, @

whereE is the event thaid;, outputsstop at a time interval strictly less thdf, and E; the event thatd
does not distinguish the simulation done My from the protocol execution. The only difference between
the simulation and the protocol execution is that the ih#tiate forKU; is a random seed in the simulation
and it is generated using a pseudorandom genetatothe protocol. IfA distinguishes the simulation from
the protocol, then a distinguisher algorithinfor the pseudorandom generator with advantage‘g;rg(D)
can be constructed. By the definition B, we havePr[E,] = AdvE®(D).

5

Construction of A%, A? simulates the environment fot: it first picks a random seedof lengthx and
generates frond7; (s) an instance of the schenké;. For the firstT} iterations of4;,, A% gives to Ay
the user keys generated frosm If A aborts or.A;, stops at a time interval less thdh, then A% aborts
the simulation. For the next, time interval, A? feeds.A;; the user keys received from the center. A,
outputsstop at a time intervat > 17, thenAﬁ, outputsstop at time intervalt — 7;. In the challenge phase,
A?; receives a challengk;,_7, +1, gives this challenge tolg and outputs wha#g outputs. The success
probability of A% for b € {0,1} is

PrExpi e = b= Pr[Expii 4 = b|E1 N Ea). 3)
We can relate the success probabilities4pf4!, and.A% for b € {0, 1} as follows:
Pr[ExpRih =b] = Pr[Expszlj‘:Z = bN Ey)+Pr[Expily = bN B
Pr[Expig 4 = bN Ey N Ey |+ Pr[Expdy} = bN By N Ey+

r[Expszlj‘ﬁ = bN E]
Pr[ExpSKkJ:A =blE1 N Eg]Pr [El N Eg]—i—

[

[

[

IN
" "

r ExpszJf\ =b|Es N El]Pr [Eg N El]—|— Pr [Eg}

r ExpSKkJ' Al = b] Pr [El N EQ] + Pr[ExpﬁkJ' 2 = b] Pr [Eg N E_l} +
Pr[Es] 4)

< Pr[Bxpiya =]+ Pr[Expiy e = b+ Pr(Es],

Il
-

where (4) follows from (2) and (3). Finally, we can infer frdt)
AdVES (A) < AdvE (AY) + AdvEs, (A%) + AdvEE(D).

SinceAdvy), (A'), Advi, (A?) and AdvE8(D) are negligible from the assumptions of the theorem, the
statement of the theorem foIIows O

Extended Additive Composition. It is immediate to extend the additive composition to cargta new
scheme withl} +715+1 time intervals. The idea is to use the first scheme for the &kt firstT; intervals,
the second scheme for the keys of the riBxintervals, and the seedas the key for th¢T} + 7> + 1)-th
interval. By revealing the seedas the user key at interv@l, + 7> + 1, all previous keys oKU; andKU,
can be derived. This idea will be useful in our later congtamcof a binary tree key-updating scheme. We
call this composition methoektended additive composition.

3.2 Multiplicative Composition

The idea behind the multiplicative composition operatiemoi use every key of the first scheme to seed an
instance of the second scheme. Thus, for each one dfthimme intervals of the first scheme, we generate
an instance of the second scheme Wihtime intervals.

In the sequel, we denote a time intervdbr 1 < ¢ < T3 - T, of schemeKU as a pait = <i, 5>, where
iandj are suchthat = (i — 1)7T5 + jfor 1 < i < T; andl < j < Ty. The user key for a time interval
t = <i, 7> includes both the user key for time interval 1 of schemeé<U; and the user key for time interval
j of schemeKU,. A user receivingM/.; ;- can extract the key for any time intervabn,n> < <i, j>
by first extracting the key< for time intervalm of KU; (this step needs to be performed onlyif <),
then usingK to derive the initial state of the:-th instance of the scheméJ-, and finally, deriving the key
k<mn>. The details of the multiplicative composition method &nevgn in Figure 3. The security of the
multiplicative composition method is analyzed in the faling theorem.

6

Init(17, T, 5)
So — |nit1(1ﬁ, Ty, Gl(s))
return (L, So, So)

Derive(<i,j>, (S}, Si, SJQ))
ifi>1
M} | « Derive; (i — 1,5} ;)
else
Mil—l —1
MJ2 — Derivesy (7, sz)
return (M} |, M?)

K3

Update(<i, j>, (S, S}, SJQ))
if =T
S}, « Update, (i, S})
k}l,, < Extract; (i + 1,
Derivey (i + 1, 5},1),i+ 1)
S2 — |nit2(1K,T27G2(kil+1))
S? « Update, (0, S7)

Extract(<i, j>, (M}, M), <m,n>)
ifi =m
k<m.n> < Extracta(J,]VIJ-Q, m)
else
K « Extract; (i — 1, M} ;,m)
Sg — |nit2(1'€, TQ, GQ(K))
k<m.n> < Extracta(T2, S3,n)

return (S}, 57;1+17 512)
else

57,1 < Update,(j, S7)

return (S}, 5},57,1)

=124

return K<y n>

Figure 3: The multiplicative composition #fU; andKU,.

Theorem 2. Suppose that KU; = (Inity, Update;, Derive, Extract;) and KUy = (Inite, Update,, Derive,,
Extracty) are two secure key-updating schemes with 77 and 75 time intervals, respectively, and that G is
a pseudorandom generator as above. Then KU = (Init, Update, Derive, Extract) described in Figure 3
denoted as KU; ® KU, is a secure key-updating scheme with 77 - T, time intervals.

Proof. Let. A = (Ay, . Ag) be a polynomial-time adversary feiU. Similarly to the proof of Theorem 1, we
build two adversary algorithmd! = (A4}, A}) andA% = (A7, A2) for KU; andKU,, respectively.

Construction of AL. A}, gets from the center the user keys' of schemeKU; for all time intervalsi
until it outputsstop. A' simulates the environment fot by sending the following user keys:

1. Atinterval <i, 1>, for 1 < i < T3, A runsk; « Extract (i, M},i); S3 < Inita(1%, Ta, Ga(k;));
S% « Update,(0, S3); M7 «+ Derives(1, S7) and gives4y, the user keyM; 1~ = (M} |, M?).

2. Attime interval<i, j>, for 1 <i < Tj andl < j < Ty, A}, computesSJZ «— Updatey(j — 1,SJ271)
andM? « Derivey(j, S7) and gives tady, the user keyM; j~. = (M, |, M?).

If A aborts orA4;, outputsstop at a time intervakai, j> with j # Tb, then.A}, aborts the simulation and
outputs_L. Otherwise,A}, outputsstop at time interval. In the challenge interva.lA}; is given a challenge
key kZZ'Jrl and it exeCUte§g — |nit2(1”,T2,G2(ki+1)); S% — Updatez(O, Sg), M — Deriveg(l,S%);
k? «— Extracty(1, M, 1). It then gives the challenge to Ag. A outputs the same bit adg. The success
probability of A* for b € {0,1} is

Pr[Expii 1 = b]= Pr[Expii = blE: N B, (%)

where E; is the event thatd;, outputsstop at a time intervalz, j) with j = T, and E, the event thatd
does not distinguish the simulation done My from the protocol execution. # distinguishes the simu-
lation from the protocol, then a distinguisher algorittiirfor the pseudorandom generator with advantage
AdvPr8(D) can be constructed. By the definition B, we havePr[E,] = AdvE;&(D).

Construction of A%2. Assuming that4;, runs at most times (andq is polynomial inx), .A> makes a
guess for the time interval" in which A;, outputsstop. A2 picks i* uniformly at random from the set
{1,...,q}. A% generates an instance of the schefhl with i* time intervals. For any intervati, j> with
i < i*, A? generates the user keys using the keys from this instan€t af For time intervals<i*, j> with
1 < j < Ty, A% outputs user keyM)., M]?), whereM}._, is the user key for time intervaf — 1 of KU,
that it generated itself antl/]2 is the user key for time intervgl of KU that it received from the center.

If A aborts orA;, outputsstop at a time intervak, j> with ¢ # i* or withi = ¢* andj = T5, then
A? aborts the simulation and outputs Otherwise, if4;, outputsstop at a time intervak:*, j>, then.A?,
outputsstop at time intervalj. In the challenge phasei? receives a challenge kéy ., and gives that to
Ag. A% outputs the same bit adg. The success probability of? for b € {0,1} is

- 1 - -
Pr[ExpRi’ye = b]= 5Pr[ExpszJ7 S =blE1NEy). (6)
As in the proof of Theorem 1, we can infer
Pr[ExpRi s =b] < Pr[Expfy =0blE1 N Eo|Pr[Er N Ey)+
Pr[Expi 4 = b|E1 N Eo|Pr[Ey N B+ Pr[Es]
= Pr[Expf(kJ;f’Al = b] Pr [El N EQ] +q Pr[ExpszJ;iAQ = b] Pr [El N E2]
+ Pr[Fs) (7
< Pr[ExpﬁkJ;f’Al = b] +q Pr[ExpﬁkJ;’bAg = b] + Pr[Eg],
where (7) follows from (5) and (6). Finally we can infer frort) ¢hat
AV (A) < AV, (A1) + gAdvi, (A%) + AdvEE(D).

SinceAdvy), (A'), Adviy, (A?) and AdvEr8(D) are negligible from the assumptions of the theorem, the
statement of the theorem follows. O

4 Constructions

In this section, we describe three constructions of keyatipd schemes with different complexity and
communication tradeoffs. The first two constructions argeddaon previously proposed methods, whose
security has never been formally analyzed. We give crypialgic proofs that demonstrate the security of
the existing constructions after some subtle modificatidwmkilitionally, we propose a third construction that
is more efficient than the known schemes. It uses a binantdrderive the user keys and is also provably
secure in our model.

4.1 Chaining Construction (CKU)

In this construction the user keys and keys are generatedividy from a random seed using a pseudoran-
dom generatot; : {0,1}* — {0,1}2%. We write G(s) = G1(s)||G2(s) with |G1(s)| = |Ga(s)| = & for
s € {0,1}*. The algorithms of the chaining construction, callddu, are the following:

- Init(1%, T, s) generates a random seggof lengthx from s and outputsSy = s.
- Update(t, S;) copies the stats} into Sy .

- Derive(t, S¢) andExtract(t, M;, i) are given in Figure 4.

8

Derive(t, St) Extract(t, My, 1)
Bry1 S (Bt, kt) — M,
fori =T downto ¢ for j =t — 1 downto i
(Bi ki) < G(Bi+1) (Bj, kj) < G(Bj+1)
return (B, k) return k;

Figure 4: TheDerive(t, S;) andExtract(t, M, i) algorithms of the chaining construction.

This construction has constant center-state size and lausafor the user-key derivation algorithm. An
alternative construction with linear center-state sizé eonstant user-key derivation is to precompute all
the keysk; and user keyd/;, for 1 < i < T in thelnit algorithm and store all of them in the initial center
stateS).

Theorem 3. Given a pseudorandom generator G, CKU is a secure key-updating scheme.

Proof. Let A = (Ay, Ag) be a polynomial-time adversary successful in breaking éoarity of the key-
updating scheme. We construct an algorithnthat distinguishes the output of the pseudorandom gemerato
from a random string of lengtlx with sufficiently large probability.

Algorithm D has to simulate the environment fdr. D picks By, uniformly at random fron{0, 1}~
and computes the user keys for previous time interval®ask;) = G(B;+1), fori =T,...,1. D gives to
Ay user keyM; = (B;, k;) at iterationi.

Algorithm D is given a challenge string= r||r; of length2«, which in experiment O is the output of
the pseudorandom generator on input a random seed of lengtid in experiment 1 is a random string of
length2x. Formally, theprg experiments are defined in Figure 5.

prg-1

Exp‘g%o Expip
S <R {0, 1}N 7“0”7’1 “—R {07 1}2K
rollr1 «— G(s) b < D(rollr1)
b «— D(ro||r1) return b
return b

Figure 5: Experiments defining the security of pseudorandeneratoiG.

If A4;, outputsstop at time intervalt, D gives to.Ag the challenge ke¥;; = r; and D outputs what
Ag outputs. Denote by, = Pr[ExpZ,’4 = b]. Itis immediate that

PrExpf%,! = 1]= Pr[ExpERyta = 1]=p1, (8)

and
Pr[Explrs, = 0]= pp, 9

wherepy, is the probability that4, given the user keys as in experim&@xp=<", but challenge key;, | =

G (s) for a random seed € {0,1}*, outputs 0. The challenge key given.tbin experimentExps<*™ is
Go(GT=#1(5)), whereG?(s) = G1(...G1(s)...) for i applications ofG;. We can bound the absolute
difference betweep, andp|, as

lpo —po| < Pr[Adistinguishes betweefi,(s) andGQ(GlT*tfl(s))]
< (T —t)Pr[A distinguishes between—r {0,1}" andG (s)]
<

(T — t)AdvESE. (10)

Using (8), (9) and (10), we can relate the success prohiabilif.A andD by

Pr[D succeedd = (Pr[Exp%’ = 0]+ PrlExpl%’ = 1])
1
= o +m)
1
= 5(po+p1+py—po)

v

1
Pr[A succeed%—i(T — t)AdvEE.

It follows that 1
Pr[A succeed$< Pr|D succeed§s+§(T — t)AdVEE,

and
AdVER)(A) < AdVEE(D) + (T — t)AdvEE < TAdVEE.

The statement of the theorem follows from the fact thé¥?;® is negligible. O

4.2 Trapdoor Permutation Construction (TDKU)

In this construction, the center picks an initial randontesthat is updated at each time interval by applying
the inverse of a trapdoor permutation. The trapdoor is knomlg to the center, but a user, given the state
at a certain moment, can apply the permutation iterativeelyenerate all previous states. The key for a time
interval is generated by applying a hash function, modeted eandom oracle, to the current state. This
idea underlies the key rotation mechanism of the Plutusygeesn [21], with the difference that Plutus uses
the output of an RSA trapdoor permutation directly for thergption key. We could not prove the security
of this scheme in our model for key-updating schemes, evemuie trapdoor permutation is not arbitrary,
but instantiated with the RSA permutation.

This construction has the advantage that knowledge of taértamber of time intervals is not needed
in advance; on the other hand, its security can only be provéte random oracle model. Let a family of
trapdoor permutations be given such that the domain sizkeopermutations with security parameteis
I(r), for some polynomial. Leth : {0,1}}**) — {0,1}* be a hash function modeled as a random oracle.
The detailed construction of the trapdoor permutation sehealledT DKU, is presented below:

- Init(1%, T, s) generates a randosy «—px {0,1}%) and a trapdoor permutatiof : {0,1}!() —
{0, 1}%) with trapdoorr from seeds using a pseudorandom generator. Then it outgists=

(307 f7 T)'
- Update(t, Sy) with S; = (s, f, 7) computess; 1 = f~1(s;) and outputsS; 1 = (s¢11, f, 7).
- Derive(t, S¢) outputsMy « (s, f).

- Extract(t, My,) applies the permutation iterativety— i times to generate state = f*~*(M;) and
then outputsi(s;).

Theorem 4. Given afamily of trapdoor permutations and a hash function h, TDKU isa secure key-updating
scheme in the random oracle model.

Proof. Let A = (Ay, Ag) be a polynomial-time adversary successful in breaking éoarity of the key-
updating scheme. Assuming thdt, runs at most times, we construct an algorithf which givenf and
y — f(z) with z —p {0,1}'(*) computesf —'(y) with sufficiently large probability.

10

Algorithm 7 has to simulate the environment fdr 7 makes a guess at the time intervaln which A;,
outputsstop. Z picks ¢t* uniformly at random from the s€tl, ..., q}. If Ay does not outpustop at time
interval t*, thenZ aborts the simulation. Otherwise, at time intervédss than™, 7 gives toA;, the user
key M; = (f“~4(y), f).

Algorithm Extract is executed byA as in the description of the scheme, Busimulates the random
oracle forA. If A queriesz to the random oracle for whicfi(x) = y, thenZ outputsz. Let E' be the event
that A asks queryr = f~!(y) to the oracle and” the negation of this event. Since the adversary has no
advantage in distinguishing the properly generatedey from a randomly generated key if it does not
guery the random oracle at it follows that

Pr[A succeeds$E| <

DN | =

from which we can infer

Pr[A succeed$= Pr[A succeed$E]Pr[E]+ Pr[A succeed$E|Pr[E] < Pr[E]+ (11)
Equations (1) and (11) imply thatr[E]> 1Adv§Sky(A). Then the success probability of algorittris
atleast; Pr[E]> 5. AdviByy (A). The statement of the theorem follows from the fact thatritigm 7 has
only a negligible probability of success. O

4.3 Tree Construction (TreeKU)

In the two schemes above, at least one of the algoritipuate, Derive and Extract has worst-case com-
plexity linear in the total number of time intervals. We mesa tree construction based on ideas of Canetti,
Halevi and Katz [9] with constant complexity for thgerive algorithm and logarithmic worst-case com-
plexity in the number of time intervals for tHépdate and Extract algorithms. Moreover, the amortized
complexity of theUpdate algorithm is constant. In this construction, the user keg $ increased by at
most a logarithmic factor ifi't compared to the user key size of the two constructions destabove.

Our tree-based key-updating scheme, calle#KU, generates keys using a complete binary tree with
T nodes, assuming w.l.0.g. tHAt= 2¢ — 1 for somed € Z. Each node in the tree is associated with a time
interval between 1 and, a unique label i{0,1}*, atree-key in {0, 1}* and anexternal key in {0, 1}* such
that:

1. Time intervals are assigned to tree nodes using post-tnetraversal, i.e., a node corresponds to
interval i if it is the i-th node in the post-order traversal of the tree. We refeh¢éontode associated
with intervalt as node.

2. We define a functioieabel that maps node with 1 < ¢ < T to its label in{0, 1}* as follows. The
root of the tree is labeled by the empty strigand the left and right children of a node with laldel
are labeled by||0 and by/||1, respectively. The parent of a node with labé& denoted byarent(¢),
thusparent(¢||0) = parent(¢||1) = ¢. We denote the length of a labéby |¢|.

3. The tree-key for the root node is chosen at random. Thekrge for the two children of an internal
node in the tree are derived from the tree-key of the paredé nsing a pseudorandom generator
G : {0,1}* — {0,1}?%. For an inputs € {0,1}*, we write G(s) = G1(s)||G2(s) with |G1(s)| =
|G2(s)| = . If the tree-key for the internal node with lalb&is denoted,, then the tree-keys for its
left and right children arey o = Go(ug) andug; = G1(uy), respectively. This implies that once the
tree-key for a node is revealed, then the tree-keys of itglren can be computed, but knowing the
tree-keys of both children of a node does not reveal anyrimétion about the tree-key of the node.

11

Update(t, (P, L¢))

ift=0
Py — leftkeys(e, ur) [* Py contains the label/tree-key pairs of all the left-most rsotle
Li —0 /* the set of left siblings is empty */
else
Ly «— label(t) * compute the label of node*/
uy <« searchkey(l¢, P;) [* compute the tree-key of node*/
if £ endsin 0 [* tis the left child of its parent */
(€s,us) < rightsib(le, Pt) [* compute the label/tree-key pair of the right siblingtof
Piy1 — P\ {(€,us)} Uleftkeys(€s,us) /* update the label/tree-key pairs i1 */
Lty — Le U{(le,us)} * add the label/tree-key pair @fto set of left siblings fot. 4+ 1 */
else [* tis the right child of its parent */
(€s,us) < leftsib(ly, Ly) I* compute the label/tree-key pair of the left siblingtof/
Pig1 — P\ {(le,ue)} * remove label/tree-key pair a@ffrom P;41 */
L1 — Le \ {(4s,us)} * remove label/tree-key pair of left sibling offrom L1 */

return (Py11, Liy1)

leftkeys (¢, u)

A—10 [* initialize set A with the empty set */

while [£] < d * advance to the left until we reach a leaf */
A—AU{(l,u)} [* add the label and tree-key of the current nodedity
£ (|0 * move to left child of the node with label */
u — Go(u) [* compute the tree-key of the left child */

return A

Figure 6: TheUpdate(t, (P, L)) algorithm.

4. The external key of a nodeis the keyk; output by the scheme to the application for intertal
For a node with tree-keyuj,pe (1), the external keyt; is obtained by computing,,,, ., (1), where
F,(b) = F(u,b) andF : {0,1}" x {0,1} — {0,1}" is a pseudorandom function on bits.

We describe the four algorithms of the binary tree key-updaicheme:

- Init(1%, T, s) generates the tree-key for the root node randomy—pr {0,1}", using seed, and
outputsSy = ({(¢,ur)}, 0).

- Update(t, S;) updates the stat®, = (P;, L;) to the next center stat® ;; = (P41, L+11). The center
state for intervat consists of two setsP; that contains pairs of (label, tree-key) for all nodes on the
path from the root to node (including nodet), and L; that contains label/tree-key pairs for all left
siblings of the nodes i#®; that are not inP;.

We use several functions in the description of thedate algorithm. For a label and a setd of
label/tree-key pairs, we define a functigsarchkey (¢, A) that outputs a tree-key for which (¢, u) €

A, if the label exists in the set, and otherwise. Given a labeland a set of label/tree-key pairs
functionrightsib(¢, A) returns the label and the tree-key of the right sibling ofribde with labeV,
and, similarly, functiorleftsib(¢, A) returns the label and the tree-key of the left sibling of tbeen
with label? (assuming the labels and tree-keys of the siblings arB.imhe functionleftkeys is given
as input a label/tree-key pair of a node and returns all labelkey pairs of the left-most nodes in the
subtree rooted at the input node, including label and teseek the input node.

The code for thé)pdate andleftkeys algorithms is given in Figure 6. We omit the details of funog
searchkey, rightsib andleftsib. TheUpdate algorithm distinguishes three cases:

1. If £ = 0, the Update algorithm computes the label/tree-key pairs of all leftstnoodes in the

12

Extract(t, My, 1)

l1...4s — label(7) [* the label ofi has lengths */

V<— S

0 —101... 0,

while v > 0 and searchkey(¢, M;) = L /*find a predecessor afthat is inM; */
ve—uv—1
O—Vby... 0,

forj=v+1tos /* compute tree-keys of all nodes on path from predecessot/to
wey..0; — Go; (wey.0;_4)

key..ep — Fu,, (1) /* return external key of node*/

AAAAA

Figure 7: TheExtract(t, M,) algorithm.

complete tree using functideftkeys and stores them ;. The setl.; is empty in this case, as
nodes inP; do not have left siblings.

2. If t is the left child of its parent, the successor of nade post-order traversal is the left-most
node in the subtree rooted at the right siblihgf nodet. P, contains all label/tree-key pairs
in P, except the tuple for nodg and, in addition, all label/tree-key pairs for the leftshaodes
in the subtree rooted &t which are computed bigftkeys. The set of left siblingd.;,; contains
all label/tree-key pairs fronk; and, in addition, the label/tree-key pair for nade

3. If tis the right child of its parent, nodet 1 is its parent, sd;; contains all label/tree-key pairs
from P, except the tuple for node and L, ,; contains all the label/tree-key pairs In except
the pair for the left sibling of node

- Algorithm Derive(t, (P;, L)) outputs the user tree-keéy, which is the minimum information needed
to generate the set of tree-keyg; : i < t}. Since the tree-key of any node reveals the tree-keys for
all nodes in the subtree rooted at that natig,consists of the label/tree-key pairs for the left siblings
(if any) of all nodes on the path from the root to the parentaafet and the label/tree-key pair of node
t. This information has already been pre-computed such tieatan sef\/; < {(label(¢), u;)} U L.

- Algorithm Extract(t, My,) first finds the maximum predecessor of nadm post-order traversal
whose label/tree-key pair is included in the user tree-kBy Then it computes the tree-keys for all
nodes on the path from that predecessor to riodée external key; is derived from the tree-key;
ask; = F,, (1) using the pseudorandom function. The algorithm is in Figure

Analysis of Complexity. The worst-case complexity of the cryptographic operatiosed in thelpdate
andExtract algorithms is logarithmic in the number of time intervaladahat ofDerive is constant. How-
ever, it is easy to see that the key for each node is computsttigonce ifI" updates are executed. This
implies that the total cost of all update operationg igseudorandom-function applications, so the amortized
cost per update is constant.

Now we prove the security of the binary tree construction.

Theorem 5. Given a pseudorandom generator G and a pseudorandom function F', TreeKU is a secure
key-updating scheme.

Proof. SchemeTreeKU with 7' = 2¢ — 1 time intervals can be obtained fradrextended additive composi-
tions of a trivial key-updating schemiegivkKU with one time interval, defined as follows:

13

| | CKU | TDKU | TreeKU |

Update(t, S;) time 0 1 PKop.| O(logT) PRG op?
Derive(t, S¢) time T —t PRG op. 0 0
Extract(t, My, i) time | ¢ —i PRGop. | t —i PKop.| O(logT) PRG op.
Center state size K poly(k) O(klogT)
User key size K K O(klogT)

Figure 8: Worst-case time and space complexities of thetaar®ons.*Note: the amortized complexity of
Update(t, S¢) in the binary tree scheme is constant.

- Init(1%, T, s) generates a random user ki < {0, 1}" from the seed and outputsSy; = M.
- Update(t, Sy) outputsS; 1 < S; only for¢t = 0.

- Derive(t, S¢) outputsM; < M for ¢ = 1.

- Extract(t, My, i) returnsk = Fyy (1) fort =i = 1.

Given thatF' is a pseudorandom function, it is easy to see thatkU is a secure key-updating scheme.
Consider an adversary that has a non-negligible advantage in breakingKU. Since the scheme has one
time interval,A is not given any user keys and it has to outaap at time interval 0. We build a distinguisher
algorithm D for the pseudorandom functio is given access to an oradle: {0,1} — {0,1}", which is
either F'(k, -) with k —px {0,1}", or a random functioy —r {f : {0,1} — {0,1}"}. D gives toA the
challengek; = G(1) and outputs the same bit ds It is immediate that the advantagelofin distinguishing
the pseudorandom function from random functions is the sasribe advantage of adversatyin breaking
TrivkU.

The tree scheme with time intervals can be constructed as follows: gene?été instances ofirivkU
and make them leaves in the tree; build the tree bottom-updditigely composing (using the extended
method) two adjacent nodes at the same level in the tree. ity of the binary tree scheme obtained by
additive composition as described above follows from Taeol. O

5 Performance of the Constructions

In this section we analyze the complexity of the cryptogramiperations in the four algorithms and the
space complexities of the center state and the user key$ fbree proposed constructions. Recall that all
schemes generate keys of lengthIn analyzing the time complexity of the algorithms, we sfyewhat
kind of operations we measure and distinguish public-keyratons (PK op.) from pseudorandom generator
applications (PRG op.) because PK operations are typioaligh more expensive than PRG applications.
We omit the time complexity of thinit algorithm, as it involves only the pseudorandom generaipali
schemes except for the trapdoor permutation scheme, irhvdiicalso generates the trapdoor permutation.
The space complexities are measured in bits. The detaikdgisasis in Figure 8.

The chaining schem&KU has efficientUpdate andExtract algorithms, but the complexity of the user-
key derivation algorithm is linear in the number of time mtds. On the other hand, the trapdoor permu-
tation schemd@ DKU has efficient user-key derivation, but the complexity of thglate algorithm is one
application of the trapdoor permutation inverse and th#t®Extract(¢, M, 7) algorithm ist—i applications
of the trapdoor permutation. The tree-based sch&meKU balances the tradeoffs between the complex-
ity of the three algorithms: the cost @ferive algorithm is constant and that of thépdate and Extract
algorithms is logarithmic in the number of time intervaldlie worst-case, at the expense of increasing the

14

center-state and user-key sizest(x log T'). Moreover, the amortized cost of thipdate algorithm in the
binary tree construction is constant.

Both CKU andTreeKU require the number of time intervals to be known in advartus;is not needed
for TDKU. As the chaining and the trapdoor permutation schemes haxgt-asase complexities linear in
for at least one algorithm, both of them require the numbeinoé intervals to be rather small. In contrast,
the binary tree construction can be used for a practicalbounded number of time intervals.

In practical applications, such as key management for cgypphic storage systems, we recommend
using a construction similar to the generic forward-seaigmature scheme with practically unbounded
number of time periods of Malkin, Micciancio, and Miner [24]he idea is to construct the multiplicative
composition of the chaining scheme with binary tree scheofighfferent sizes. At time interval of the
chaining scheme, the center generates an instance of they tise scheme with’ — 1 time intervals. In
addition to allowing a practically unbounded number of timervals, this construction has the property
that the complexity of thé/pdate, Derive and Extract algorithms increases with the number of past time
intervals.

6 Related Work

Time-Evolving Cryptography. The notion of secure key-updating schemes is closely cetatéorward-
and backward-secure cryptographic primitives. Indee@care key-updating scheme is forward-secure as
defined originally by Anderson [4], in the sense that it maiimé security in the time intervals following

a key exposure. However, this is the opposite of the forwalisty notion formalized by Bellare and
Miner [6] and used in subsequent work. Here we use the terwafok security to refer to the latter notion.

Time-evolving cryptography protects a cryptographic ftive against key exposure by dividing the
time into intervals and using a different secret key for gtgne interval. Forward-secure primitives protect
past uses of the secret key: if a device holding all keys ispromised, the attacker can not have access
to past keys. In the case of forward-secure signatures, tthekar can not generate past signatures on
behalf of the user, and in the case of forward-secure eriorypthe attacker can not decrypt old cipher-
texts. There exist many efficient constructions of forwsegure signatures [6, 2, 19] and several generic
constructions [22, 24]. Bellare and Yee [7] analyze forwsedure private-key cryptographic primitives
(forward-secure pseudorandom generators, message tcdkion codes and symmetric encryption) and
Canetti, Halevi and Katz [9] construct the first forward+s®cpublic-key encryption scheme.

Forward security has been combined with backward securitpadels that protect both the past and
future time intervals, called key-insulated [12, 13] angtusion-resilient models [20, 11]. In both models,
there is a center that interacts with the user in the key @pdaitocol. The basic key insulation model
assumes that the center is trusted and the user is comprbimis¢ mostt time intervals and guarantees
that the adversary does not gain information about the laythé intervals the user is not compromised. A
variant of this model, called strong key insulation, allalve compromise of the center as well. Intrusion-
resilience tolerates arbitrarily many break-ins into kb#incenter and the user, as long as the break-ins do not
occur in the same time interval. The relation between fodwagcure, key-insulated and intrusion-resilient
signatures has been analyzed by Malkin, Obana and YungA2&lrvey of forward-secure cryptography is
given by ltkis [18].

Re-keying, i.e., deriving new secret keys periodicallynfra master secret key, is a standard method
used by many applications. It has been formalized by AbdaithBellare [1]. The notion of key-updating
schemes that we define is closely related to re-keying schewith the difference that in our model, we
have the additional requirement of being able to derive ke efficiently.

15

Multicast Key Distribution. In key distribution schemes for multicast, a group conémoHistributes a
group encryption key to all users in a multicast group. Thaugrof users is dynamic and each join or
leave event requires the change of the encryption key. Theigdo achieve both forward and backward
security. In contrast, in our model of key-updating scheosers should be able to derive past encryption
keys efficiently.

A common key distribution model for multicast is thatkey graphs, introduced by Wong et al. [30]
and used subsequently in many constructions [28, 27, 17,la8hese schemes, each user knows its own
secret key and, in addition, a subset of secret keys usedch@rage the group encryption key and to perform
fast update operations. The relation between users andikeyedeled in a directed acyclic graphs, in
which the source nodes are the users, intermediary noddseyseand the unique sink node is the group
encryption key. A path from a user node to the group key costall the keys known to that user. The
complexity and communication cost of key update operatismmptimal for tree structures [29], and in this
case it is logarithmic in the number of users in the multigasup. We also use trees for generating keys,
but our approach is different in considering the nodes otithe to be only keys, and not users. We obtain
logarithmic update cost in the number of revocations, ndhénumber of users in the group.

Key Management in Cryptographic Storage Systems. Early cryptographic file systems [8, 10] did not
address key management. Cepheus [14] is the first cryptoigrdile system that considers sharing of
files and introduces the idea of lazy revocation for imprgvierformance. However, key management in
Cepheus is centralized by using a trusted key server for kagitaition. More recent cryptographic file
systems, such as Oceanstore [23] and Plutus [21], ackngevkb@ benefit of decentralized key distribution
and propose that key management is handled by file ownersséiess. For efficient operation, Plutus
adopts a lazy revocation model and uses a key-updating schagsed on RSA, as described in Section 4.2.

Farsite [3], SNAD [26] and SiRiUS [15] use public-key crygtaphy for key management. The group
encryption key is encrypted with the public keys of all granpmbers and these lockboxes are stored on
the storage servers. This approach simplifies key managemarnhe key storage per group is proportional
to the number of users in the group. Neither of these systeltiesses efficient user revocation.

7 Conclusions

Motivated by the practical problem of efficient key managetrfer cryptographic file systems that adopt
lazy revocation, we define formally the notion of key-updgtschemes for lazy revocation and its security.
In addition, we give two methods for additive and multiptiea composition of two secure key-updating
scheme into a new scheme which can handle a larger numbegmfay®cations, while preserving security.
We also prove the security of two slightly modified existirapstructions and propose a new construction,
the binary-tree scheme, that balances the tradeoffs ofxiséing constructions. Finally, we provide a
systematic analysis of the computational and communicationplexities of the three constructions.

We can extend the definition of key-updating schemes to stjpger keys for intervat, from which
only keys of the time intervals betweeérandt can be extracted, for any< i < ¢. This is useful in a model
in which users joining the group at a later time interval dlawt have access to past information. The
extension can be incorporated in the tree constructionoartthdditional cost, but the chaining and trapdoor
permutation constructions do not work in this model becalgaiser key reveals all previous keys.

In a companion paper [5], we show how to extend secure kegtimgischemes to cryptosystems with
lazy revocation, and introduce the notions of symmetricrgstion, message-authentication codes, and
signature schemes with lazy revocation. Furthermore, weodstrate that using these cryptosystems in
some existing distributed cryptographic file systems inapsatheir efficiency and security.

16

References

[1]

[2]

M. Abdalla and M. Bellare, “Increasing the lifetime of @k A comparitive analysis of the security
of rekeying techniques,” ifProc. Asiacrypt 2000, vol. 1976 ofLecture Notes in Computer Science,
pp. 546-559, Springer-Verlag, 2000.

M. Abdalla and L. Reyzin, “A new forward-secure digitégjsature scheme,” iRrac. Asiacrypt 2000,
vol. 1976 ofLecture Notes in Computer Science, pp. 116-129, Springer-Verlag, 2000.

[3] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. ChaikenRJ Douceur, J. Howell, J. R. Lorch,

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

M. Theimer, and R. P. Wattenhofer, “FARSITE: Federatedjlabt, and reliable storage for an in-
completely trusted environment,” Proc. 5th Symposium on Operating System Design and Implemen-
tation (OSDI), Usenix, 2002.

R. Anderson, “Two remarks on public-key cryptology,” chmical Report UCAM-CL-TR-549, Uni-
versity of Cambridge, 2002.

M. Backes, C. Cachin, and A. Oprea, “Lazy revocation yptographic file systems,” Research Report
RZ 3628, IBM Research, Aug. 2005.

M. Bellare and S. Miner, “A forward-secure digital signee scheme,” ifProc. Crypto 1999, vol. 1666
of Lecture Notes in Computer Science, pp. 431-448, Springer-Verlag, 1999.

M. Bellare and B. Yee, “Forward-security in private-keyyptography,” inProc. CT-RSA 2003,
vol. 2612 ofLecture Notes in Computer Science, pp. 1-18, Springer-Verlag, 2003.

M. Blaze, “A cryptographic file system for Unix,” ilProc. First ACM Conference on Computer and
Communication Security (CCS), pp. 9-16, 1993.

R. Canetti, S. Halevi, and J. Katz, “A forward-secure letkey encryption scheme,” iRroc. Euro-
crypt 2003, vol. 2656 ofLecture Notesin Computer Science, pp. 255271, Springer-Verlag, 2003.

G. Cattaneo, L. Catuogno, A. D. Sorbo, and P. Persiafiee ‘design and implementation of a transpar-
ent cryptographic file system for Unix,” iRroc. USENIX Annual Technical Conference 2001, Freenix
Track, pp. 199-212, 2001.

Y. Dodis, M. Franklin, J. Katz, A. Miyaji, and M. Yung, fitrusion-resilient public-key encryption,”
in Proc. CT-RSA 2003, vol. 2612 ofLecture Notes in Computer Science, pp. 19-32, Springer-Verlag,
2003.

Y. Dodis, J. Katz, S. Xu, and M. Yung, “Key insulated piabkey cryptosystems,” ifProc. Eurocrypt
2002, vol. 2332 ofLecture Notes in Computer Science, pp. 65-82, Springer-Verlag, 2002.

Y. Dodis, J. Katz, and M. Yung, “Strong key-insulatedrsature schemes,” iaroc. Workshop of Public
Key Cryptography (PKC), vol. 2567 ofLecture Notes in Computer Science, pp. 130-144, Springer-
Verlag, 2002.

K. Fu, “Group sharing and random access in cryptog@torage file systems,” Master’s thesis,
Massachusetts Institute of Technology, 1999.

E. Goh, H. Shacham, N. Modadugu, and D. Boneh, “SiRiU&using remote untrusted storage,” in
Proc. Network and Distributed Systems Security (NDSS) Symposium 2003, pp. 131-145, ISOC, 2003.

17

[16] M. T. Goodrich, J. Z. Sun, and R. Tamassia, “Efficienetlased revocation in groups of low-state de-
vices,” inProc. Crypto 2004, vol. 3152 ofLecture Notes in Computer Science, pp. 511-522, Springer-
Verlag, 2004.

[17] J. Goshi and R. E. Ladner, “Algorithms for dynamic medist key distribution trees,” iRroc. 22nd
Symposium on Principles of Distributed Computing (PODC), pp. 243-251, ACM, 2003.

[18] G. Itkis, “Forward security, adaptive cryptographyime evolution.” Survey, available fromt t p:
/I ww. cs. bu. edu/ fac/itkis/pap/forward-secure-survey. pdf.

[19] G. ltkis and L. Reyzin, “Forward-secure signatureshwitptimal signing and verifying,” irProc.
Crypto 2001, vol. 2139 ofLecture Notes in Computer Science, pp. 332—-354, Springer-Verlag, 2001.

[20] G. Itkis and L. Reyzin, “SiBIR: Signer-base intrusiossilient signatures,” irProc. Crypto 2002,
vol. 2442 ofLecture Notes in Computer Science, pp. 499-514, Springer-Verlag, 2002.

[21] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and-K, “Plutus: Scalable secure file sharing
on untrusted storage,” iRroc. 2nd USENIX Conference on File and Storage Technologies (FAST),
2003.

[22] H. Krawczyk, “Simple forward-secure signatures frony aignature scheme,” ifroc. 7th ACM Con-
ference on Computer and Communication Security (CCS), pp. 108-115, 2000.

[23] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P.t&dg D. Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao, “Oceaastén architecture for global-scale
persistent storage,” iRroc. 9th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pp. 190-201, ACM, 2000.

[24] T. Malkin, D. Micciancio, and S. Miner, “Efficient generforward-secure signatures with an un-
bounded number of time periods,” Rroc. Eurocrypt 2002, vol. 2332 ofLecture Notes in Computer
Science, pp. 400-417, Springer-Verlag, 2002.

[25] T.Malkin, S. Obana, and M. Yung, “The hierarchy of keypking signatures and a characterization of
proxy signatures,” ifProc. Eurocrypt 2004, vol. 3027 ofLecture Notesin Computer Science, pp. 306—
322, Springer-Verlag, 2004.

[26] E. Miller, D. Long, W. Freeman, and B. Reed, “Strong gséguor distributed file systems,” ifProc.
the First USENIX Conference on File and Sorage Technologies (FAST), 2002.

[27] O. Rodeh, K. Birman, and D. Dolev, “Using AVL trees forufatolerant group key management,”
International Journal on Information Security, vol. 1, no. 2, pp. 84-99, 2001.

[28] A.T.Shermanand D. A. McGrew, “Key establishment irgladynamic groups using one-way function
trees,”|EEE Transactions on Software Engineering, vol. 29, no. 5, pp. 444-458, 2003.

[29] R. Tamassia and N. Triandopoulos, “Computational lbsuon hierarchical data processing with ap-
plications to information security,” ifroc. 32nd International Colloquium on Automata, Languages
and Programming (ICALP), 2005.

[30] C.K.Wong, M. Gouda, and S. S. Lam, “Secure group comgatitons using key graphd EEE/ACM
Transactions on Networking, vol. 8, no. 1, pp. 16—-30, 2000.

18

